Table 2.
Team/method | Avg_det | Avg. deviation scores | Time | Rank | |||
---|---|---|---|---|---|---|---|
dev_g1-3 | dev_g2-3 | dev_g4-3 | dev_g | (in ms) | |||
AIM_CityU18 | 0.450 | 0.089 | 0.134 | 0.056 | 0.093 | 100 | 1 |
GECE_VISION20 | 0.384 | 0.056 | 0.253 | 0.069 | 0.126 | 320 | 5 |
HoLLYS_ETRI24 | 0.491 | 0.122 | 0.212 | 0.098 | 0.144 | 690 | 2 |
JIN_ZJU19 | 0.478 | 0.062 | 0.230 | 0.091 | 0.128 | 1900 | 3 |
YOLOv427 | 0.316 | 0.099 | 0.178 | 0.060 | 0.112 | 13 | 6 |
RetinaNet (ResNet50)28 | 0.320 | 0.031 | 0.086 | 0.040 | 0.052 | 27 | 4 |
EfficientDetD229 | 0.298 | 0.058 | 0.173 | 0.078 | 0.103 | 200 | 7 |
Average precision across all test splits is provided as Avg_det. Deviation scores are calculated between the test data 3 w.r.t. data 1 (dev_g1-3), data 2 (dev_g2-3) and data 4 (dev_g4-3). An average deviation score dev_g is computed by averaging the computed deviations for each data. Test execution time is provided in ms. Finally, a rank column is used to provide an average rank based on the computed ranks for each Avg_det, dev_g and time. Top-two values for each metric are highlighted in bold.
: best increasing : best decreasing.