Skip to main content
. 2024 Jan 23;14:2032. doi: 10.1038/s41598-024-52063-x

Table 2.

Ranking of detection task of polyp generalisation challenge.

Team/method Avg_det Avg. deviation scores Time Rank
dev_g1-3 dev_g2-3 dev_g4-3 dev_g (in ms)
AIM_CityU18 0.450 0.089 0.134 0.056 0.093 100 1
GECE_VISION20 0.384 0.056 0.253 0.069 0.126 320 5
HoLLYS_ETRI24 0.491 0.122 0.212 0.098 0.144 690 2
JIN_ZJU19 0.478 0.062 0.230 0.091 0.128 1900 3
YOLOv427 0.316 0.099 0.178 0.060 0.112 13 6
RetinaNet (ResNet50)28 0.320 0.031 0.086 0.040 0.052 27 4
EfficientDetD229 0.298 0.058 0.173 0.078 0.103 200 7

Average precision across all test splits is provided as Avg_det. Deviation scores are calculated between the test data 3 w.r.t. data 1 (dev_g1-3), data 2 (dev_g2-3) and data 4 (dev_g4-3). An average deviation score dev_g is computed by averaging the computed deviations for each data. Test execution time is provided in ms. Finally, a rank column is used to provide an average rank based on the computed ranks for each Avg_det, dev_g and time. Top-two values for each metric are highlighted in bold.

: best increasing         : best decreasing.