
Computational and Structural Biotechnology Journal 24 (2024) 89–104

Available online 27 December 2023
2001-0370/© 2024 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Research article 

A novel deep learning method for large-scale analysis of bone marrow 
adiposity using UK Biobank Dixon MRI data 

David M. Morris a,b,1, Chengjia Wang a,c,1, Giorgos Papanastasiou b,d, Calum D. Gray b, 
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A B S T R A C T   

Background: Bone marrow adipose tissue (BMAT) represents > 10% fat mass in healthy humans and can be 
measured by magnetic resonance imaging (MRI) as the bone marrow fat fraction (BMFF). Human MRI studies 
have identified several diseases associated with BMFF but have been relatively small scale. Population-scale 
studies therefore have huge potential to reveal BMAT’s true clinical relevance. The UK Biobank (UKBB) is un
dertaking MRI of 100,000 participants, providing the ideal opportunity for such advances. 
Objective: To establish deep learning for high-throughput multi-site BMFF analysis from UKBB MRI data. 
Materials and methods: We studied males and females aged 60–69. Bone marrow (BM) segmentation was auto
mated using a new lightweight attention-based 3D U-Net convolutional neural network that improved seg
mentation of small structures from large volumetric data. Using manual segmentations from 61–64 subjects, the 
models were trained to segment four BM regions of interest: the spine (thoracic and lumbar vertebrae), femoral 
head, total hip and femoral diaphysis. Models were tested using a further 10–12 datasets per region and validated 
using datasets from 729 UKBB participants. BMFF was then quantified and pathophysiological characteristics 
assessed, including site- and sex-dependent differences and the relationships with age, BMI, bone mineral den
sity, peripheral adiposity, and osteoporosis. 
Results: Model accuracy matched or exceeded that for conventional U-Nets, yielding Dice scores of 91.2% (spine), 
94.5% (femoral head), 91.2% (total hip) and 86.6% (femoral diaphysis). One case of severe scoliosis prevented 
segmentation of the spine, while one case of Non-Hodgkin Lymphoma prevented segmentation of the spine, 
femoral head and total hip because of T2 signal depletion; however, successful segmentation was not disrupted 
by any other pathophysiological variables. The resulting BMFF measurements confirmed expected relationships 
between BMFF and age, sex and bone density, and identified new site- and sex-specific characteristics. 
Conclusions: We have established a new deep learning method for accurate segmentation of small structures from 
large volumetric data, allowing high-throughput multi-site BMFF measurement in the UKBB. Our findings reveal 
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new pathophysiological insights, highlighting the potential of BMFF as a novel clinical biomarker. Applying our 
method across the full UKBB cohort will help to reveal the impact of BMAT on human health and disease.   

1. Introduction 

Bone marrow adipose tissue (BMAT) accounts for up to 70% of total 
bone marrow (BM) volume and approximately 10% of total fat mass in 
lean, healthy humans [1]. BMAT further increases with ageing and in 
diverse clinical conditions, including osteoporosis, obesity, type 2 dia
betes, oestrogen deficiency, chronic kidney disease, radiotherapy and 
glucocorticoid treatment [1]. In striking contrast to other adipose de
pots, BMAT also increases during caloric restriction in animals and in 
humans with anorexia nervosa [1–4]. Thus, BMAT is a major component 
of normal human anatomy; is distinct to other types of adipose tissue; 
and is altered in numerous clinical contexts. 

These observations suggest roles for BMAT in normal physiological 
function and the pathogenesis of multi-morbidities, including major 
ageing-associated diseases. Indeed, clinical and preclinical studies sug
gest that BMAT can directly influence skeletal remodelling, haemato
poiesis and energy homeostasis [1,5,6] and have revealed endocrine 
properties through which BMAT may exert systemic effects [3]. How
ever, study of BMAT has been limited, especially in comparison to other 
major adipose depots [1]; hence, BMAT formation and function remains 
poorly understood. 

Despite this relative ignorance, recent studies have revealed new 
fundamental knowledge of BMAT biology. One key finding is that 
BMAT’s characteristics and functions differ according to its skeletal 
location. BMAT is proposed to exist in two broad subtypes, dubbed 
‘constitutive’ and ‘regulated’ [7,8]: constitutive BMAT predominates in 
the appendicular skeleton, particularly at more-distal sites, whereas 
regulated BMAT develops in the axial skeleton and in proximal regions 
of the long bones, such as the femoral head and epiphysis. Adipocytes 
within regulated BMAT increase or decrease in size and/or number in 
response to altered environmental, physiological and pathological con
ditions, whereas those within constitutive BMAT are relatively resistant 
to expansion or breakdown in such contexts [7,8]. Thus, efforts to 
further elucidate BMAT formation and function must consider these 
fundamental site-specific differences. 

Magnetic resonance imaging (MRI) and proton MR spectroscopy 
have emerged as key tools for non-invasively assessing BMAT properties 
in humans [9], including the extent of BM adiposity and the proportions 
of saturated and unsaturated lipids within the BM [10]. The former 
depends on analysis of BM fat fraction (BMFF) using chemical 
shift-encoding based water-fat separation methods. These approaches 
have been applied in various small- and mid-scale human cohort studies, 
revealing some insights into BMAT’s association with human skeletal 
and metabolic health [11,12]. For example, multiple studies have shown 
that BMFF is increased in osteoporosis and is associated with lower bone 
mineral density (BMD) in non-osteoporotic subjects [11–13]. However, 
these cohort studies have never included more than 676 people [14], 
limiting the ability to detect other associations. Thus, analysis of BMFF 
on a larger scale has enormous potential to reveal fundamental new 
knowledge of BMAT formation and function, including the association 
with other physiological, pathological and genetic variables. This would 
provide new understanding about the factors that regulate BMAT 
development, as well as highlighting how altered BMFF impacts human 
health and disease. 

The UK Biobank (UKBB) is undertaking the world’s largest health 
imaging study [15], providing an ideal opportunity for such large-scale 
BMFF analysis. Of the 500,000 UKBB participants, 100,000 are under
going MRI of the brain, heart and whole body, as well as dual-energy 
X-ray absorptiometry to measure BMD. As of Novmeber 2023, approx
imately 73,000 participants have been scanned. Efficient measurement 
of BMFF from these MRI datasets will require development of new 

automated analysis methods. Several groups have developed machine 
learning for automated segmentation of other anatomical regions from 
the UKBB MRI data [16–18]. One preprint also reports deep learning for 
segmentation of calvarial BM from UKBB MRI scans of the skull [19]. 
However, this study used only T1-weighted MR data and attempted to 
quantify BM adiposity based on raw MRI signal intensity, which has 
never been validated for this purpose [19]; the clinical significance of 
calvarial BM adiposity also remains uncertain. Machine learning has 
also recently been used to segment the knee or vertebral BM from Dixon 
images in smaller cohorts outwith the UKBB [20–22]; however, there are 
no peer-reviewed studies establishing machine learning for automated 
segmentation of the BM from other skeletal sites, and never using MR 
data from the UKBB. These were the goals of the present study. 

Given the potential insights that could be gained from such large- 
scale BMFF analysis, herein our aims were to develop a deep learning 
pipeline for automated BM segmentation, at multiple skeletal sites, from 
UKBB MRI data; and to validate the resulting BMFF values by testing if 
they show pathophysiological relationships that are consistent with 
previous studies. Our findings establish the utility of deep learning for 
large-scale analysis of BMFF within the UKBB and the potential of this 
approach for revealing the impact of BMAT on human health and 
disease. 

2. Materials and methods 

2.1. UKBB Imaging study – participants 

Full details of the UKBB imaging study have recently been reported 
by Littlejohns et al., who summarise the study as "a population-based 
cohort of half a million participants aged 40–69 years recruited between 
2006 and 2010. In 2014, UK Biobank started the world’s largest multi- 
modal imaging study, with the aim of re-inviting 100,000 participants to 
undergo brain, cardiac and abdominal magnetic resonance imaging, dual- 
energy X-ray absorptiometry and carotid ultrasound” [15]. As of 
November 2023, approximately 73,000 participants have undergone the 
UKBB abdominal MRI protocol. In this study, we focussed on an initial 
cohort of 729 participants to train and validate our deep learning 
models; further details are provided below (“Training and validation 
cohort”), with participant characteristics reported in Table 1. The 
phenotypic and imaging data used in this study were obtained from 
UKBB and analysed under an approved project application (ID 48697). 
All work reported herein was done in accordance with UKBB ethical 
requirements. 

2.2. UKBB – MRI acquisition 

MRI data were acquired on a 1.5 T whole-body MR system (Mag
netom Aera, Siemens Medical Solutions, Erlangen, Germany). Tridi
mensional two-point Dixon sequences were used to give coverage from 
neck to knees, For quantification of BM adiposity, the availability of two- 
point Dixon sequences only is one limitation of the UKBB imaging study, 
because these sequences do not allow accurate T2 * correction. This is a 
limitation because, within the BM, the presence of trabecular bone can 
cause T2 * decay effects that may differ in the water and fat components 
[9,10]. Consequently, two-point Dixon sequences do not allow quanti
fication of the corrected proton-density fat fraction (PDFF), and there
fore herein we calculated the dual-echo bone marrow fat fraction 
(BMFF); further details and considerations are reported in Section 2.8 
(‘Fat fraction mapping’) and in the Limitations section of the Discussion. 

The UKBB MRI sequences consist of six volumes (slabs), with the first 
slab starting at the neck and the sixth slab extending to the knees. In the 
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present study we analysed three of these slabs: the lower thorax and 
abdomen (slab 2), hips (slab 4), and upper leg (slab 5). For slabs 1–4, 
breath-hold sequences were acquired by using a 3D dual-echo spoiled 
gradient-echo (FLASH) T1-weighted acquisition using the following 
parameters: TR/TEin-phase/TEout-of-phase: 6.7/4.8/2.4 ms; field of view 
(FOV): 500 × 381 mm; slice thickness: 4.5 mm; isotropic in-plane spatial 
resolution of 2.2 mm; number of slices: 44. Parallel imaging factor 2 in 
both frequency/phase directions and a partial Fourier reconstruction of 
71% were used to reduce acquisition time. For slab 5 (upper leg), slice 
thickness was reduced to 3.5 mm and 72 slices were acquired with the 
same resolution. Detailed technical parameters are available in previous 
papers reporting the UKBB imaging protocol [15,23]. 

2.3. UKBB – DXA scans for bone mineral density measurement and body 
composition 

As part of the UKBB Imaging study, bone mineral density (BMD) was 
measured at the lumbar spine (L1–L4) and at the non-dominant hip for 
femoral neck and total hip by DXA scan (GE-Lunar iDXA). Machines 
were calibrated daily, and quality-assurance tests were carried out 
periodically. WHO criteria were used to define osteoporosis (BMD T- 
score ≤− 2.5) and osteopaenia (BMD T-score between − 1.0 and − 2.5). 
All UKBB imaging participants also underwent total-body DXA scanning 
(GE-Lunar iDXA). Fat, lean, and bone masses for the total body and per 
region (arms, legs, and trunk) were measured and analyzed using the 
manufacturer’s validated software, with visceral adipose tissue (VAT, 
kg) also measured. Daily quality-control and calibration procedures 
were performed using the manufacturer’s standards. 

2.4. Training and validation cohort 

To develop a deep learning method for automated BM segmentation 
we focussed on a subset of UKBB Imaging participants, consisting of 729 
male and female subjects aged 60–69 years old (Table 1). This cohort 
was selected to include control subjects (with normal BMD) and subjects 
with osteopaenia or osteoporosis. Subjects with obesity and type 2 
diabetes were excluded because these conditions can influence BMFF [1, 
6], leaving only non-diabetic subjects with a body mass index (BMI) 
within the normal range (18.5–25 kg/m2). No other skeletal conditions 
were particularly prevalent among this cohort, as assessed by systematic 
analysis of PheCodes for these conditions [24,25] (see Supplemental 

Data file). 

2.5. Data management and workflow 

MRI data was downloaded from UKBB, consisting of multiple vol
umes acquired using the two-point Dixon technique, based on the pa
rameters listed above. For each volume the in- and out-of-phase, fat and 
water images were available. The data were downloaded in flat format 
and sorted by sequence to expedite data access. The volumes required 
were identified by their sequence number assuming a standard acqui
sition protocol, which was determined from the data. As shown in Fig. 1, 
we began by downloading and analysing data from the 729-subject 
training and validation cohort. 

2.6. Manual segmentation of MRI data 

A training dataset of 75 subjects (Fig. 1 A) was extracted from the 
test dataset to be used for the training and validation of the deep 
learning algorithms. Each of these 75 datasets was segmented by a single 
observer (D.M.M.) for consistency, generating manual segmentations. 
For each subject, the fat images were used to define four distinct vol
umes of interest (VOIs) corresponding to BM regions of pathophysio
logical relevance: the spine, the femoral head, the total hip, and the 
femoral diaphysis. The spine consisted of all the vertebral marrow in the 
principle abdominal volume (slab 2), which contained 6–7 vertebrae 
ranging from T8 to L3. The reason for this range of vertebrae is that the 
multiple abdominal acquisitions have a fixed volume and are continuous 
across the patient’s body; hence, the range of vertebrae within each 
abdominal volume depends on the patient’s height. The femoral head 
and total hip regions were segmented from the hip volume (slab 4). 
Here, the total hip consisted of the femoral neck and the hip between the 
lesser and greater trochanter. The femoral diaphysis, located in the 
upper leg volume (slab 5), was segmented at the mid-shaft of the femur, 
which was identified by locating the point of the shaft with the nar
rowest cross section. Each femoral volume was segmented from the non- 
dominant left femur to allow more-direct comparison with DXA mea
surements, which are usually performed at the non-dominant hip. 
Femoral BMFF does not show significant contralateral differences [26], 
meaning that BMFF measurements from the left femur should be 
representative of both sides. Segmentation was performed on the native 
axial images on a slice-by-slice basis in Analyze 12.0 software 

Table 1 
Characteristics of subjects in training and validation cohort. Normally distributed data are reported as mean ± SEM while non-normally distributed data are 
reported as median [interquartile range]. BMI, body mass index; DXA, dual-energy X-ray absorptiometry; VAT, visceral adipose tissue. Within each sex, significant 
differences between control subjects and osteopaenic or osteoporotic subjects are indicated by * (P < 0.05), * * (P < 0.01) or * ** (P < 0.001). Within control subjects, 
significant differences between males and females are indicated by ## (P < 0.01) or ### (P < 0.001).   

Males (n = 277) Females (n = 452)  

Control (n = 138) Osteopaenic (n =
146) 

Osteoporotic (n = 17) Control (n = 134) Osteopaenic (n = 262) Osteoporotic (n = 70) 

Age (years) 65 [63,67] 65 [63,67] 64.47 ± 0.7 65 [62,67] 65 [62,67] 65 [63,67] 
BMI (kg/m2) 23.6 [22.8, 24.3] 23.3 [22.3, 24.1] 22.04 ± 0.20 *** 22.9 [21.7, 23.9]## 22.6 [21.3, 23.7] 21.67 ± 0.40 * 
BMD T-score (L1-L4) 0.65 [− 0.2, 

1.775] 
-1 [− 1.575, − 0.1] 

*** 
-3 [− 3.25, − 1.55] 

*** 
0.15 [− 0.4, 0.9] -1.5 [− 1.9, − 0.8] *** -2.8 [− 3.1, − 2.6] *** 

BMD T-score (total femur, 
left) 

0.2 [− 0.3, 0.7] -1.12 ± 0.05 *** -2.2 ± 0.14 *** 0 [− 0.4, 0.475] -1.4 [− 1.8, − 1] *** -2.22 ± 0.09 *** 

BMD T-score (femoral neck, 
left) 

-0.3 [− 0.7, 
0.275] 

-1.5 [− 1.8, − 1.2] *** -2.45 ± 0.13 *** -0.15 [− 0.7, 0.4] -1.45 [− 1.8, − 1.1] 
*** 

-2.11 ± 0.07 
*defined** 

Android tissue fat% by DXA 30.6 [24, 34.6] 30.0 [22.8, 35.7] 24.4 ± 2.0 34.8 [27.8, 
40.7]### 

32.5 ± 0.6 31.0 ± 1.1 

Gynoid tissue fat% by DXA 24.3 ± 0.4 24.4 ± 0.4 23.5 ± 1.0 37.6 ± 0.4### 38.5 ± 0.3 38.7 ± 0.6 
Legs tissue fat% by DXA 20.9 ± 0.3 21.2 ± 0.3 21.3 ± 1.0 35.2 ± 0.5### 36.9 ± 0.3 37.1 ± 0.6 
Trunk tissue fat% by DXA 29.1 [23.7, 32.0] 28.6 [23.0, 33.4] 24.3 ± 1.5 35.4 [29.9, 

39.5]### 
33.3 ± 0.4 32.3 ± 0.9 

Total tissue fat% by DXA 24.6 ± 0.4 25.6 [21.6, 28.5] 22.9 ± 1.8 34.7 [30.9, 
37.38### 

34.3 ± 0.3 33.9 ± 0.6 

VAT mass (g) 949.4 ± 35.25 783.5 [465.5, 1131] 586 ± 79.6 ** 407 [225.5, 
717]### 

346.5 [217, 563.5] 296 [193.3, 526.5]  
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(AnalyzeDirect, Overland Park, KS, USA) following an overall inspection 
of each volume to determine the extent of each region excluding partial 
volume, defined as a drop in signal intensity > 50% compared to the 
centre of the region. 

Of the 75 manually segmented datasets (Fig. 1 A), 64 were used to 
train the deep learning model for the spine; 61 were used for the femoral 
head and diaphysis; and 62 were used for the total hip (Fig. 1B). To do 
so, the fat images and their corresponding manual segmentations were 
used iteratively to build a separate model to segment each region indi
vidually and generate a deep learning segmentation (Fig. 1D). The 
remaining datasets (Fig. 1 C) were not used in training the models but 
instead were used as unseen validation data to test the models: 12 
datasets were used for testing the spine, 11 for the femoral head, and 10 
each for the total hip and diaphysis models. For these validation data
sets, comparison of the deep learning segmentations with the manual 
segmentations (Fig. 1E) allowed dice coefficients to be calculated for the 
four different algorithms (Table 2). 

All the deep learning segmentations for the training and validation 
datasets were manually checked. This identified several data issues and 
segmentation failures that required the development of specific error- 
checking rules. These rules were based on determining if the VOIs 
generated were physiologically appropriate: VOIs could not consist only 
of single voxels, nor were gaps allowed within the VOIs. Therefore, the 
initial error-checking steps automatically removed any single-voxel 
VOIs and joined together any discontinuous VOIs. Additional error 
checking was used to identify those segmentations that were outliers 
within the distribution of regions generated. This was based on the 
centre of mass being greater than 3 standard deviations from the mean of 
the training dataset. This is useful for identifying erroneous segmenta
tions that have been caused by data quality issues or deviations from the 
standard MRI protocol. 

2.7. U-Net design and rationale 

Directly segmenting 3D data using a traditional U-Net [27] has 

several drawbacks: i), the size of input data and the depth of the model 
are limited by the available GPU memory; ii), due to the highly imbal
anced distribution between classes, the traditional 3D U-Net [27] tends 
to label all voxels as background; and iii), the fixed size of the receptive 
field limited the ability of the model to effectively utilize the global 
correlations between local features. 

To address these issues, we developed a novel light-weight attention- 
based U-Net model for simultaneous detection and segmentation of tiny 
structures in large 3D data. Fig. 2 shows the architecture of this new 
Attention ROI U-Net model. The encoding subnetwork output feature 
maps four resolution levels [28]. Each encoding block consists of a 
conventional U-Net convolutional layer (3D conv + Relu + Instance 
normalization), a convolutional layer equipped with a modified con
volutional block attention module (CBAM) [29], and a down-sampling 
layer implemented as a stride 2 3X3X3 convolution operation. The last 
encoding block consists of two CBAM convolutional layers with a 
non-local spatial attention layer [30] inserted between them. Unlike the 
original CBAM, which generates two attention maps using average and 
max pooling, we used 1X1X1 convolution to generate one single 
fixed-size attention map from each CBAM layer. The 5 attention maps 
are all resized to 96X96X96 and then fused by a mini convolutional 
neural network (CNN) with a Softmax layer to generate a probability 
map P. The centre, (x, y, z)ROI, of a region of interest (ROI), which in
dicates the location of the segmented anatomical structure, is then given 
by: 

(x, y, z)ROI = P ⊙ (u, v,w),

Here, u, v,w are grid of data coordinates normalized to [− 1, 1]. With 
this centre, a cubic ROI is extracted from the encoder feature maps of all 
resolution levels with sizes 32, 16, 8 and 4. The U-Net decoder then 
generates the segmentation of this ROI. The final segmentation results 
are produced by recovering the ROI location within the original data 
volume. 

Detection of the ROI location is realised by minimizing a ROI centre 
localization loss, Lloc, defined on the predicted and ground-truth ROI 
centres. We use the conventional Dice loss, LROI, to optimize the seg
mentation of the detected ROI. Because minimize bias in traduced by the 
class imbalance on the final segmentation results, we also compute a 
weighted Dice loss, Lseg, using the full image segmentation, where the 
weight of each class is defined as the reciprocal of the number of voxels. 
To sum up, the loss function for trains ing our new U-Net model is 
defined as: 

L = Lseg + λ1LROI + λ2Lloc,

Fig. 1. Workflow for data management, manual segmentation and application and validation of deep learning. The test dataset comprised the validation 
cohort of 729 subjects (described in Table 1), from which datasets from 75 subjects were manually segmented (A) to generate four VOIs per subject (spine, femoral 
head, total hip, and femoral diaphysis). The manual segmentations from 61–64 of these subjects were used to train the deep learning models for each VOI (B), while 
those from 10–12 subjects were kept as ‘unseen’ segmentations that had not been used to train the models (C). The models were then used to segment all datasets 
from the 729-subject cohort (D), with deep learning segmentations from the 10–152validation datasets then compared to the corresponding manual segmentations to 
calculate dice coefficients for each model (E). Finally, FF maps were generated from each MRI dataset (F) and the deep learning segmentations applied to these to 
obtain the BMFF for each VOI (G). 

Table 2 
Segmentation Accuracy (dice scores) of the traditional U-Net and our CBAM- 
ROI-attention U-Net.   

Spine Femoral head Total Hip Femoral Diaphysis 

U-Net 0.925 0.951 0.904 0.69 
ROI-Attention-U- 

Net 
0.912 0.945 0.912 0.866  
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where λ1 and λ2 control the weights between different losses. In this 
work, we set λ1 = λ2 = 1. The proposed algorithm was implemented in 
Pytorch [31] with an Adam optimizer [32]. 

2.8. Fat fraction mapping 

Fat fraction (FF) measurements from MRI data allow for the deter
mination of the relative quantities of water and fat present within tissue, 
based on the different resonant frequencies of hydrogen atoms bound to 
fat and water. Acquisition of in- and out-of-phase images allows fat and 
water images to be generated. Based on the intensities of these images 
the FF was calculated as a percent of the voxel volume. This was done for 
all volumes of interest. The specific VOIs, segmented using our novel U- 
Net model, were then applied to the FF maps to allow extraction of the 
FF for each VOI. This used the fat and water images for each volume of 
interest and nearest-neighbour smoothing was applied to the images 
before the maps were calculated to minimise the influence of any noise 
spikes in the data. In house code (Matlab 2019B, The Mathworks Inc, 
Natick, Massachusetts, USA) applied the deep learning segmentations to 
the FF maps after erosion of the spine, head and total hip regions by a 
single boundary voxel in plane to ensure measurements were from 
marrow and not bone. This erosion step was not applied to the diaphysis 
segmentations because of the small cross section of this region (for some 
patients the diaphyseal cross section is so small that it would be elimi
nated by the erosion step). 

2.9. Data presentation and statistical analysis 

Data were analysed for normal distribution using the Anderson- 
Darling test. For results tables of summary statistics, normally distrib
uted data are reported as mean ± SEM and were compared using one- 
way or two-way ANOVA with Šídák’s test for multiple comparisons. 
Non-normally distributed data are reported as median [interquartile 
range] and were compared using the Kruskal-Wallis test, with Dunn’s 
test for multiple comparisons; the latter was also used when comparing 
normally distributed data with non-normally distributed data. Images of 
manual and deep learning segmentations were generated using 3DSlicer 
(v4.11) and colours adjusted using GIMP2. Graphs of summary data are 
presented as Violin plots overlaid with individual data points. Visual
isation and statistical analysis of these summary data were done using 
Prism software (v10.1.1, GraphPad, USA). Univariable regression ana
lyses were done in RStudio v2023.06.1 (Build 524), with multivariable 
regression performed using finalfit (R package v1.0.5) [33]. Subjects 
with any erroneous measurements (e.g. a BMD of 0 g/cm2, or BMFF 

values derived from abnormal segmentations) were excluded from the 
regression analyses. A Bonferroni-adjusted P-value < 0.05 was consid
ered statistically significant. 

2.10. Data and code availability 

All data for FF and segmentation volumes will be uploaded to the 
UKBB. Code for the deep learning models will be made available via 
GitHub. Code for regression analyses will be made available via Data
Share (https://datashare.ed.ac.uk). Until these data are publicly avail
able, the authors will agree to all reasonable requests for code and data 
sharing, in accordance with UKBB guidelines. 

3. Results 

3.1. U-Net development and training 

We first used MRI data from 61–64 subjects for manual segmentation 
of four VOIs: the spine, consisting of lumbar and thoracic vertebrae; the 
femoral head; total hip; and femoral diaphysis. We then trained separate 
U-Net models for each VOI and tested their performance on 10–12 
subjects in a validation dataset (Fig. 1). Fig. 2 shows the architecture of 
our new U-Net, while Table 2 shows the comparison Dice index results 
between the conventional U-Net and our new U-Net models for each site. 
Visual comparison of manual vs deep learning segmentations further 
confirmed the accuracy of the outputs from each of our deep learning 
models (Fig. 3). Notably, the conventional U-Net performed well for the 
spine, femoral head and total hip, but poorly for the diaphysis (accuracy 
of only 69%). In contrast, our CBAM-ROI-attention U-Net greatly 
improved segmentation accuracy for the diaphysis (to nearly 87%) 
while being comparable to the conventional U-Net for each of the other 
regions (Table 2). 

3.2. Determining if technical or biological factors influence deep learning 
segmentation outputs 

To further test if our CBAM-ROI-attention U-Net models yield robust 
segmentation outputs and reliable BMFF results, we next applied them 
to a cohort of 729 UKBB participants (Table 1). This cohort was chosen 
to include both males and females aged 60–69, comprising individuals 
with osteoporosis, osteopaenia, or normal BMD. The rationale for this is 
as follows: first, BMFF increases with age and, for humans aged 60–69, 
vertebral BMFF is expected to be greater in females than in males [34, 
35]; second, BMFF is increased in osteoporosis and negatively associated 
with BMD [1,6,12]; and finally, BMFF is greater in the femur than in the 

Fig. 2. Architecture of our CBAM Attention ROI U-Net for segmenting small structures from large 3D data. Each convolutional block in the U-Net encoding 
subnetwork (or contracting path) includes one or two CBAM (convolutional block attention module) layers. A fixed-size single channel spatial attention map is 
generated by each CBAM layer through 1X1X1 convolutions and trilinear interpolation. These attention maps are then combined to produce a probability map of 
object location with which a ROI is defined. The encoded features of all resolution-levels are then cropped to the ROI and input into the decoder which produces the 
segmentation results within the detected ROI. A non-local spatial attention layer is inserted in the final block to generate globally sensitive features. The final 
segmentation results are then generated by implanting the ROI back into the whole data volume. 
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lumbar spine [1,36]. Thus, applying our U-Net models to analyse spinal 
and femoral BMFF in this cohort allowed us to test if the resulting deep 
learning segmentations yield BMFF values that show these expected 
associations with sex, age, BMD, and anatomical site. If so, this would 
validate the accuracy of our new models for high-throughput BM seg
mentation and BMFF analysis. 

We first analysed segmentation results from across the 729-partici
pant validation cohort to determine if any technical factors or partici
pant characteristics compromised the deep learning outputs. Across this 
cohort, segmentation volume (pixels, mean ± SD) was greatest for the 
spine (2244 ± 438), followed by the total hip (1248 ± 404), femoral 
head (810 ± 286), and diaphysis (100 ± 21) (Fig. 4 A). The volumes for 
each site were greater in males than in females, likely because, on 
average, men are taller than women and therefore have larger bones. 
Consistent with this, for each site linear regression revealed a significant 
positive relationship between participant height and segmentation vol
ume (Fig. 4 A); this relationship was the same in males and females 
(P > 0.6 for height*sex interaction at each site). 

In some cases, the deep learning models generated an empty 

segmentation output. As shown in Table 3, this was most common for 
the femoral head (9.7% of all participants) and diaphysis (8%) but was 
less frequent for the total hip (3.6%) or spine (2.8%). For BMFF analysis 
we also excluded any small segmentation outputs, defined as having a 
volume > 2.5 SD below the mean for each region (Fig. 4 A); our ratio
nale was that aberrantly small volumes will be more likely to yield 
inaccurate BMFF values. These ‘small’ outputs occurred for ~2% of all 
segmentations for each region, while both the empty and small outputs 
showed similar prevalence in males and females (Table 3). 

One concern is that empty or small segmentation volumes might 
result from biological factors, including skeletal abnormalities, that 
compromise the performance of our deep learning models. If so, this 
could limit the scope and generalisability of the resulting BMFF mea
surements. To address this, we manually inspected each MRI dataset to 
test if there were obvious causes of the abnormal segmentations; as 
shown in Table 3, we identified five broad categories of failure causes. 
The most-common category related to technical issues with the structure 
of the UKBB source MRI data (“Technical issue – Data structure”). Here, 
the MRI volumes required for segmenting the spine (slab 2), femoral 

Fig. 3. Visual comparison of manual vs deep learning segmentations. Deep learning segmentation results (purple) are displayed on top of the ground-truth 
(manual) segmentations (yellow). Representative images from the axial, coronal and sagittal plane are shown, along with a 3D rendering. Note that the Total 
Hip includes the intertrochanteric region. 
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Fig. 4. Identification of technical and biological factors that influence segmentation outputs. (A) For each skeletal site, segmentation volumes (pixels) for both 
sexes (together or separately) are shown as violin plots overlaid with individual data points; the numbers for each group are shown in Table 3 (“OK” plus “Small” 
segmentations are included in the graph). For each region, horizontal dotted lines are drawn 2.5 SD below the mean to highlight the threshold used to exclude 
abnormally small volumes. Spine, femoral head and total hip are plotted on the same y-axis scale, whereas the much-smaller diaphysis is shown on a separate y-axis. 
The box beneath the graph shows the results of linear regression for height (cm) vs segmentation volume (pixels) at each site, for both sexes combined. The strong 
positive relationship did not differ between males and females. (B) Examples of coronal MRI volumes for each skeletal site, including typical volumes, those with 
imaging abnormalities, and those in which the target region fell partially or fully below or above the MRI volume. Arrows indicate the target BM regions (for clarity, 
only one arrow is shown for the spine, in which six vertebrae are segmented). (C) Results of logistic regression to investigate if participant height affects the odds of a 
segmentation being empty (top row) or small or empty (bottom row). (D-E) Coronal MRI volumes from participants with severe or mild scoliosis (D) or Non-Hodgkin 
Lymphoma (E). The differential effects on segmentation outcomes are indicated above the images. 
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head and total hip (slab 4), or femoral diaphysis (slab 5) (Fig. 4B) were 
located in an incorrect folder sorted from the source UKBB data. In some 
cases, the target folder contained the correct slab, but with the water 
image instead of the required fat image. In other cases, the participant’s 
MRI data were distributed among a greater-than-expected number of 
folders; this was usually because the MRI acquisition began at the wrong 
landmark and so had to be repeated, resulting in an appended dataset in 
which the target MRI volume was no longer sorted into the correct folder 
number. Consequently, the models failed to generate a segmentation 
because they were presented with an incorrect MRI volume within the 
source data. 

The second category of failed segmentations related to imaging ar
tefacts or other abnormalities, which were most common for the 
diaphysis or femoral head (Table 3). For the diaphysis, all of the arte
facts were fat-water swaps occurring contralaterally across slab 5, 
resulting in the targeted left leg containing a water image rather than a 
fat image (Fig. 4B). For the femoral head and total hip, the most common 
abnormalities were signal inhomogeneities within the proximal femur, 
often manifesting as distinct lines of hypointense T2 signal that resulted 
in an unclear segmentation target (Fig. 4B). In contrast, more-diffuse 
variation in T2 signal did not affect segmentation (i.e. ‘Typical MRI 
volume’ in Fig. 4B), and no cases of these artefacts or abnormalities were 
found among the faulty spine segmentations. 

The third and fourth categories of failure causes related to the target 
region falling partially or entirely outside of the slab volume. This never 
occurred for the spine but was most common for the femoral head and 
diaphysis (Table 3; Fig. 4B). One concern is that these failures may be 
influenced by participant height: because the UKBB MRI protocol uses a 
fixed slice number for each slab volume, for shorter subjects the slabs 
will generally extend further down the body than for taller subjects. 
Thus, while the proximal femur and diaphysis midpoint typically fall 
within the middle of slabs 4 and 5, respectively (Fig. 4B), these regions 
may be more likely to fall partially or fully within slabs 3 and 4 for very 
short participants, or slabs 5 and 6 for very tall participants. However, 
we tested this using logistic regression and found no relationship be
tween participant height and the odds of segmentation failure (Fig. 4 C). 
Instead, target regions typically fell partially or fully outside of the slab 
volume as a result of the MRI acquisition beginning slightly above or 
below the intended clavicular landmark (not shown). 

The fifth category of segmentation failure related to pathological 
abnormalities in skeletal morphology. This occurred only twice 
(Table 3): one case of severe scoliosis caused abnormal morphology that 
prevented spinal segmentation (Fig. 4D), while one participant with 
Non-Hodgkin Lymphoma had almost complete T2 signal depletion 
within the bone marrow, preventing segmentation of the spine, femoral 
head, and total hip (Fig. 4E). Notably, the validation cohort contained 

Table 3 
Characteristics of deep learning segmentation outputs from the 729-subject cohort. For each skeletal site, segmentation outputs were classified as ‘OK’ (volume not 
>2.5 SD below mean volume for that region), ‘Small’ (volume >2.5 SD below mean), or ‘Empty’ (no output generated from deep learning); Small or Empty volumes 
were excluded from the BMFF analyses. Columns 1–3 show the numbers of each type of output in both sexes (1), Females (2) or Males (3), and the % that these numbers 
represent for each sex. Columns 4–9 show the numbers of Small, Empty, or Small or Empty segmentation outputs, and the % these represent for each output type, for 
which there were technical issues with the source data structure (4) or imaging artefacts (5); the skeletal target site was partially (6) or fully (7) outside of the MRI slab 
volume; pathological skeletal abnormalities were apparent (8); or for which no obvious abnormalities were detectable (9). Column 10 shows, for each type of seg
mentation output, the number of participants having a PheCode for a skeletal disease and the % that this represents for each type of segmentation output; further 
details of these PheCodes and diseases are shown in the Supplemental Data file.    

Numbers (% of each group) Numbers (% of faulty segmentation type)   

Segmentation 
output 

(1) 
Both 
sexes 

(2) 
Females 

(3) 
Males 

(4) 
Technical 

issue - Data 
structure 

(5) 
Technical 

issue 
-Imaging 
artefact 

(6) 
Region 

partially 
outside 

slab 

(7) Region 
fully 

outside 
slab 

(8) 
Skeletal 
abnorm- 

ality 

(9) 
No 

obvious 
defect 

(10)Prevalence 
of skeletal 

PheCode (% 
output type) 

Spine OK 696 
(95.5%) 

432 
(96.3%) 

264 
(97.5%) 

- - - - - - 290 (41.7%) 

Small 13 
(1.8%) 

7 (1.6%) 6 (2.3%) 13 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3 (23.1%) 

Empty 20 
(2.8%) 

13 
(2.9%) 

7 (2.6%) 17 (85%) 0 (0%) 0 (0%) 0 (0%) 2 (10%) 0 (0%) 8 (40%) 

Small or 
Empty 

33 
(4.6%) 

20 
(4.5%) 

13 
(4.8%) 

30 (91%) 0 (0%) 0 (0%) 0 (0%) 2 (6.1%) 0 (0%) 11 (33.4%) 

Femoral 
Head 

OK 646 
(88.7%) 

408 
(90.9%) 

238 
(87.9%) 

- - - - - - 273 (42.3%) 

Small 13 
(1.8%) 

9 (2.1%) 4 (1.5%) 1 (7.7%) 1 (7.7%) 8 (61.6%) 0 (0%) 0 (0%) 3 
(23.1%) 

3 (23.1%) 

Empty 70 
(9.7%) 

35 
(7.8%) 

35 
(13%) 

17 (24.3%) 14 (20%) 10 (14.3%) 9 (12.9%) 1 (1.5%) 16 
(22.9%) 

25 (35.8%) 

Small or 
Empty 

83 
(11.4%) 

44 
(9.8%) 

39 
(14.4%) 

18 (21.7%) 15 (18.1%) 18 (21.7%) 9 (10.9%) 1 (1.3%) 19 
(22.9%) 

28 (33.8%) 

Total Hip OK 693 
(95.1%) 

430 
(95.8%) 

263 
(97.1%) 

- - - - - - 286 (41.3%) 

Small 10 
(1.4%) 

4 (0.9%) 6 (2.3%) 2 (20%) 0 (0%) 2 (20%) 6 (60%) 1 (10%) 0 (0%) 7 (70%) 

Empty 26 
(3.6%) 

18 
(4.1%) 

8 (3%) 19 (73.1%) 2 (7.7%) 1 (3.9%) 2 (7.7%) 0 (0%) 0 (0%) 8 (30.8%) 

Small or 
Empty 

36 (5%) 22 
(4.9%) 

14 
(5.2%) 

21 (58.4%) 2 (5.6%) 3 (8.4%) 8 (22.3%) 1 (2.8%) 0 (0%) 15 (41.7%) 

Diaphysis OK 657 
(90.2%) 

411 
(91.6%) 

246 
(90.8%) 

- - - - - - 272 (41.5%) 

Small 14 (2%) 7 (1.6%) 7 (2.6%) 1 (7.2%) 2 (14.3%) 3 (21.5%) 0 (0%) 0 (0%) 8 
(57.2%) 

4 (28.6%) 

Empty 58 (8%) 34 
(7.6%) 

24 
(8.9%) 

22 (38%) 12 (20.7%) 12 (20.7%) 1 (1.8%) 0 (0%) 10 
(17.3%) 

25 (43.2%) 

Small or 
Empty 

72 
(9.9%) 

41 
(9.2%) 

31 
(11.5%) 

23 (32%) 14 (19.5%) 15 (20.9%) 1 (1.4%) 0 (0%) 18 (25%) 29 (40.3%)  
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several other cases of less-severe scoliosis and two other cases of Non- 
Hodgkin Lymphoma that did not impair segmentation (Fig. 4D-E); this 
variability in BM adiposity among Non-Hodgkin Lymphoma patients is 
consistent with previous reports [37]. 

To systematically test if any skeletal or haematological pathologies 
compromise segmentation, we next identified ICD codes for these dis
eases; mapped these to PheCodes [24,25]; and then assessed if any 
PheCodes were enriched among the faulty segmentation outputs (see 
Supplemental Data). No such enrichment was observed for any indi
vidual disease. Moreover, the prevalence of participants having one or 
more relevant PheCode was similar between those giving faulty vs 
successful segmentation outputs (Table 3, column 10). 

Finally, for the femoral head and diaphysis there were some small or 
empty segmentations for which no obvious defects were apparent 
(Table 3, column 9). These accounted for ~20–25% of faulty segmen
tation outputs for each site, corresponding to < 3% of participants 
across the validation cohort. 

Together, these observations show that, among the minority of faulty 
segmentation outputs, most errors result from technical issues relating 
to UKBB MRI acquisition or data outputs. In contrast, only two errors 
related to obvious pathological abnormalities in skeletal morphology or 
BM composition. Thus, our models provided robust segmentation vol
umes for the majority of participants analysed. 

3.3. Fat Fraction mapping of training and validation cohort 

We next applied the deep learning segmentations to FF maps from 
the 729-participant cohort, thereby measuring BMFF at each of the four 
sites. As shown in Fig. 5 A, we found that BMFF in healthy control 
subjects significantly differed across the four regions analysed. This was 
most obvious for the spine, where BMFF was lower than in each femoral 
region (P < 0.0001). However, BMFF also differed between each 
femoral region, being highest in the femoral head and then decreasing 
progressively in the total hip and diaphysis (P < 0.0001 for each pair
wise comparison). There were also significant, region-dependent sex 
differences: spinal BMFF was greater in females than in males, whereas 
males had greater BMFF at each femoral site (Fig. 5 A). 

To further understand the regional and sex differences in BMFF, we 
investigated if BMFF at one site is associated with BMFF at the other 
sites. As shown in Table 4, there were strong positive associations be
tween BMFF at each femoral site, with the relationship between total hip 
BMFF and diaphyseal BMFF being stronger in males than in females. 
Spinal BMFF was not associated with diaphyseal BMFF; however, it was 
positively associated with femoral head BMFF in females, and with total 
hip BMFF in males and females; the latter relationship was also stronger 
in females than in males (Table 4). Thus, BMFF at one site is generally 
positively associated with BMFF at other sites, and this relationship 
differs between the sexes. 

3.4. Effect of osteopaenia or osteoporosis on BMFF at each site 

We next investigated the effect of osteopaenia or osteoporosis on 
BMFF at each site. As shown in Fig. 5B-D, osteopaenic or osteoporotic 
females had higher BMFF than control females at each site analysed. In 
males, osteopaenia was associated with significantly increased BMFF at 
the total hip and femoral diaphysis, and BMFF at the femoral head and 
total hip was also greater in osteoporotic vs control males (Fig. 5B-D). 
However, unlike in females, BMFF at the spine did not differ between 
normal, osteopaenic and osteoporotic males, while diaphyseal BMFF 
also did not differ between osteoporotic and normal males (Fig. 5B-D). 

3.5. Univariable associations between BMD, BMFF and other traits 

The lack of increased BMFF in the spine, total hip, and diaphysis of 
osteoporotic males was unexpected and may result from the low 
numbers in this group (Table 1). Thus, we next used univariable 

regression to determine if BMFF shows the expected inverse association 
with BMD at each site, regardless of osteoporotic status. We also 
investigated which other variables are associated with BMD at each site. 
As shown in Supplemental Table 1, BMD and BMFF were inversely 
associated at the spine and this relationship did not differ between the 
sexes. A similar relationship existed between spine BMD and legs fat%. 
In contrast, spine BMD was positively associated with visceral adipose 
tissue (VAT) mass, android fat%, trunk fat% and BMI, with the latter 
relationship being stronger in males than in females. There was no sig
nificant relationship between spine BMD and age, total fat% or gynoid 
fat%; however, females showed a trend for lower spine BMD with 
increasing age. 

Univariable regression analyses for BMD at the femoral neck, total 
hip and femoral shaft are presented in Supplemental Tables 2, 3 and 4, 
respectively. For femoral neck BMD we detected robust inverse associ
ations with BMFF at the femoral head, total hip and spine; the latter 
relationship was assessed to determine if spinal BMFF is a useful pre
dictor of BMD at the femoral neck, given the clinical significance of 
fractures at this site. Femoral neck BMD also showed an inverse rela
tionship with legs fat% and a positive association with BMI; however, no 
significant associations occurred for the other explanatory variables 
tested (Supplemental Table 2). 

Similar relationships occurred for total hip BMD, including an in
verse association with legs fat% and a positive association with BMI 
(Supplemental Table 3). Unlike for femoral neck BMD, total hip BMD 
also showed a positive association with VAT mass. 

As for these other sites, femoral shaft BMD was inversely associated 
with BMFF at the femoral diaphysis while being positively associated 
with BMI. Weaker negative and positive associations were noted for legs 
fat% and VAT mass, respectively, and none of these relationships 
differed between the sexes (Supplemental Table 4). 

3.6. Univariable associations between BMFF and age, BMI or adiposity 
traits 

In addition to BMD, factors including age, BMI and peripheral 
adiposity have been associated with altered BMFF [1]. Thus, an 
important question is whether such other factors confound the re
lationships between BMFF and BMD. To address this, we first used 
univariable linear regression to identify other variables significantly 
associated with BMFF at each site, thereby identifying factors associated 
with BMFF and/or BMD. The results are presented in Supplemental 
Table 5. 

We found that spinal BMFF was positively associated with age, VAT 
mass, total fat%, android fat%, gynoid fat% and trunk fat% in males and 
females, with no sex differences in these relationships. In contrast, spinal 
BMFF showed a positive association with legs fat% in males only 
(Supplemental Table 5). 

Fewer variables were associated with BMFF at the femoral head or 
total hip. For the former, the strongest association was a positive rela
tionship with gynoid fat% in females only. There were weaker positive 
associations between femoral head BMFF and legs fat% across both 
sexes, and with age and total fat% in females only; however, these were 
no longer significant after adjusting for multiple comparisons. Total hip 
BMFF was negatively associated only with BMI across both sexes, but no 
other variables were associated with BMFF at these two sites (Supple
mental Table 5). In contrast, diaphyseal BMFF was associated with 
several of the variables assessed, often in a sexually dimorphic manner. 
Thus, across both sexes, diaphyseal BMFF was inversely associated with 
VAT mass, while inverse associations with total fat%, android fat% and 
trunk fat% showed significant sex differences, occurring in females but 
not in males. In contrast, in males, but not females, diaphyseal BMFF 
was positively associated with legs fat% (Supplemental Table 5). 
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Fig. 5. Biological sex, osteopaenia and osteoporosis influence BMFF in a region-specific manner. BMFF for normal subjects (A) or control, osteopaenic and 
osteoporotic subjects (B-D) was assessed at each skeletal region. Data are shown as violin plots overlaid with individual data points; the numbers for each group are 
shown in Table 1. For (A), significant effects of region, sex, and region*sex interaction were assessed using a mixed-effects model with Šídák’s multiple comparisons 
test. Overall P values for each variable, and their interaction, are shown in the box beside the graph, while significant sex differences within each region are indicated 
above the violins. For (B-D), significant differences between control and osteopaenic or osteoporotic subjects within each sex were assessed by one-way ANOVA (for 
normally distributed data: A) or the Kruskal-Wallis test (for non-normally distributed data: B-D). P values for each comparison are shown on each graph. 
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3.7. The inverse association between BMFF and BMD at each site persists 
after controlling for relevant covariables 

Based on the univariable associations identified in Supplemental 
Tables 1–5, we next constructed multivariable models to estimate the 
true relationship between BMFF and BMD at each site. Table 5 shows the 
results for BMD spine as the dependent variable. Here, the best predic
tive model was obtained when including BMFF Spine, sex, BMI, Legs fat 
%, VAT mass and Android fat% as covariables (Model 4.6). Notably, the 
inverse association between spinal BMFF and spinal BMD persisted even 
when accounting for these other covariables. Moreover, inclusion of leg 
fat, VAT mass and android fat weakened the size of the sex effect, sug
gesting that increased spinal BMD in males is explained, at least in part, 
by their lower amount of leg fat and greater VAT mass and android fat. 

Table 6 shows the results for femoral neck BMD as the dependent 
variable. Here, separate models were tested for BMFF at the femoral 
head, total hip or spine as the main explanatory variables. We found that 
the significant inverse association between BMFF femoral head and 
femoral neck BMD persisted when accounting for BMI and legs fat% 
(Model 5.3). Similarly, across both sexes, total hip or spine BMFF 
retained their inverse relationships with femoral neck BMD even after 
accounting for sex, BMI and legs fat% (Models 5.6 and 5.11). The best 
model for BMFF total hip also included Android fat% and Trunk fat% 
(Model 5.8). Notably, male sex was no longer associated with increased 
femoral neck BMD when controlling for BMFF spine, BMI and legs fat% 
(Model 5.11), suggesting that males have greater BMD at the femoral 

neck because they tend to have lower spinal BMFF, lower % leg fat and 
higher BMI than females. 

Given that spine BMFF is positively associated with total hip BMFF 
(Table 4), we postulated that the inverse relationship between spine 
BMFF and femoral neck BMD may occur because spine BMFF is a sur
rogate for total hip BMFF. However, the inverse relationship between 
spine BMFF and femoral neck BMD persisted even when accounting for 
BMFF at the total hip (Model 5.12), demonstrating that these explana
tory variables are acting at least partly independently of each other. 

Multivariable regression for total hip BMD is presented in Table 7. 
The best predictive model included BMFF total hip, sex, BMI and legs fat 
% as the covariables (Model 6.3); inclusion of VAT mass (Model 6.4) did 
not further improve the model, despite VAT mass showing a significant 
univariable association with total hip BMD (Supplemental Table 3). 
Notably, the inverse relationship between total hip BMD and BMFF 
persisted even when accounting for sex, BMI and legs fat%, confirming 
total hip BMFF as an independent predictor of BMD at this site. 

Finally, Table 8 shows the results of multivariable regression for 
femoral shaft BMD. Here, the best predictive model included diaphyseal 
BMFF, sex, BMI, legs fat% and android fat% (Model 7.5), although a 
similarly accurate model was obtained when VAT mass and trunk fat% 
were also included (Model 7.7). As for the other BMFF-BMD relation
ships, BMFF at the diaphysis retained its significant inverse association 
with femoral shaft BMD even when these other covariables were 
accounted for. Moreover, males no longer had significant increases in 
femoral shaft BMD when controlling for BMFF diaphysis, BMI and legs 

Table 4 
Univariable and sex-stratified associations between BMFF for each region. To test if the explanatory-dependent relationship differs between males and F, a linear model 
was first analysed across both sexes, with sex included as an interacting variable. Beta coefficients are shown (with lower and upper 95% Cis in brackets), followed by 
the adjusted R2 (Adj. R2) and unadjusted P value for each explanatory variable (P Exp). P values were also calculated for the Explanatory*Sex interaction (P Exp*Sex); 
if significant, additional linear models were analysed in females and males separately. Because 12 correlations were assessed, the Bonferroni-adjusted alpha level for P 
(Exp) is 0.05/12 = 0.0042. Significant explanatory-dependent relationships are highlighted in bold.  

Explanatory variable Dependent variable Sex β (CIs) Adj. R2 P (Exp) P (Exp*Sex) 

BMFF Spine BMFF Femoral Head Both 0.037 (0.015, 0.059) 0.015 1.25E-03 2.6E-04 
Female 0.109 (0.08, 0.138) 0.118 8.69E-13 - 
Male 0.028 (0, 0.057) 0.013 0.049 - 

BMFF Total Hip Both 0.091 (0.063, 0.12) 0.055 4.48E-10 0.026 
Female 0.171 (0.132, 0.21) 0.145 2.16E-16 - 
Male 0.106 (0.069, 0.144) 0.107 7.22E-08 - 

BMFF Diaphysis Both 0.054 (0.01, 0.099) 0.007 0.017 0.801 

BMFF Femoral Head BMFF Total Hip Both 1.011 (0.939, 1.082) 0.552 1.18E-111 0.474 
BMFF Diaphysis Both 0.805 (0.668, 0.943) 0.169 1.69E-26 0.534 

BMFF Total Hip BMFF Diaphysis Both 0.766 (0.672, 0.86) 0.281 2.48E-48 0.001 
Female 0.65 (0.534, 0.766) 0.228 8.76E-25 - 
Male 1.05 (0.857, 1.238) 0.331 1.03E-22 -  

Table 5 
Multivariable regression analyses for spine BMD. Multivariable regression was done using BMD spine as the dependent variable; explanatory variables were selected 
based on those showing significant univariable association with BMD spine and/or BMFF at the relevant sites, as shown in Supplemental Tables 1–5. For each model the 
adjusted R2 (Adj. R2) and Akaike Information Criterion (AIC) are shown, along with multivariable beta coefficients (with lower and upper 95% Cis) for each variable. P 
values are indicated by * (P < 0.05), * * (P < 0.01) or * ** (P < 0.001), with significant associations highlighted in bold.     

Covariable  

Adj. 
R2 

AIC BMFF Spine Sex (M) BMI Legs fat% VAT mass (kg) Android fat% 

Model 
4.1 

0.39 -893.1 -0.004 (¡0.006 to 
¡0.003)* ** 

0.177 (0.156 to 
0.198)* ** 

- - - - 

Model 
4.2 

0.43 -941.9 -0.005 (¡0.006, 
¡0.003)* ** 

0.158 (0.137, 
0.179)* ** 

0.023 (0.017, 
0.030)* ** 

- - - 

Model 
4.3 

0.46 -975.3 -0.004 (¡0.006, 
¡0.003)* ** 

0.061 (0.023, 
0.098)* * 

0.029 (0.023, 
0.036)* ** 

-0.006 (¡0.008, 
¡0.004)* ** 

- - 

Model 
4.4 

0.47 -990.7 -0.005 (¡0.006, 
¡0.004)* ** 

0.037 (− 0.002, 
0.075) 

0.022 (0.015, 
0.029)* ** 

-0.006 (¡0.008, 
¡0.004)* ** 

0.064 (0.033, 
0.095)* ** 

- 

Model 
4.5 

0.47 -990.1 -0.005 (¡0.006, 
¡0.004)* ** 

0.058 (0.020, 
0.095)* * 

0.021 (0.014, 
0.029)* ** 

-0.007 (¡0.009, 
¡0.005)* ** 

- 0.003 (0.001, 
0.004)* ** 

Model 
4.6 

0.47 -990.9 -0.005 (¡0.007, 
¡0.004)* ** 

0.043 (0.004, 
0.083)* 

0.021 (0.013, 
0.028)* ** 

-0.007 (¡0.009, 
¡0.004)* ** 

0.041 (− 0.003, 
0.085) 

0.001 (− 0.000, 
0.003)  
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fat% (Model 7.3–7.7). This suggests that males may have greater 
femoral shaft BMD because they have a higher BMI and lower % leg fat 
than females. 

4. Discussion 

Herein, we have developed a new deep learning method for analysis 
of BM adiposity using Dixon MRI data from the UKBB. This is the first 
study to establish deep learning for BM segmentation at multiple sites, 
and the first peer-reviewed study to do so, for any skeletal site, in the 
UKBB imaging study. Our models yield BMFF measurements that are 
consistent with previous observations, including sex differences in 

spinal BMFF and inverse associations with BMD. Moreover, empty or 
small segmentation outputs occur only in a minority of cases, mostly 
because of technical issues with UKBB source data rather than because of 
pathophysiological variation, and are readily excluded before BMFF 
analysis. This demonstrates the ability of our models to generate accu
rate, reliable BMFF measurements from the UKBB MRI data. We further 
reveal new site- and sex-specific associations that have not been re
ported previously, highlighting the potential of our methods to uncover 
new pathophysiological functions and implications of BMAT. 

Table 6 
Multivariable regression analyses for femoral neck BMD. Multivariable regression was done using femoral neck BMD as the dependent variable, with BMFF at the 
femoral head, total hip and spine chosen as the primary explanatory variables. Other explanatory covariables were selected, models constructed, and data presented as 
described for Table 5.     

Covariable  

Adj. 
R2 

AIC BMFF Femoral 
Head 

BMFF Total Hip BMFF Spine Sex (M) BMI Legs fat% Android fat% Trunk fat% 

Model 
5.1 

0.26 -1028.4 -0.022 
(¡0.026, 
¡0.018)* ** 

- - - - - - - 

Model 
5.2 

0.27 -1040.0 -0.022 
(¡0.026 to 
¡0.017)* ** 

- - - 0.011 
(0.005 to 
0.017)* ** 

- - - 

Model 
5.3 

0.29 -1054.9 -0.021 
(¡0.025 to 
¡0.016)* ** 

- - - 0.015 
(0.009 to 
0.021)* ** 

-0.004 
(¡0.006, 
¡0.002)* ** 

- - 

Model 
5.4 

0.24 -1079.4 - -0.015 
(¡0.018 to 
¡0.012)* ** 

- 0.122 (0.104 
to 0.139)* ** 

- - - - 

Model 
5.5 

0.26 -1089.6 - -0.014 
(¡0.017, 
¡0.011)* ** 

- 0.113 (0.095, 
0.132)* ** 

0.010 
(0.004, 

0.016)* ** 

- - - 

Model 
5.6 

0.27 -1101.7 - -0.013 
(¡0.016, 
¡0.010)* ** 

- 0.056 (0.021, 
0.091)* * 

0.014 
(0.008, 

0.020)* ** 

-0.005 
(¡0.005, 
¡0.002)* ** 

- - 

Model 
5.7 

0.27 -1103.4 - -0.013 
(¡0.016, 
¡0.010)* ** 

- 0.056 (0.021, 
0.091)* * 

0.017 
(0.010, 

0.024)* ** 

-0.003 
(¡0.005, 
¡0.001)* * 

-0.001 
(¡0.002, 
¡0.000)* 

- 

Model 
5.8 

0.28 -1104.5 - -0.014 
(¡0.017, 
¡0.011)* ** 

- 0.065 (0.028, 
0.101)* ** 

0.017 
(0.010, 

0.024)* ** 

-0.004 
(¡0.006, 
¡0.002)* ** 

-0.007 
(¡0.014, 
¡0.000)* 

0.008 
(− 0.001, 
0.017) 

Model 
5.9 

0.20 -1039.1 - - -0.004 
(¡0.006, 
¡0.003)* ** 

0.077 (0.059, 
0.096)* ** 

- - - - 

Model 
5.10 

0.22 -1058.1 - - -0.005 
(¡0.006, 
¡0.003)* ** 

0.066 (0.047, 
0.085)* ** 

0.014 
(0.008, 

0.019)* ** 

- - - 

Model 
5.11 

0.24 -1071.5 - - -0.004 
(¡0.006, 
¡0.003)* ** 

0.007 
(− 0.028, 
0.042) 

0.017 
(0.011, 

0.023)* ** 

-0.004 
(¡0.006, 
¡0.002)* ** 

- - 

Model 
5.12 

0.29 -1089.6 - -0.011 
(¡0.014, 
¡0.008)* ** 

-0.003 
(¡0.004, 
¡0.001)* ** 

0.053 (0.016, 
0.090)* * 

0.015 
(0.008, 

0.022)* ** 

-0.004 
(¡0.006, 
¡0.002)* ** 

-0.007 
(¡0.014, 
¡0.001)* 

0.009 
(0.000, 
0.018)*  

Table 7 
Multivariable regression analyses for total hip BMD. Multivariable regression was done using total hip BMD as the dependent variable, with BMFF at the total hip as the 
primary explanatory variable. Other explanatory covariables were selected, models constructed, and data presented as described for Table 5.     

Covariable  

Adj. 
R2 

AIC BMFF Total Hip Sex (M) BMI Legs fat% VAT mass (kg) 

Model 
6.1 

0.34 -995.0 -0.017 (¡0.020 to ¡0.014) 
* ** 

0.170 (0.151 to 0.189) 
* ** 

- - - 

Model 
6.2 

0.37 -1026.8 -0.016 (¡0.019 to ¡0.013) 
* ** 

0.156 (0.137 to 0.175) 
* ** 

0.018 (0.012 to 0.024) 
* ** 

- - 

Model 
6.3 

0.40 -1055.2 -0.015 (¡0.018 to ¡0.012) 
* ** 

0.068 (0.032 to 0.104) 
* ** 

0.024 (0.017 to 0.030) 
* ** 

-0.005 (¡0.007 to ¡0.003) 
* ** 

- 

Model 
6.4 

0.40 -1049.3 -0.015 (¡0.018 to ¡0.012) 
* ** 

0.072 (0.034 to 0.109) 
* ** 

0.025 (0.018 to 0.032) 
* ** 

-0.005 (¡0.007 to ¡0.004) 
* ** 

-0.013 (− 0.041 to 
0.015)  
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4.1. Potential of multi-site BMFF analyses across the UK Biobank 

The development and validation of our models using UKBB MRI data 
is hugely significant because, unlike most other MRI datasets, the UKBB 
also provides extensive genetic and phenotypic data for each subject, 
including whole-genome sequencing and health records. This linked 
data allows comprehensive association studies to identify the genetic 
and pathophysiological factors associated with FF and other MRI- 
derived measurements. Indeed, Liu et al. recently demonstrated the 
power of this approach using deep learning for segmentation of 
abdominal organs from UKBB MRI data [17]. They identified genetic 
variants and clinical conditions associated with FF and other 
imaging-derived characteristics for each organ, as well as combinations 
of characteristics across multiple organs. Thus, by allowing multi-site 
BMFF measurements across the UKBB cohort, our models promise, for 
the first time, to reveal the genetic, physiological and clinical variables 
associated with BMFF. 

4.2. Deep learning for large-scale BM analysis 

Several other recent studies have developed deep learning for auto
mated BM segmentation from MRI data. For example, von Brandis et al. 
assessed the feasibility of deep learning for segmenting BM from T2- 
weighted Dixon water-only images, focusing on the knee region [22]; 
however, the best median dice score of their model was only 0.68, far 
below that obtained by our models (Table 2). Better accuracy was 
achieved by Zhou et al., who established a deep learning model for 
segmenting lumbar vertebrae from Dixon MRI data [20]. They trained 
their model using manual segmentations of 165 vertebrae from 31 
subjects, with the model then tested on a validation set of 24 subjects. 
They achieved an average dice score of 0.849, below the accuracy of our 
vertebral ROI-Attention-U-Net (Table 2). More recently, Zhao et al. used 
deep learning for segmenting lumbar vertebrae from modified Dixon 
MRI data, using a training set of 142 subjects and a validation set of 64 
subjects [21]. Their model achieved a mean dice score of 0.912, the 
same as that obtained by our vertebral ROI-Attention-U-Net (Table 2). 
Thus, among deep learning models for segmenting vertebral BM, our 
model achieves an accuracy that is similar or greater than that obtained 
by others. 

Notably, our study is the first to develop deep learning for BM seg
mentation at the femoral head, total hip and femoral diaphysis. This is 
important because the properties of BMAT vary according to skeletal 
location [1,7,8]. Thus, to fully understand the health implications of 
BMAT and its potential utility as a clinical biomarker, it is critical to 
assess BMFF at other sites. Indeed, as discussed below, we found that the 
associations between BMFF, age, BMD, BMI and peripheral adiposity 

differ according to the BM region assessed, underscoring the importance 
of assessing BMFF across multiple sites. Finally, our model includes 
dedicated error-checking steps to remove inaccurate segmentation 
outputs, which is essential for reliable analysis of large-scale MRI data. 

4.3. New ROI attention U-Net model 

Another advance of the present study is our development of a new 
lightweight ROI attention U-Net model that allows accurate segmenta
tion of small VOIs from large volumetric data. The traditional 3D U-Net 
has a fixed receptive field that is dependent on the size of convolutional 
kernels and network depth. To achieve state-of-the-art performance, the 
network architecture needs to be carefully designed to fit the sizes of the 
segmented objects and image resolution. As a result, in this study the 
traditional 3D U-Net generates highly accurate results for vertebrae and 
femoral head (Table 2), regions in which the segmented objects are 
relatively large. However, this traditional U-Net shows limited 
discriminative power when dealing with smaller structures such as the 
femoral diaphysis, where only a few pixels on each axial slice are an
notated as foreground. On the contrary, our new ROI attention U-Net 
model can adaptively encode the local and global contextual informa
tion with its adjustive-attention mechanism. As shown in Table 2, it 
increases segmentation accuracy of the femoral diaphysis by over 25% 
and also slightly improves accuracy for the total hip region. Alongside 
these improvements, for the femoral head and vertebrae the ROI 
attention U-Net performs similarly to the carefully designed traditional 
3D U-Net (Table 2). 

Similar lightweight attention-based U-Net models have recently been 
developed for other imaging applications. Zhao et al. proposed such a 
model for segmentation of COVID-19 pneumonia lesions from 3D CT 
volumes [38], while Liu et al. developed an attention-based 3D model 
for brain tumour segmentation from MRI data [39]. A major difference 
between these studies and our segmentation task is that the femoral 
diaphysis is a particularly small anatomical target that commonly cor
responds to < 5–10 pixels per slice; this is much smaller than COVID-19 
pneumonia lesions and brain tumour segmentations. In addition, the 
pneumonia model from Zhao et al. increased the Dice score by 20.4% 
and produced an average score of only 78.7%; this relatively low ac
curacy may reflect this model’s focus on reducing the network param
eters to achieve a lighter weight, rather than for robust segmentation of 
small structures. In contrast, the brain tumour model from Liu et al. 
increased the Dice score by only 0.5 to 2%, yielding average scores of 
79–90% [39]. Our model also differs to that of Liu et al. in two other 
ways. Firstly, they used a decoupled dilated convolutional operation and 
cascaded attention mechanism to extract multi-resolution features for a 
single receptive field. Secondly, they randomly cropped their training 

Table 8 
Multivariable regression analyses for femoral shaft BMD. Multivariable regression was done using femoral shaft BMD as the dependent variable; explanatory cova
riables were selected, models constructed, and data presented as described for Table 5.     

Covariable  

Adj. 
R2 

AIC BMFF Diaphysis Sex (M) BMI Legs fat% VAT mass (kg) Android fat% Trunk fat% 

Model 
7.1 

0.28 -693.2 -0.015 (¡0.018 to 
¡0.012)* ** 

0.166 (0.143 to 
0.188)* ** 

- - - - - 

Model 
7.2 

0.30 -711.7 -0.015 (¡0.018 to 
¡0.012)* ** 

0.152 (0.128 to 
0.175)* ** 

0.018 (0.011 to 
0.025)* ** 

- - - - 

Model 
7.3 

0.33 -743.1 -0.015 (¡0.017 to 
¡0.012)* ** 

0.038 (− 0.007 
to 0.083) 

0.025 (0.017 to 
0.033)* ** 

-0.007 (¡0.009 to 
¡0.005)* ** 

- - - 

Model 
7.4 

0.33 -739.5 -0.015 (¡0.018 to 
¡0.012)* ** 

0.049 (0.003 to 
0.096)* 

0.029 (0.020 to 
0.037)* ** 

-0.007 (¡0.010 to 
¡0.005)* ** 

-0.032 (− 0.068 
to 0.004) 

- - 

Model 
7.5 

0.34 -747.1 -0.015 (¡0.018 to 
¡0.012)* ** 

0.042 (− 0.003 
to 0.086) 

0.031 (0.022 to 
0.040)* ** 

-0.006 (¡0.009 to 
¡0.004)* ** 

- -0.002 (¡0.004 
to ¡0.000)* 

- 

Model 
7.6 

0.34 -745.3 -0.015 (¡0.018 to 
¡0.012)* ** 

0.039 (− 0.006 
to 0.084) 

0.030 (0.021 to 
0.039)* ** 

-0.006 (¡0.009 to 
¡0.003)* ** 

- - -0.002 (¡0.004 
to ¡0.000)* 

Model 
7.7 

0.34 -743.4 -0.015 (¡0.018 to 
¡0.012)* ** 

0.051 (0.002 to 
0.100)* 

0.030 (0.021 to 
0.039)* ** 

-0.008 (¡0.011 to 
¡0.005)* ** 

0.003 (− 0.048 
to 0.055) 

-0.011 (¡0.020 
to ¡0.002)* 

0.011 (− 0.000 to 
0.023)  
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images for training purposes. In contrast, our model shows a lighter 
weight theoretically at inference time because, rather than keeping more 
multi-resolution features, the decoder processes the feature maps of only 
the ROI, rather than the whole input image. As a result, we didn’t 
require random cropping at the pre-processing stage, but instead 
removed the large empty backgrounds. Consequently, for our model the 
whole body is covered in the input data. 

Attention-based models have also been developed for applications 
beyond biomedical imaging. For example, Zhu et al. developed an 
attention-based 3D model for human motion recognition, including 
extraction of both spatial and temporal features. Their model increased 
Dice scores by 5–10% over traditional models, yielding average scores of 
84.8–91.6% [40]. Thus, our model’s 25% improvement in diaphysis 
segmentation accuracy compares favourably to the accuracy gains 
produced by this and other recent attention-based U-Net models. 
Moreover, our attention-based model is the first to be developed for BM 
segmentation. 

Our findings for scoliosis and Non-Hodgkin Lymphoma show that 
abnormal skeletal morphology or BM composition can impair segmen
tation. This did not occur for all cases of these diseases and appears to be 
limited to more-severe cases, confirming that this is not a universal 
limitation of our models. We also found that signal inhomogeneities in 
the proximal femur can disrupt femoral head and total hip segmentation 
(Fig. 4B); it is possible that these also have a biological basis, for 
example resulting from distinct foci of red marrow within the proximal 
femur. However, our comprehensive PheCode analysis shows that, 
generally, segmentation is not compromised by skeletal diseases. This 
type of segmentation failure is therefore likely to be relatively rare 
across the full UKBB cohort. If necessary, we will re-train our models to 
ensure that any common pathological abnormalities do not compromise 
segmentation. 

Taken together, our new ROI attention model is the first accurate 
deep learning method designed for BM segmentation across multiple 
skeletal sites and varied anatomical sizes. 

4.4. Association between BMFF and pathophysiological characteristics – 
confirmation of previous studies and new findings 

The key aim of our study was to develop and validate deep learning 
models for automated BM segmentation of UKBB Dixon MRI data. Our 
group of 729 subjects is the largest cohort yet to undergo measurement 
of spinal BMFF, and by far the largest to include assessment of BMFF at 
any femoral site [12]. Consistent with previous reports, we find that 
spinal BMFF is lower than femoral BMFF (Fig. 4) [1,12,36]; is greater in 
females than in males (Fig. 4) [34,35]; increases with age (Supplemental 
Table 5) [12,34,35,41]; is elevated in osteopaenia or osteoporosis, at 
least in females (Fig. 5) [1,6,12]; exhibits a robust, inverse association 
with spinal BMD (Table 5) [1,6,12]; and is positively associated with 
visceral adiposity (Supplemental Table 5) [41,42]. 

Our results for femoral BMFF are also consistent with previous 
studies. For example, in a cohort of aged females, Griffith et al. found 
that BMFF in the femoral head, neck and diaphysis is increased in 
osteoporosis and inversely associated with BMD at each site [43]. We 
confirm these findings (Fig. 5, Tables 6–8) and further reveal that 
diaphyseal BMFF is typically inversely associated with peripheral 
adiposity in females but not in males, while BMFF at the femoral head or 
total hip is generally not associated with these peripheral adiposity traits 
(Supplemental Table 5); these observations confirm and extend those of 
a previous smaller-scale study [44]. The reasons for these variable site- 
and sex-dependent relationships between BMFF and peripheral 
adiposity remain to be determined; however, one possibility is that they 
reflect preferences for the partitioning of lipid storage between different 
adipose depots. 

Many of our new findings relate to the fact that most previous MR- 
based studies of BM adiposity have focussed on vertebrae, with 
femoral sites being relatively overlooked [12]. For example, we show 

that, across both sexes, BMFF is highest in the femoral head and de
creases progressively in the total hip and diaphysis, while BMFF at each 
femoral site is greater in males than in females (Fig. 5A). Unlike in the 
spine, age shows no relationship with BMFF at each femoral site (Sup
plemental Table 5). This could reflect the fact that, compared to the 
spine, these femoral sites contain a greater proportion of constitutive 
BMAT, which is less age responsive than the regulated BMAT that pre
dominates in the axial skeleton [7,8]. However, it may be that 
age-related increases in femoral BMAT occur over a longer timeframe 
that would only be apparent when BMFF is assessed over a greater age 
range. If so, this should become apparent through BMFF analysis across 
the full UKBB imaging cohort. 

Regarding constitutive vs regulated subtypes, we also find robust 
positive associations between BMFF at the four different sites analysed 
(Table 4), similar to the findings of Slade et al. [36]. However, we 
further reveal that these relationships exhibit sex differences and are 
strongest between the three femoral regions, with spinal BMFF showing 
no association with diaphyseal BMFF (Table 4). This may reflect dif
ferences in the development and function of regulated vs constitutive 
BMAT [7,8]. 

Together, our present findings confirm those of previous studies 
while also revealing new knowledge about BMAT’s site- and sex- 
dependent characteristics. This underscores the ability of our deep 
learning models to yield reliable BMFF measurements and to identify 
new insights into the pathophysiology of BMAT. 

4.5. Limitations 

Despite these advances, there are several limitations to highlight. 
Firstly, our models were trained and tested using manual segmentations 
from only a single reader. In contrast, two previous BM segmentation 
models were trained and tested using manual segmentations produced 
by two independent human readers [20,22]; this multi-reader approach 
can help to ensure consistency in the ground truths. However, 
single-reader ground truths have also been used to successfully develop 
other recent deep learning models for bone or BM segmentation [21,45], 
and our ground truths were produced by a reader with extensive expe
rience. Moreover, our deep learning segmentations yield BMFF values 
consistent with many established findings, as discussed above. There
fore, we can be confident that our single-reader segmentations provided 
reliable ground truths for robust model development. 

A second limitation is that our models did not produce segmentations 
for all participants. As discussed above, this was generally not a result of 
pathological skeletal abnormalities; instead, in most cases it resulted 
from deviations in the structure of source data or image quality provided 
by UKBB, something that cannot be readily overcome by UKBB users. 
The next most-common cause of faulty segmentations was positioning 
issues during MRI acquisition, resulting in the target site (femoral head, 
total hip, or diaphyseal midpoint) falling partially or fully outside the 
expected MRI slab. If this issue persists across the full imaging cohort, 
then we will update our method by re-training our femoral head, total 
hip, and diaphysis models to segment slab volumes adjacent to the 
current target slabs and testing if this generates reliable segmentations 
for any affected participants. However, these positioning issues affected 
only 54 outputs, corresponding to < 2% of all segmentation outputs 
from our validation cohort. Another 37 of the faulty segmentations had 
no obvious cause of failure. While this represents only ~1% of all seg
mentation outputs, it suggests that other unidentified factors can impair 
segmentation. We will further investigate this after applying our models 
across the full UKBB imaging cohort, which should allow the causes of 
any impaired segmentations to be more-comprehensively assessed. 
Importantly, the low failure rate means that the above issues should not 
substantially compromise BMFF analysis across the full UKBB cohort. 

A third specific limitation is that our cohort included relatively few 
osteoporotic males. This restricted our ability, in males, to detect sig
nificant effects of osteoporosis on BMFF at each site. Our univariable and 
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multivariable regression analyses were still able to detect significant 
inverse associations between BMFF and BMD at each site; however, once 
we have measured BMFF across the full available UKBB cohort it will be 
informative to reassess the relationship between BMFF and osteoporosis. 
This analysis will also allow us to better account for other potential 
confounding factors, such as physical activity, dietary habits, and other 
pathophysiological parameters that may influence the relationship be
tween BM adiposity and health outcomes. 

There are two more-general limitations. Firstly, the UKBB imaging 
study is cross-sectional and so provides data for only one timepoint. 
Therefore, it is not designed capture longitudinal changes in BMFF and 
how these relate to health outcomes. A second general limitation relates 
to the UKBB MRI protocol, and in particular the use of two-point Dixon 
sequences. Participants in the UKBB imaging study visited several 
different imaging centres for acquisition of the MRI scans. Therefore, 
across these different imaging centres the MRI protocol parameters had 
to be standardised and harmonised, resulting in both advantages and 
drawbacks. For example, to simplify the procedure the Dixon sequences 
were based on only two echo times; however, with only dual-echo se
quences, no accurate T2 * -correction could be applied and the 
complexity of the fat spectrum could not be considered in the BMFF 
mapping [10,15]. As a result, reported BMFF measurements can be 
affected by T2 * decay effects caused by the presence of trabecular bone, 
which in turn may differ in the water and fat components [9,10]. 
However, the moderately low flip angle (10◦) is acceptable to limit 
T1-bias, and protocol standardisation compelled all examinations to be 
performed in similar conditions, with the exact same parameters [9,46]. 
Consequently, even if the more-accurate PDFF could not be quantified, a 
comparable estimate could be obtained through the reported BMFF, 
which permits group comparison and method cross-validation. Indeed, 
considering the sensitivity to detect BMFF changes between groups, the 
very large number of subjects in the UKBB imaging study helps to reduce 
any bias resulting from T2 * effects and thereby limits the improved 
sensitivity that is typically gained from multi-echo PDFF measurements. 
Furthermore, dual-echo Dixon-derived BMFF allows the derivation of 
consistent 3D BMFF measurements across all UKBB MR imaging centres. 
This is very important for our BMFF validation study, as it allowed us to 
assess and automate extraction of BMFF maps from multiple skeletal 
sites, on a 3D mode. 

5. Conclusions 

Our new deep learning models allow accurate segmentation and 
BMFF measurements for the spine, femoral head, total hip, and femoral 
diaphysis from UKBB MRI data. While we have used these models to 
analyse BM, they are generally applicable for improved segmentation of 
small VOIs from any large volumetric MRI data. Thus, they could also be 
applied for precise, automated, large-scale analysis of other small 
anatomical structures of interest. We will next use our deep learning 
models to measure BMFF across the full UKBB imaging cohort, which 
will eventually include 100,000 subjects. This will allow us to identify 
the genetic, physiological and clinical conditions associated with altered 
BMFF at each site. Such knowledge will help to elucidate the mecha
nisms that influence BM adiposity and reveal, to an unprecedented 
extent, how BMAT impacts human health and disease. 

Funding sources 

This work was supported by a grant from the Medical Research 
Council (MR/S010505/1 to W.P.C., including support for W.X.). W.P.C. 
was further supported by a Chancellor’s Fellowship from the University 
of Edinburgh. The British Heart Foundation supported C.W. (RG/16/10/ 
32375) and S.S. (4-year BHF PhD studentship). C.D.G. and T.M. were 
supported by the Edinburgh Clinical Research Facility and NHS Lothian 
R&D. 

CRediT authorship contribution statement 

The authors confirm that they have each made the following 
contributions: 

Conceptualisation, W.P.C.; Data curation, D.M.M., C.W., G.P., C.D. 
G., W.X., S.S. and W.P.C.; Formal Analysis, D.M.M., C.W., G.P., C.D.G., 
W.X., S.S. and W.P.C.; Funding Acquisition, S.I.K.S., T.M. and W.P.C.; 
Investigation, D.M.M., C.W., G.P., W.X., S.S. and W.P.C.; Methodology, 
D.M.M., C.W., G.P., C.D.G., W.X., S.S., S.B., J.P., S.I.K.S., T.M. and W.P. 
C.; Project administration, S.I.K.S., T.M. and W.P.C.; Resources, S.I.K.S., 
T.M. and W.P.C.; Software, D.M.M., C.W., G.P.; Supervision, S.I.K.S., T. 
M. and W.P.C.; Visualisation, D.M.M., C.W., C.D.G. and W.P.C.; Writing 
– Original Draft, D.M.M., C.W., S.B., J.P. and W.P.C.; Writing – Review & 
Editing, D.M.M., C.W., G.P., C.D.G., W.X., S.S., S.B., J.P., S.I.K.S., T.M. 
and W.P.C. 

Declaration of Competing Interest 

G.P. is currently an employee of Pfizer; however, Pfizer had no role in 
the design or interpretation of this research. All other authors declare no 
competing interest. 

Acknowledgements 

This work was supported by a grant from the Medical Research 
Council (MR/S010505/1 to W.P.C., including support for W.X.). W.P.C. 
was further supported by a Chancellor’s Fellowship from the University 
of Edinburgh. The British Heart Foundation provided support to C.W. 
(RG/16/10/32375) and S.S. (4-year PhD Studentship). C.G. and T.M. 
were supported by the Edinburgh Clinical Research Facility and NHS 
Lothian R&D. 

We are grateful to Dominic Job (Edinburgh Imaging, University of 
Edinburgh) for support with IT infrastructure, and Jimmy Bell, Louise 
Thomas and Brandon Whitcher (University of Westminster) for helpful 
discussions and advice regarding working with UKBB MRI data. 

Rights Retention Statement 

For the purpose of open access, the authors have applied a Creative 
Commons Attribution (CC-BY) licence to any Author Accepted Manu
script version arising from this submission. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.csbj.2023.12.029. 

References 

[1] Cawthorn, W.P. (2020) Bone Marrow Adipose Tissue. in Encyclopedia of Bone 
Biology (Zaidi, M. ed.), Oxford: Academic Press, Oxford, UK. pp 156–177. doi: 
10.1016/B978-0-12-801238-3.11207-3. 

[2] Devlin MJ, Cloutier AM, Thomas NA, Panus DA, Lotinun S, et al. Caloric restriction 
leads to high marrow adiposity and low bone mass in growing mice. J Bone Miner 
Res 2010;25:2078–88. 

[3] Cawthorn WP, Scheller EL, Learman BS, Parlee SD, Simon BR, et al. Bone marrow 
adipose tissue is an endocrine organ that contributes to increased circulating 
adiponectin during caloric restriction. Cell Metab 2014;20:368–75. 

[4] Cawthorn WP, Scheller EL, Parlee SD, Pham HA, Learman BS, et al. Expansion of 
bone marrow adipose tissue during caloric restriction is associated with increased 
circulating glucocorticoids and not with hypoleptinemia. Endocrinology 2016;157: 
508–21. 

[5] Suchacki KJ, Tavares AAS, Mattiucci D, Scheller EL, Papanastasiou G, et al. Bone 
marrow adipose tissue is a unique adipose subtype with distinct roles in glucose 
homeostasis. Nat Commun 2020;11:3097. 

[6] Veldhuis-Vlug AG, Rosen CJ. Clinical implications of bone marrow adiposity. 
J Intern Med 2018;283:121–39. 

[7] Craft CS, Li Z, MacDougald OA, Scheller EL. Molecular differences between 
subtypes of bone marrow adipocytes. Curr Mol Biol Rep 2018;4:16–23. 

D.M. Morris et al.                                                                                                                                                                                                                               

https://doi.org/10.1016/j.csbj.2023.12.029
http://refhub.elsevier.com/S2001-0370(23)00504-4/sbref1
http://refhub.elsevier.com/S2001-0370(23)00504-4/sbref1
http://refhub.elsevier.com/S2001-0370(23)00504-4/sbref1
http://refhub.elsevier.com/S2001-0370(23)00504-4/sbref2
http://refhub.elsevier.com/S2001-0370(23)00504-4/sbref2
http://refhub.elsevier.com/S2001-0370(23)00504-4/sbref2
http://refhub.elsevier.com/S2001-0370(23)00504-4/sbref3
http://refhub.elsevier.com/S2001-0370(23)00504-4/sbref3
http://refhub.elsevier.com/S2001-0370(23)00504-4/sbref3
http://refhub.elsevier.com/S2001-0370(23)00504-4/sbref3
http://refhub.elsevier.com/S2001-0370(23)00504-4/sbref4
http://refhub.elsevier.com/S2001-0370(23)00504-4/sbref4
http://refhub.elsevier.com/S2001-0370(23)00504-4/sbref4
http://refhub.elsevier.com/S2001-0370(23)00504-4/sbref5
http://refhub.elsevier.com/S2001-0370(23)00504-4/sbref5
http://refhub.elsevier.com/S2001-0370(23)00504-4/sbref6
http://refhub.elsevier.com/S2001-0370(23)00504-4/sbref6


Computational and Structural Biotechnology Journal 24 (2024) 89–104

104

[8] Scheller EL, Doucette CR, Learman BS, Cawthorn WP, Khandaker S, et al. Region- 
specific variation in the properties of skeletal adipocytes reveals regulated and 
constitutive marrow adipose tissues. Nat Commun 2015;6:7808. 

[9] Tratwal J, Labella R, Bravenboer N, Kerckhofs G, Douni E, et al. Reporting 
guidelines, review of methodological standards, and challenges toward 
harmonization in bone marrow adiposity research. report of the methodologies 
working group of the international bone marrow adiposity society. Front 
Endocrinol 2020;11. 

[10] Karampinos DC, Ruschke S, Dieckmeyer M, Diefenbach M, Franz D, et al. 
Quantitative MRI and spectroscopy of bone marrow. J Magn Reson Imaging 2018; 
47:332–53. 

[11] Cordes C, Baum T, Dieckmeyer M, Ruschke S, Diefenbach MN, et al. MR-based 
assessment of bone marrow fat in osteoporosis, diabetes, and obesity. Front 
Endocrinol 2016;7:74. 
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