
pathogenesis of COPD, and this study has established p73 as a new
player in the complex dysregulated biology underlying the
development of COPD.�
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Respiratory Metagenomics: Ready for Prime Time?

Pneumonia is one of the most common infectious reasons for
hospital admission, but current standard-of-care pneumonia
diagnostics leave much to be desired. In a population-based survey of
community-acquired pneumonia in hospitalized adults in the United
States, only 38% had a pathogen identified despite exhaustive clinical
testing with culture, multiplex PCR, and urinary antigens (1). This
diagnostic gap leads to the overuse of broad-spectrum antibiotic
agents, contributing to the ever-increasing global burden of
antimicrobial resistance, which is outpacing novel antimicrobial agent
development and cited by theWorld Health Organization as one of
the top 10 global threats facing humanity (2). Furthermore, as the
number of immunocompromised patients steadily increases (3), so
does the risk of infection with unusual pathogens often missed by
standard microbiologic testing, resulting in delayed or missed
diagnoses in our most vulnerable patients (4). There is an urgent need
for new respiratory diagnostics that are less biased andmore sensitive
and provide rapid results.

A sequencing-based approach can overcome many of the
limitations of existing pneumonia diagnostics. Metagenomic
sequencing permits unbiased assessment of all nucleic acid in
biological samples, enabling the detection of potential pathogens, the

wider microbiome, and the human host response in a single assay (5).
Presently, Clinical Laboratory Improvement Amendments (CLIA)
certified metagenomic tests are clinically available for plasma and
cerebrospinal fluid (6, 7), but technical and bioinformatic complexity
delays turnaround time, and high sensitivity makes it challenging to
distinguish signal from noise (8). Respiratory metagenomics (RMg)
presents an even greater challenge because the respiratory tract is a
nonsterile environment with a well-described microbiome, further
complicating analysis and clinical interpretation.

In this issue of the Journal, Charalampous and colleagues
(pp. 164–174) conducted a prospective clinical pilot study (9)
implementing a previously established RMg workflow (10) in the
ICU of an academic hospital (Figure 1). Although others have
explored metagenomics for the diagnosis of lower respiratory tract
infections (11–15), this study is notably the first to truly implement
RMg in a clinical care setting and assess its impact. Generation and
analysis of high-complexity metagenomic data involves multiple
steps, including nucleic acid extraction, library preparation,
sequencing, removal of human reads, taxonomic alignment, and
modeling to distinguish pathogens from the backgroundmicrobiome
(5). Here, the authors report a median turnaround time from sample
acquisition to result of just 6.7 hours, which is impressive andmuch
faster than traditional culture-based diagnostics. This pilot study had
the capacity to perform RMg on three samples per day, so follow-up
studies regarding scale-up and cost effectiveness will be important.

Beyond the rapid turnaround time, this study demonstrated
that RMg had a compelling impact on clinical management. When
clinical testing results were negative, RMg detected a clinically
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relevant pathogen 19% of the time, often with organisms not initially
suspected by clinicians, such as Legionella or Cytomegalovirus, and
resulted in a management change. Conversely, RMg had a high level
of agreement (93%) when standard culture results were positive. The
high sensitivity gave clinicians confidence to discontinue antibiotic
therapy when RMg returned negative results and, in some cases,
even start early immunosuppression for suspected autoimmune
inflammatory pulmonary conditions. RMg had the added benefit of
early detection of resistance genes for many organisms, allowing
clinicians to appropriately tailor antimicrobial agents more
expediently. In total, the authors estimate that RMg contributed to
prescribing decisions in a noteworthy 80% of cases.

Compared with standard culture, sequencing-based approaches
pair nicely with infection control and public health efforts. With
usual practice, in a suspected outbreak, cultured organisms from the
microbiology laboratory are sent for whole-genome sequencing to
assess relatedness with other isolates. However, with metagenomics,
if sequencing depth is adequate and genome coverage is high enough,
the sequencing data can be used for proactive and timely infection
control interventions. The authors demonstrate this impact with a
case of Legionella pneumophila that originated from a bedside water
faucet and a confirmed patient-to-patient Klebsiella variicola
transmission.

As with any study, there are some limitations. Because the RMg
assay studied was exclusively DNA-based, the workflow is unable to
detect RNA viruses, which are the most common cause of lower
respiratory tract infection in adults and children (1, 16). This could
potentially hamper antimicrobial stewardship efforts because a
positive viral test result in the setting of negative bacterial testing
results can provide the confidence to stop antimicrobial therapy.
Ideally, the RMg workflow could be modified to include DNA and
RNA sequencing to better capture the most common causes of
respiratory infections and enable the detection of emerging viral
pathogens that may not be detectable by standard PCR assays. This
could also enable profiling of host gene expression, which could
inform whether the detected microbes are matched to an immune
response consistent with infection. Another consideration for future
studies is the inclusion of a noninfectious control group to more
rigorously define specificity, optimize the differentiation of pathogens
from commensal organisms, and understand the impact on antibiotic
agent use when incidental microbiota are detected.

All said, the authors have performed an impressive clinical pilot
study of RMg and have successfully moved the needle toward future
implementation of this technology in routine clinical practice, in
which current methods often fall short. Although some challenges
and limitations persist, this study opens the door for future research

Figure 1. Clinical implementation of respiratory metagenomics. Nanopore respiratory metagenomics were performed on BAL fluid, tracheal
aspirates, and pleural fluid samples from intubated patients in the ICU with suspected respiratory infection. Routine clinical testing with culture was
simultaneously performed. Sequencing reports were generated after 30 minutes and 2 hours for microbes and resistance mutations, respectively.
Median turnaround time from sample acquisition to the reporting of results to clinicians was 6.7 hours. In comparison, preliminary culture results
were reported after an average of 29 hours and were finalized in 40 hours. The impacts on clinical care, antibiotic agent prescribing, and infection
control involvement were evaluated. AMR=antimicrobial resistance; BAL=bronchoalveolar lavage; ICU= intensive care unit.
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in assay optimization, launching of a randomized controlled trial, and
cost-effectiveness analyses to propel RMg to prime time.�
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Portable Air Purifiers to Mitigate the Harms of Wildfire Smoke
for People with Asthma

Wildfires are increasing in frequency and intensity across the world.
Changing temperatures, drought, and vegetation stemming from
anthropogenic climate and land-use change have interacted to boost
conditions for their development and spread (1). Wildfires produce
harmful emissions and are a significant source of environmental air
pollution, including fine particulate matter (i.e., particles,2.5mm in
diameter [PM2.5]), ozone, and carbon monoxide; as much as one
fourth of ambient PM2.5 in the United States can be attributed to
wildfire smoke, a trend that is projected to increase (2).

There is a clear relationship between short-term rise in PM2.5

and adverse respiratory (and many other) health outcomes (3).
This is especially relevant for individuals with asthma, in whom the
link between short-term PM2.5 exposure with worse of symptoms and
higher risk of exacerbation is well established, particularly for children
(4, 5). For these individuals, air filtration has been proposed as an
option to reduce personal exposure. High-efficiency particulate air
(HEPA) filters remove 99.97% of particles with a size of 0.3mm, and,
perhaps contrary to popular belief, capture a greater percentage of
particles both larger and smaller than this worst-case size. HEPA
purifiers can reduce indoor PM2.5 concentrations by approximately
50–80%, even in countries with relatively high ambient pollution
levels, suggesting that they are effective in a wide range of real-world
conditions (6). Government programs that encourage the purchase
of portable air filters to mitigate poor air quality caused by wildfires
are being tried in some jurisdictions, but many barriers exist for their
widespread adoption. Chief among them is uncertainty regarding
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