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Will variants of uncertain
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Summary
In 2020, the National HumanGenome Research Institute (NHGRI) made ten ‘‘bold predictions,’’ including that ‘‘the clinical relevance of

all encountered genomic variants will be readily predictable, rendering the diagnostic designation ‘variant of uncertain significance

(VUS)’ obsolete.’’ We discuss the prospects for this prediction, arguing that many, if not most, VUS in coding regions will be resolved

by 2030. We outline a confluence of recent changes making this possible, especially advances in the standards for variant classification

that better leverage diverse types of evidence, improvements in computational variant effect predictor performance, scalable multi-

plexed assays of variant effect capable of saturating the genome, and data-sharing efforts that will maximize the information gained

from each new individual sequenced and variant interpreted. We suggest that clinicians and researchers can realize a future where

VUSs have largely been eliminated, in line with the NHGRI’s bold prediction. The length of time taken to reach this future, and thus

whether we are able to achieve the goal of largely eliminating VUSs by 2030, is largely a consequence of the choices made now and

in the next few years. We believe that investing in eliminating VUSs is worthwhile, since their predominance remains one of the biggest

challenges to precision genomic medicine.
Introduction

In 2020, the National Human Genome Research Institute

(NHGRI) made ten ‘‘bold predictions,’’ including that ‘‘the

clinical relevance of all encountered genomic variants will

be readily predictable, rendering the diagnostic designation

‘variant of uncertain significance (VUS)’ obsolete.’’ On

September 16, 2021, we talked about this prediction in

the NHGRI Bold Predictions seminar series, and here,

we update and expand upon these talks (accessible on

the NHGRI website at https://www.genome.gov/event-

calendar/Bold-Predictions-for-Human-Genomics-by-2030).

This prediction appears to be the boldest of all ten as

VUSs deposited in ClinVar have increased by �5-fold

from 2020 when the prediction was published to 2023

(ClinVar; https://www.ncbi.nlm.nih.gov/clinvar/; date ac-

cessed August 1, 2023). However, despite this daunting in-

crease, we are hopeful that many if not most VUSs awaiting

classification will in fact be resolved by 2030.

Variants observed during clinical genetic testing must

be classified for pathogenicity with respect to one or

more diseases and modes of inheritance for a given gene

in order to be used to diagnose or guide the treatment

of disease. Classification depends on integration of

different types of evidence, including observations in in-

dividuals with disease, segregation in a family, population

frequency, functional data, and computational predic-

tions.1 Unfortunately, evidence is often lacking, espe-

cially for rare variants, leading to the VUS classification.

VUSs are difficult to apply in the clinic, often represent-

ing a dead end that can only be overcome by the collec-
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tion of additional evidence. One way we track the state

of understanding of human variation is through the

ClinVar database2 where laboratories voluntarily share

their classified variants. Over 90% of submissions come

from clinical laboratories and therefore represent a

glimpse of the state of variation being observed in pa-

tients. Currently, the ClinVar database contains over 3

million submissions on over 2 million unique variants

from over 2,500 submitters in 89 countries (accessed

August 1, 2023). While ClinVar represents a major success

in community data sharing, the classification of each of

those >2 million variants reveals the challenge: 36% are

VUSs and 5% are conflicting. 15% are classified as patho-

genic (10%) or likely pathogenic (5%) with the remainder

classified as benign (18%), likely benign (25%), or

other (1%). This predominance of VUSs is reflected in in-

dividual genetic testing reports returned to patients: in

2020–2021, 19 laboratories in North America offering

multigene panels, exomes, and genomes reported that

32% of individuals received an inconclusive test report

due to one or more VUSs in the absence of any clear

explanation for disease.3 In addition, only 11% of reports

contained causal pathogenic or likely pathogenic vari-

ants, suggesting that most individuals sent for diagnostic

testing did not obtain insight into their condition.

Furthermore, this picture largely derives from the interro-

gation of the coding regions of genes, which represent the

�2% of the genome where we are most able to interpret

variants but excludes most of the non-coding portion of

the genome. Moreover, current testing is focused on sin-

gle nucleotide variants and is only just beginning to
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systematically include moderately sized copy number var-

iants below the resolution of chromosomal microarrays,

as well as more complex insertions, deletions, and other

genomic changes. Thus, as we look into the abyss of the

non-coding portions of our genome, grapple with struc-

tural variation, and examine genes not yet linked to dis-

ease, the task of discerning the few impactful causal vari-

ants from the plethora of other variants is challenging. As

such, we clearly have much work to do!

So, how will we tackle this seemingly insurmountable

VUS challenge? Is there hope over the remaining seven

years to come close to achieving the NHGRI’s audacious

prediction? We believe so. While we may not eliminate

all VUSs, much progress is being made, and there is a

path to a brighter future where most human variants

are understood. But arriving at this future will require

bold new thinking, creative technology development,

a massive research effort, and community building.

Below, we outline key advances and explore how they

are creating change and shedding light on a path

forward.
Standards for variant classification

Over 8 years ago, the American College of Medical Ge-

netics (ACMG) and Genomics and the Association for

Molecular Pathology (AMP) released more rigorous stan-

dards for the classification of genetic variation with

respect to monogenic disease.1 There was widespread

appreciation that many variants had been falsely classi-

fied as pathogenic and needed to be reclassified as VUSs.

The new standards improved the accuracy of variant

classification, yet also highlighted the paucity of knowl-

edge we had to interpret most variants. However, since

these standards were published, the Clinical Genome

Resource (ClinGen) Sequence Variant Interpretation

working group has been releasing interim guidance,

both clarifying the application of the ACMG/AMP stan-

dards as well as building on them, most recently allow-

ing more missense and splice variants to receive higher

levels of evidence based on improved analytical algo-

rithms that, in some cases, use machine learning to bet-

ter predict the impact of the variation.4,5 We anticipate

that the next sequence variant classification standards,

currently under development, will continue to improve

the accuracy of variant classification and also enhance

our ability to use available evidence in adjudicating

variant effects. Additional guidance is also being gener-

ated around evaluating variants with lower penetrance,

as well as differentially evaluating variants in genes asso-

ciated with multiple diseases and pathogenic mecha-

nisms. Furthermore, as we discover more of the causes

of rare disease, for which thousands of gene-disease rela-

tionships remain undiscovered,6 and better understand

the mechanisms and relevant domains in which varia-

tion in each gene leads to disease, we will have better
6 The American Journal of Human Genetics 111, 5–10, January 4, 202
frameworks to evaluate all variants in those genes and

their attendant non-coding regions.
Tools for predicting variant effects

Computational variant effect predictors use information

about a variant, especially from multiple sequence align-

ments and protein structure, to predict the variant’s effect.

A key advantage of variant effect predictors is that predic-

tions can be generated for many or most variants across

the human genome, meaning that predictions are avail-

able for nearly all single-nucleotide variants. However, pre-

dictor accuracy was modest and difficult to fairly assess,

meaning that predictor-derived evidence had little weight

and thus a small influence on clinical variant interpreta-

tion.1 Recently, dramatic innovations have begun to over-

come both of these limitations. Prediction quality has

improved for a variety of reasons, one of which is the pair-

ing of more sophisticated machine learning approaches

with the increased amount of example pathogenic and

benign variants that can be used for training predictive

models (e.g., Wu et al.7). Another example is the rise of

‘‘metapredictors’’ that combine multiple modestly per-

forming predictions (e.g., Ioannidis et al.8). Lastly, ap-

proaches for incorporating the features that drive predic-

tions have been developed, particularly in the case of

multiple sequence alignments (e.g., Gao et al.9). Another

key driver of predictor improvement has been an appreci-

ation of the problems posed by supervised model circu-

larity (e.g., using known benign and pathogenic variants

both to train a model and evaluate its effects) and the

development of solutions to this problem (e.g., rigorous

definition of test sets and use of unsupervised models;

Frazer et al. and Cheng et al.10,11). Thus, today, high-qual-

ity variant effect predictions are available from numerous

models.

However, the development of high-quality predictions

did not immediately alter the 2015 ACMG/AMP standards

specifying that evidence from computational variant effect

predictors could be used at the lowest ‘‘supporting’’ level of

evidence for clinical variant classification as genes needed

large sets of variants with pathogenicity validated by inde-

pendent evidence to develop stronger evidence levels.

Eventually, numerous studies hinting at the fact that pre-

dictors could and should yield stronger evidence combined

with rules articulated by the ClinGen Sequence Variant

Interpretation working group for rigorously evaluating ev-

idence strength12 opened the door for a reassessment of

predictor evidence. Responding to these factors, the

ClinGen Sequence Variant Interpretation working group

has recently articulated a new framework for calibrating

the strength of evidence provided by computational

variant effect predictors.4 This framework hinges on the

analysis of predictor performance using known pathogenic

and benign variants from across the genome and has re-

sulted in a dramatic shift in the strength of evidence that
4



can be generated by predictors. In fact, some predictors can

generate strong evidence for variant classification, both for

pathogenic effects and benign effects. Because predictions

are available for a large number of VUSs, this sea change in

predictor evidence strength will likely considerably reduce

the number of VUSs in the coming years. Moving forward,

dramatic improvements in machine-learning algorithms

along with increased numbers of known benign and path-

ogenic variants will drive continued improvement in pre-

dictor accuracy.
Tools for measuring variant function

Functional assays can be used to measure the effect of a

variant on molecular, cellular, or model organism pheno-

types. A key strength of functional assays is that, with the in-

clusionof sufficient control pathogenic andbenign variants,

the effect of the variant as compared to controls can inform

on the clinical consequencesof the variant. Indeed, the 2015

ACMG/AMP standards specified that variant functional data

could be used as strong evidence for clinical classification if

rigorously validated. However, variant functional data were

rarely available and often difficult to validate because most

datasets contained very limited numbers of control variants.

Moreover, calibration of evidence strength from functional

assays was challenging, with little guidance initially pro-

vided for how to evaluate evidence of assays performed

outside of licensed clinical labs.

The advent of multiplexed assays of variant effect has

enabled both of these limitations to be addressed. In a

multiplexed assay of variant effect, thousands of variant ef-

fects are measured simultaneously, generally using high-

throughput DNA sequencing as a readout.13–15 A first gen-

eration of multiplexed assays have been developed that

encompass a wide variety of molecular and cellular pheno-

types ranging from protein activity and abundance to pro-

moter and enhancer activity to cell growth, morphology,

and transcriptomic state.16–18 Multiplexed functional

data offer many advantages as compared to their low-

throughput predecessors. Most importantly, nearly all

possible single-nucleotide or amino acid variants can be

simultaneously assessed in a target region of the genome.

The result is a variant effect map that can provide evidence

for previously identified variants, as well as all variants that

will be found in the future. Thus, like computational

variant effect predictions, multiplexed functional data

are proactive. Moreover, each multiplexed functional

experiment includes internal control variants (e.g., synon-

ymous and nonsense variants within a coding region),

enabling each dataset to be evaluated for quality according

to rigorous standards.19,20 Multiplexed assays of variant ef-

fect are becoming widely adopted, with over 10 million

variants assessed as of mid-2023.21

However, despite the potential utility ofmultiplexed func-

tional data, their uptake for clinical variant classificationwas

initially slow. Like for computational predictions, the reason
The
was because existing standards did not specify a rigorous,

universally applicable way to calibrate the strength of evi-

dence provided by each functional dataset. Just before the

NHGRI issued its bold predictions, the ClinGen Sequence

Variant Interpretation workgroup articulated such stan-

dards.12 Application of these new standards to multiplexed

functional data for three key cancer-risk genes, BRCA1,

TP53, and PTEN, revealed that the inclusion of properly cali-

brated functional data frommultiplexed assays could lead to

the reclassificationofmany, if notmostVUSs.22 Thus,multi-

plexed functionaldataarepoised toplayan important role in

reducing the number of VUSs.

Moving forward, several key challenges remain. Multi-

plexed functional data are currently expensive to generate

and available for only a small minority of clinically related

genes, meaning that community-scale efforts to generate

such data are required. The first generation of multiplexed

functional assays, while powerful, cannot be extended to

every clinically related gene because many of these genes

function in processes that cannot currently be assayed or

in specialized cell types for which there are not multiplex-

able models. Existing technologies are also largely unable

to account for genetic and environmental context, both

of which can impact variant effects. Lastly, existing tech-

nologies are largely focused on single-nucleotide or amino

acid variants, and few approaches exist for querying inser-

tions, deletions, or more complex events at scale. Thus,

continued development of multiplexed assay technology

is needed to reduce costs and overcome these challenges.

Many details remain to be resolved surrounding the

use of functional data in clinical variant classification.

Evaluating the strength of evidence generated by a func-

tional dataset is difficult for genes where few control

pathogenic and benign variants are available. Classifica-

tion of more pathogenic and benign variants, particu-

larly in partnership with a variant curation expert panel,

is one possible solution. Even if clinical control variants

are unavailable, standards for judging functional data

quality and reproducibility have been articulated and

should be used.19 Another challenge is how multiple da-

tasets available for a gene should be integrated and how

computational predictions, functional data, and other

types of data can be combined. Here, comparison of mul-

tiple predictor and functional datasets could yield in-

sights into the molecular and cellular mechanisms by

which variants act, greatly improving our understanding

of disease. However, model-based integration and

weighting of predictor and functional datasets, with

appropriate benchmarking using control variants, will

be needed to account for the fact that different func-

tional assays evaluate distinct processes (e.g., expression

vs. splicing vs. protein activity) and to avoid double

counting of datasets with the same information

content. Lastly, a clinical-facing resource for discovering

and assessing the quality of functional datasets from

multiplexed assays is urgently needed. The ideal resource

would give clinicians a variant-level view while also
American Journal of Human Genetics 111, 5–10, January 4, 2024 7



highlighting the quality of the functional dataset and the

strength of evidence generated.
Data sharing

Most variation identified and interpreted in rare disease

testing is unique to an individual and may never be

observed again by a given laboratory, making the chal-

lenge of variant classification even harder. Indeed, 78%

of variants submitted to ClinVar have only been submit-

ted by one laboratory, primarily because they have been

observed only once in a single individual. Analysis of the

the Genome Aggregation Database (gnomAD) dataset

suggests that every individual harbors on average 27

unique and 200 very rare variants in their coding

sequencing alone.23 Thus, finding additional evidence

for these rare variants from other individuals in the pop-

ulation will require massive, widespread data sharing.

This data sharing will need to come in multiple forms,

including allowing genomic datasets from diverse popu-

lations to be aggregated and released to inform allele fre-

quencies (AFs) of all variation across every population,

aiding in the ability to rule out variation as causal based

on subpopulation AFs too high to be disease causing.

With tens to hundreds of millions of human genomes

aggregated, we could also saturate the observation of

most types of human genetic variation, allowing not

only the elimination of causal variation through high

frequency but also the ability to infer pathogenicity

through the absence of variation. So far, we have only

begun to approach saturation for single-nucleotide vari-

ants at highly mutable CpG sites24 and will need much

larger datasets to reach saturation of all variation types

and in other genomic contexts. But with thousands of

cohorts and biobanks being assembled across the globe,

already totaling over 50 million enrolled participants as

of 2020,25 and standards being developed by the Global

Alliance for Genomics and Health to enable interoper-

able data sharing,26 we anticipate major progress in ac-

cess to massive genomic datasets to inform the classifica-

tion of genetic variation. And, while the genomic data

alone can yield some insights into variant effects,

most variants will still require additional evidence to

classify. As such, all shared genomic datasets must be

accompanied by clinical data, including phenotype, de

novo occurrence, and segregation data, to enable variant

classification. Efforts are underway to build federated

variant-level querying capabilities to make it easy to ac-

cess these data for a given rare variant, speeding the

interpretation of monogenic-disease genetic testing and

gene-disease discovery.27
A realistic picture for 2030

We are hopeful that many, if not most, VUSs in coding

regions will be resolved by 2030. Our hope is driven by
8 The American Journal of Human Genetics 111, 5–10, January 4, 202
the confluence of recent changes we outlined above,

especially advances in the standards for variant classifica-

tion that better leverage diverse types of evidence, im-

provements in computational variant effect predictor

performance, scalable multiplexed assays of variant effect

capable of saturating the genome, and data-sharing ef-

forts that will maximize the information gained from

each new individual sequenced and variant interpreted.

Indeed, with high-quality predictions and functional

data available for a gene, along with information from

previously sequenced individuals, the overwhelming ma-

jority of single-nucleotide variants could be classified to a

level that would enable a clinician to act on genetic in-

formation in the care of a patient, as well as identify

borderline VUSs for which an incremental amount of

additional evidence could push variants over to likely

pathogenic. However, we acknowledge that progress is

likely to be highly uneven across genes, even for single

nucleotide variants. For a handful of genes, including

BRCA1 and TP53, all the pieces are in place, and we pre-

dict that VUS will largely be eliminated in the next few

years. For other genes, perhaps on the order of several

hundred, high-quality predictions exist and functional

data are forthcoming, suggesting that VUSs will largely

be resolved by 2030. For structural variation and inter-

genic variation, the picture is bleaker because effective

methods are largely missing to make high-quality variant

effect predictions or to collect multiplexed func-

tional data.

Even for single-nucleotide variants within genes and

their well-understood regulatory elements, progress de-

pends on a variety of factors. First and foremost, the

rate of progress will depend on the clinical community’s

willingness to revisit VUS and to engage with researchers

generating computational variant effect predictors and

collecting multiplexed functional data. High engagement

will help the research community to focus on delivering

the highest-value predictions and variant effect measure-

ments for the genes where they can make the most differ-

ence. While such engagement is increasing, as reflected

by the recent advent of the Atlas of Variant Effects Alli-

ance,21 NHGRI Impact of Genomic Variation on Func-

tion consortium (https://igvf.org/), and other scalable

variant effect efforts, much more is needed to maximize

the utility of research efforts. For research, more invest-

ment will be required to realize the goal of having

high-quality predictions and variant effect measurements

for every clinically relevant gene in the genome, nearly

5,000 to date (www.omim.org; accessed July 30, 2023),

and to develop scalable methods capable of dealing

with intergenic and structural variation. On the clinical

side, resources are lacking for supporting efficient data

sharing of primary evidence, as well as revisiting un-

solved cases over time, neither of which are incentivized

sufficiently.

Thus, for clinicians and researchers there exists a path to

a world where VUSs are largely eliminated, in line with the
4
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NHGRI’s bold prediction. The pace at which we walk this

path, and thus whether we are able to achieve the goal of

largely eliminating VUSs by 2030, is largely a consequence

of the choices made now and in the next few years. We

believe that investing in eliminating VUSs is worthwhile,

since their predominance remains one of the biggest chal-

lenges to precision genomic medicine.
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