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for further functional follow up
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Summary
Treatments for neurodegenerative disorders remain rare, but recent FDA approvals, such as lecanemab and aducanumab for Alzheimer

disease (MIM: 607822), highlight the importance of the underlying biological mechanisms in driving discovery and creating disease

modifying therapies. The global population is aging, driving an urgent need for therapeutics that stop disease progression and eliminate

symptoms. In this study, we create an open framework and resource for evidence-based identification of therapeutic targets for neuro-

degenerative disease. We use summary-data-basedMendelian randomization to identify genetic targets for drug discovery and repurpos-

ing. In parallel, we provide mechanistic insights into disease processes and potential network-level consequences of gene-based thera-

peutics. We identify 116 Alzheimer disease, 3 amyotrophic lateral sclerosis (MIM: 105400), 5 Lewy body dementia (MIM: 127750), 46

Parkinson disease (MIM: 605909), and 9 progressive supranuclear palsy (MIM: 601104) target genes passing multiple test corrections

(pSMR_multi < 2.95 3 10�6 and pHEIDI > 0.01). We created a therapeutic scheme to classify our identified target genes into strata based

on druggability and approved therapeutics, classifying 41 novel targets, 3 known targets, and 115 difficult targets (of these, 69.8%

are expressed in the disease-relevant cell type from single-nucleus experiments). Our novel class of genes provides a springboard for

new opportunities in drug discovery, development, and repurposing in the pre-competitive space. In addition, looking at drug-gene

interaction networks, we identify previous trials that may require further follow-up such as riluzole in Alzheimer disease.We also provide

a user-friendly web platform to help users explore potential therapeutic targets for neurodegenerative diseases, decreasing activation en-

ergy for the community.
Introduction

Currently, there are few approved disease-modifying ther-

apeutics available to those with a neurodegenerative dis-

ease (NDD), the most recent being lecanamab for the treat-

ment of Alzheimer disease.1 NDDs such as Alzheimer

disease (AD), Parkinson disease (PD), amyotrophic lateral

sclerosis (ALS), Lewy body dementia (LBD), frontotempo-

ral lobar degeneration (FTLD [MIM: 607485]), and progres-

sive supranuclear palsy (PSP) are diseases caused by pro-

gressive nerve cell degeneration that result in a loss of

cognition and/or motor function.2 The World Health Or-

ganization (WHO) expects dementia diagnoses alone to

reach 78 million by 2030 and 139 million by 2050.

Without disease-modifying therapies, the health, social,

and economic impacts of dementia and related NDDs

will be catastrophic.3 The identification of rational thera-

peutic targets for NDDs will require both the generation

of new data and the development and deployment of

rapid, open, and transparent tools.

Drugs that are supported by genetic or genomic data

frequently outperform those without such evidence in
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clinical trials. Over two-thirds of the US Food and Drug

Administration (FDA)-approved drugs in 2021 were sup-

ported by genetic or genomic evidence.4 Therapeutics

with genetically supported target mechanisms are twice

as likely to pass a trial phase as those without supporting

genetic data are.5 Given the importance of anchoring ther-

apeutic targets to a disease mechanism substantiated by ge-

netic evidence, we developed omicSynth: a dynamic,

open, and accessible resource that leverages large-scale ge-

netic and genomic data for the identification of therapeu-

tic targets in the NDD space.

The omicSynth resource integrates genetic and genomic

data in a summary-data-based Mendelian randomization

(SMR) framework.5 The SMR framework facilitates func-

tional inferences relating disease risk (from genome-wide

association studies [GWASs]) to the underlyingmechanism

(from quantitative trait loci [QTL] variant data in relevant

tissues) through their approach to Mendelian randomiza-

tion (MR). MR uses instrumental variables (genetic vari-

ants) to test for a causative effect of an exposure, such as

gene expression, on an outcome (disease phenotype).

The SMR approach to MR tests for pleiotropic association
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between the exposure and outcome. Pleiotropic associa-

tion is defined by Zhu et al. as the association between

an outcome (disease phenotype) and exposure (QTLs)

due to either pleiotropy (both QTLs and the disease pheno-

type are affected by the same causal variant) or causality

(the effect of a causal variant on the disease phenotype is

mediated by the QTLs). In order to distinguish pleiotropy

from linkage, the accompanying heterogeneity in depen-

dent instruments (HEIDI) method utilizes cis-QTLs sur-

rounding the probe being tested to distinguish pleiotropy

from linkage. The resulting SMR effect size (beta) and

HEIDI values measure the effect of the exposure on the

outcome free of any non-genetic confounders and the

probability of the tested genetic variant being consistent

with linkage, respectively.5 In an SMR association as

shown here, the effect estimates correspond to functional

inferences where a positive association suggests concor-

dance between increased omic levels and increased risk

and a negative beta suggests the inverse. In many analyses,

the same associations can have opposite directions for the

same gene in different tissues or in different disease con-

texts. The data utilized are GWASs from population-scale

resources, composed of millions of samples across multiple

NDDs, and omic data composed of QTL studies measuring

methylation, gene expression, chromatin state, and pro-

tein expression. Additionally, we incorporated expres-

sion-QTL (eQTL) data from genetically diverse back-

grounds into our SMR analyses, addressing the lack of

multi-ancestry data in NDD research and allowing for

limited functional inferences regarding differences be-

tween ancestral populations.

To add additional context to nominated gene targets, we

also investigated single-nucleus data from disease-enriched

cell types.6,7 Many therapeutics mechanistically target in-

hibition of expression, thus, it is necessary that the target

is expressed at baseline in the relevant cell types for these

treatments to be effective in addressing a particular disease.

Using single-nucleus expression data, we investigated

whether the nominated genes could potentially be affected

by inhibitors that can cross the blood-brain barrier, as in

general, genes need to be expressed in order to be suscepti-

ble to inhibition from a mechanistic perspective.

We prioritize identified genes as therapeutic targets of in-

terest into three classes based upon known small-molecule

druggability and product market information (Figure 1).

Novel targets include genes that exhibit significant func-

tional inferences in relevant tissue and cell types in drug-

gable regions of the genome, are not currently targeted

by disease-specific therapeutics, and should be prioritized

in future repurposing studies and drug development.

Known targets include genes within relevant tissue and

cell types that have documented significant functional in-

ferences but are already impacted by a known drug that

specifically targets an NDD. Difficult target genes are not

in regions of the genome currently annotated as druggable.

For all novel targets, we searched the corresponding gene

regulatory networks to identify companion genes that
The Americ
could also be useful as therapeutic targets. Potential up-

stream and downstream effects on targeting these genes

for therapeutic intervention were provided based on

network memberships, and toxicity within these networks

was inferred by evaluating liver eQTLs within the network

as well as known interacting drugs for each gene of inter-

est. Results can be browsed through the omicSynth

resource, which is made available via a free web-based plat-

form, further decreasing activation energy for therapeutic

target discovery within the research community (https://

nih-card-ndd-smr-home-syboky.streamlit.app/).
Material and methods

Datasets
GWAS summary statistics for each of the six NDDs highlighted in

our study were used to obtain single nucleotide polymorphisms

(SNPs) that served as instrumental variables in the MR pipeline.

GWASs used are the latest and/or largest for each corresponding

disease: Bellenguez et al. for AD (n ¼ 788,989); Chia et al. for

LBD (n ¼ 7,372); Höglinger et al. for PSP (n ¼ 4,361); Nalls et al.

for PD (n ¼ 1,456,306); Nicolas et al. for ALS (n ¼ 80,610); and

Pottier et al. for FTLD (n¼ 1,355).8–13All GWAS summary statistics

were lifted over, as needed, to hg19 (GRCh37) using University of

California, Santa Cruz’s liftOver command line tool.14

QTL summary statistics
eQTLs, protein QTLs (pQTLs), chromatin QTLs (caQTLs), and

methylation QTLs (mQTLs) were used as the exposure variables

in the MR analyses. eQTLs are genetic loci that explain the varia-

tion in mRNA expression levels. Cis-eQTL, eQTLs that act on local

genes, data make up most all QTL data used for our study because

of the volume of publicly available data sources. All eQTL and

mQTL data obtained, except from the sources eQTLgen, meta-

Brain, and Zeng et al. (multi ancestry), were already in SMR format

and obtained from the Yang Lab’s Data Resource page.15–17 The

eQTL sources from the Yang Lab include Genotype-Tissue Expres-

sion (GTEx) project v8 release, PsychENCODE, and BrainMeta v1

(formerly brain-eMeta).18–20 The specific tissues measured varied

by data source but consisted of NDD-related tissues, which we

have defined as brain, nerve, muscle, blood, and liver tissues. Liver

was included because of its role in metabolizing medications,

toxicity, and potential impacts on clinical trial progress.21

mQTLs are genetic variants that affect methylation patterns of

CpG sites. mQTL data sources include Brain-mMeta and McRae

et al., which are derived from blood tissues.20,22 We included

caQTLs—caQTLs alter traits by modifying chromatin structure—

data from Bryois et al. in our analysis.23 Blood tissues have been

shown to have high correlation in expression levels with brain tis-

sues, allowing blood tissues to provide a gain of power and ease of

use in biomarker studies due to the relative ease of availability of

this tissue.20 All genome positions aremapped to the human refer-

ence genome build hg19 (GRCh37).

pQTLs are genetic variants associated with protein expression

levels. Similarly to eQTLs and mQTLs, pQTLs can be used as our

exposure variable. We obtained pQTL summary statistics data

from Yang et al.24 The pQTLs are from plasma, brain, and cerebro-

spinal fluid (CSF) tissues from participants with and without AD.

Samples are on human reference genome build hg19 (GRCh37).

More details on the samples and methods used can be found in
an Journal of Human Genetics 111, 150–164, January 4, 2024 151
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Figure 1. Graphical representation of research workflow and results
(A) Graphical representation of the general workflow used in conducting our analyses. NDD, neurodegenerative disease; SMR, summary-
data-based Mendelian Randomization. (B) Graphical summary of results. Sankey plot depicting the flow of candidate genes into their
respective tier. On the left, we highlight novel genes, but the remainder of the plot visualizes all 159 candidate genes regardless of
the final classification tier. Note: the size of each novel gene node is scaled to represent the number of significant SNPs for the associated
gene probe-disease pairing.
the original manuscript.24 pQTLs were nominated for inclusion

for SMR analysis if they were significant (p < 0.05) in at least

one of the three tissues per the original manuscript. We included

453 unique pQTLs across the three tissues: 223 pQTLs from CSF,

159 from plasma, and 77 from the brain.

Gene expression summarization
We summarized expression ranks for genes of interest within the

single-cell adult human brain transcriptome dataset adult_hu-

man_20221007.loom from Siletti et al.6 Using custom R scripts,

we converted feature counts into TPM (transcripts per million).

For a given sample, feature counts were divided by maximum

nonredundant intron-removed exon lengths to correct for differ-

ences in gene length. Values were thenmultiplied by a sample-spe-

cific constant (106/T, where T is the sum of length-normalized

counts) such that the resulting unitless vector sums to one

million. We extracted exon lengths based on annotations from

the gene transfer format (GTF) file used to originally annotate

the single-cell data (gb_pri_annot.gtf). We calculated the expres-

sion percentile rank (EPR) for genes of interest using the empirical

cumulative distribution function and then calculated the mean

and median EPR value for each gene across cells of each tested

cell type. To ease interpretation, we binned the EPR values into 3

classes—off, low, and high (off: EPR <10, low: 10 < EPR <90,

high: EPR>90) by using the mean single-nucleus RNA sequencing

(snRNA-seq) EPR of each gene against cell type.

Gene-gene networks
Data were obtained from the Open Targets.25 Open Targets pro-

vides an API to cross reference annotations and relationships on

diseases, genes, and drugs. Companion genes were pulled from
152 The American Journal of Human Genetics 111, 150–164, January
the SIGnaling Network Open Resource (SIGNOR) database due

to the manual curation of gene interactions.26

Therapeutic drug data
Therapeutic drug data were obtained from various sources

including Finan et al. (‘‘druggable genome’’) and the Drug Gene

Interaction Database (DGIdb).27,28 Druggable genome data were

obtained from the supplementary materials in Finan et al. The ob-

tained data provided insight on 3,000þ potential gene targets with

evidence for drug targets or potential targets.27 DGIdb drug data

(accessed January 2023) were downloaded from the DGIdb online

database as files consisting of known gene and drug interactions as

well as details such as interaction types and drug categories.

Pre-processing
All data pre-processing was carried out using custom scripts for

data that were not obtained via the Yang Lab or was missing

information such as gene symbols. Pre-processing included

gene annotation, binary with expression summary data (BESD)

format preparation and conversion, and/or calculation of neces-

sary measures such as beta values. Gene annotation was per-

formed as necessary if no gene symbol was provided in the

original data source. Annotation was conducted by using both

the Python biomart package and pyensembl with Ensembl

gene (ENSG) IDs. mQTL gene annotation was conducted by

obtaining Illumina 450k chip probe data via the R package

IlluminaHumanMethylation450kanno.ilmn12.hg19.29–31

Data sources were converted as necessary into BESD format us-

ing the flist method outlined by the Yang Lab. BESD format stores

QTL summary data in a set of three files: .esi, .epi, and .besd. More

information on the format and how to process data into BESD
4, 2024



format can be found on the SMRYang Lab website listed in the key

resources table.

Our multi-ancestry eQTL data originally lacked allele frequency,

beta, or standard error values. Missing allele frequencies were ob-

tained using the 1000 Genomes reference panel from which we

derived beta and standard error values using each eQTL’s random

effects model Z score, allele frequency, and total number of sam-

ples from the original study (n ¼ 2,119).
Summary-data-based Mendelian randomization
SMR is an MR computational tool that uses summary-level data to

test if an exposure variable (i.e., gene expression) and outcome

(i.e., disease phenotype) are causally associated because of a shared

causal variant (i.e., instrumental variable).5 To discern potentially

causal variants from those in linkage disequilibrium with the func-

tional variant, the HEIDI method was implemented using the

default flag that uses the top 20 SNPs within 500 kb of the probe.5

Linkage disequilibrium reference data were obtained from 1000 Ge-

nomes Project phase 3 reference panel.32 To increase statistical po-

wer, we applied the SMR-multiple exposures (SMR-multi) method,

a Bayesian framework for simultaneous testing of multiple traits

or exposures on a single outcome while accounting for the correla-

tion between them. SMR and HEIDI analysis were conducted using

the SMR software established andmaintained by the Yang Lab using

all default parameters, including those previously detailed.5,33

Following SMR, we filtered results to include only protein-cod-

ing genes and removed potential associations with no available

gene annotations or associations with genes in the major histo-

compatibility complex (MHC). We used a significance threshold

of pSMR_multi < 2.95 3 10�6, corresponding to the Bonferroni-cor-

rected value at a ¼ 0.05 for 16,875 protein-coding genes tested

across all NDDs and omic pairs. We then filtered results based on

the presence of inferred pleiotropy via the computed HEIDI score

(pHEIDI> 0.01 for inclusion in this study).5 SNPs were then split on

their associated genes status as a therapeutic target or as a non-

therapeutic target. After initial processing, analyses were conduct-

ed as demonstrated in our workflow diagram (Figure 1A) and ex-

plained further in our gene nomination workflow below. In total,

we tested a total of 186 omic-tissue pairs across six NDDs (Table 1).
Gene nomination and drug target identification
Gene nomination focused on targets shared by multiple NDDs,

classifying targets by inferred druggability as described in the

introduction. Therapeutic targets were initially nominated using

data from DGIdb and Finan et al.27,28 Further target curation

was conducted using Open Targets to verify if any approved indi-

cations included an NDD thus allowing us to classify drugs into

either the novel or known tiers. Identified network companion

genes upstream and downstream of the initial target identified

were further categorized into groups based on therapeutic status

and approved use in treating any NDD. Our known and difficult

tiers were further investigated using gene co-expression networks

via Open Targets interaction annotations through the SIGNOR

database. Using SIGNOR-identified interactions, we identified

companion genes, i.e., those manually annotated for their causal

relationships with the gene of interest. We additionally searched

known therapeutics that target any identified companion genes

to potentially identify proxy gene targets thus expanding the

net for drug discovery and repurposing. We implemented custom

python scripts to query Open Targets’ application programming

interface (API) to extract relevant annotations for this workflow.
The Americ
Results

Overview

We identified 540 candidate gene-level SMR associations

(159 unique gene targets) across six NDDs and 186 tis-

sue-omic pairings with a stringent disease-level multiple

test correction threshold (pSMR_multi < 2.95 3 10�6 and

pHEIDI > 0.01; Tables S1, S2, and S4). On a per-disease basis

we identified 317 total significant associations: 116 unique

gene targets for AD, 4 significant associations across 3

unique gene targets for ALS, 13 significant associations

across 5 unique genes for LBD, 184 significant associations

across 46 unique gene targets for PD, and 22 significant as-

sociations across 9 unique gene targets for PSP. FTLD had

no significant associations at our corrected p value

threshold. No NDDs showed significant pQTL or caQTL as-

sociations. Of the 159 unique genes across all diseases,

69.8% (111 genes) were expressed in tissues enriched

with disease-associated gene expression, and 11.9% (19

genes) showed colocalization with brain tissue eQTLs

with posterior probability (PP) >0.90.7 Colocalized genes

from this complementary analysis are also identified in

Tables 2 and 3.
SMR analysis identifies 15 common genes significant

across multiple NDDs

Using SMR, we identified 15 unique genes across 182 asso-

ciations to be significant in two or more NDDs at a strin-

gent significance threshold (pSMR_multi < 2.95 3 10�6 and

pHEIDI > 0.01; Tables S2, S3, and S4). Of the identified

genes, five genes (MAPT [MIM: 157140], CRHR1 [MIM:

122561], KANSL1 [MIM: 612452], ARL17A, and ARH-

GAP27 [MIM: 610591]) were found to be significant

across 97 tested associations and three NDDs (AD, PD,

and PSP). MAPT and CRHR1 were found to be largely sig-

nificant in mQTL omics with MAPT significant in whole

blood and brain mQTL data for all previously mentioned

NDDs, and CRHR1 was found to be significant in whole

blood mQTL data for all three NDDs (Tables S3, S4, and

S5). Additionally, only MAPT and CRHR1 are annotated

as druggable in multiple drug data sources as of

the writing of this manuscript. All genes, except for

ARL17A, had multiple significant associations in

both brain and blood mQTL tissues. ARHGAP27 and

KANSL1 had significant associations replicated in the

multi-ancestry eQTL data (African, American, East Asian,

European, and South Asian ancestries), suggesting a po-

tential generalizability of these targets across different

populations.

We identified 10 unique genes across 85 significant asso-

ciations in any two NDDs (pSMR_multi < 2.95 3 10�6 and

pHEIDI > 0.01). One of the identified genes is considered

therapeutic, and the remaining nine are non-therapeutic.

KAT8 (MIM: 609912), ARL17B, PRSS36 (MIM: 610560),

LRRC37A2 (MIM: 616556), WNT3 (MIM: 165330), and

SPPL2C (MIM: 608284) were all found to be significant in
an Journal of Human Genetics 111, 150–164, January 4, 2024 153



Table 1. Summary of SMR data mining across NDDs

Disease
Total genes
(unique)

Liver
genes

Total eQTL
genes (non-
multi-ancestry)

Replicated in
multi-Ancestry

Total druggable
genes % Druggable

Total non-
druggable genes

% Non-
druggable

All tested genes (protein coding)

AD 16,833 1,597 15,112 8,404 3,562 21.2% 13,271 78.8%

ALS 16,875 1,610 15,163 8,408 3,565 21.1% 13,310 78.9%

FTLD 16,788 1,537 15,038 8,394 3,551 21.2% 13,237 78.8%

LBD 16,797 1,540 15,069 8,388 3,554 21.2% 13,243 78.8%

PD 16,872 1,596 15,159 8,407 3,566 21.1% 13,306 78.9%

PSP 16,042 1,033 13,839 8,073 3,420 21.3% 12,622 78.7%

Significance p_SMR_multi < 0.05 and p_HEIDI > 0.01

AD 8 175 3,189 2,079 1,142 14,275.0% 3,806 47,575.0%

ALS 3,188 83 1,857 1,260 715 22.4% 2,473 77.6%

FTLD 2,318 78 1,243 810 542 23.4% 1,776 76.6%

LBD 2,530 82 1,384 900 580 22.9% 1,950 77.1%

PD 3,592 108 2,161 1,434 811 22.6% 2,781 77.4%

PSP 2,275 30 1,270 842 574 25.2% 1,701 74.8%

Significance p_SMR_multi < 2.95E-06 (testing all protein coding genes) and p_HEIDI > 0.01

AD 116 2 68 7 31 26.7% 85 73.3%

ALS 3 0 3 0 0 0.0% 3 100.0%

FTLD 0 0 0 0 0 0.0% 0 0.0%

LBD 5 0 1 0 1 20.0% 4 80.0%

PD 46 3 33 5 15 32.6% 31 67.4%

PSP 9 0 5 3 2 22.2% 7 77.8%

Significance p_SMR_multi < 1.58E-08 (testing all protein coding genes across all omics) & p_HEIDI > 0.01

AD 47 1 19 19 14 29.8% 33 70.2%

ALS 1 0 0 0 0 0.0% 1 100.0%

FTLD 0 0 0 0 0 0.0% 0 0.0%

LBD 2 0 0 0 1 50.0% 1 50.0%

PD 24 1 14 14 8 33.3% 16 66.7%

PSP 8 0 5 5 2 25.0% 6 75.0%

AD, Alzheimer disease; ALS, amyotrophic lateral sclerosis; FTLD, frontotemporal dementia lobar degeneration; LBD, Lewy body dementia; PD, Parkinson disease;
PSP, progressive supranuclear palsy.
both AD and PD; IDUA (MIM 252800) and TMEM175

(MIM: 616660) were found to be significant in LBD

and PD; PLEKHM1 (MIM: 611466) was significant in PD

and PSP; and FMNL1 (MIM: 604656) was significant in

AD and PSP (Tables S3, S4, and S5). KAT8, the only

therapeutic gene, showed significant associations with

decreased expression in brain tissue and blood, as well as

a significant association with increased methylation. Of

the remaining nine genes, IDUA, FMNL1, PRSS36, and

TMEM175 had significant associations in mQTL sources.

Additionally, FMNL1, LRRC37A2, and PRSS36 had signifi-

cant associations replicated in the multi-ancestry eQTL

data (pSMR_multi < 2.95 3 10�6; Table S7).
154 The American Journal of Human Genetics 111, 150–164, January
Drug target discovery using significant genes identifies

41 novel gene targets for follow-up study

Using the approach previously outlined in our introduction

and methods for drug target gene nomination, we catego-

rized 159 gene hits into one of three tiers (Table 3). In our

first tier, novel genes, we nominated 41 gene targets. SMR

results for the novel genes are listed in Table S8. Genes are

categorized as novel if they are in druggable regions of the

genome that can be targeted by common molecular

methods and currently have no FDA-approved treatment

for any NDD as identified by current literature, knowledge

base, and drug databases. Our second tier, known

genes, had three gene targets identified—MAPT, KCNN4
4, 2024



Table 2. Candidate genes for multiple NDDs

Gene Diseases Omics

ARL17B AD, PD cerebellum eQTL, cortex eQTL, spinalcord eQTL

KAT8 AD, PD cerebellum eQTL, whole-brain meta-analysis mQTL, cerebellar hemisphere eQTL,
cortex eQTL, tibial nerve eQTL, skeletal muscle eQTL, hypothalamus eQTL, whole-
brain eQTL, cerebellum eQTL, spinalcord eQTL

LRRC37A2 AD, PD hippocampus eQTL, cortex eQTL, frontal cortex BA9 eQTL, prefrontal cortex eQTL,
caudate basal ganglia eQTL, skeletal muscle eQTL, multi-ancestry, whole-brain
meta-analysis eQTL, hypothalamus eQTL, liver eQTL, anterior cingulate cortex
BA24 eQTL, putamen basal ganglia eQTL, amygdala eQTL, whole-brain eQTL,
cerebellum eQTL, nucleus accumbens eQTL, basal ganglia eQTL, spinalcord eQTL,
hippocampus eQTL, substantia nigra eQTL

KANSL1 AD, PD, PSP whole-brain meta-analysis mQTL, whole-blood mQTL, cortex eQTL, multi-
ancestry whole-brain meta-analysis eQTL, spinalcord eQTL, anterior cingulate
cortex BA24 eQTL

ARL17A AD, PD, PSP spinalcord eQTL, amygdala eQTL, multi-ancestry whole-brain meta-analysis eQTL,
hypothalamus eQTL, hippocampus eQTL, cerebellar hemisphere eQTL, cortex
eQTL, caudate basal ganglia eQTL, anterior cingulate cortex BA24 eQTL, putamen
basal ganglia eQTL, cerebellum eQTL, nucleus accumbens basal ganglia

PRSS36 AD, PD whole-brainmeta-analysis mQTL, cortex eQTL, cerebellar hemisphere eQTL, multi-
ancestry whole-brain meta-analysis eQTL, whole-brain eQTL

MAPT AD, PD, PSP whole-brain meta-analysis mQTL, whole-blood mQTL

IDUA* LBD, PD whole-brain meta-analysis mQTL, whole-blood mQTL, whole-blood
eQTL(eQTLgen)

TMEM175* LBD, PD whole-blood mQTL

ARHGAP27 AD, PD, PSP whole-blood mQTL, whole-blood eQTL (eQTLgen), multi-ancestry whole-brain
meta-analysis eQTL, caudate basal ganglia eQTL, nucleus accumbens basal ganglia

CRHR1 AD, PD, PSP whole-brain meta-analysis mQTL, whole-blood mQTL, cortex eQTL, skeletal
muscle eQTL

FMNL1 AD, PSP multi-ancestry whole-brain meta-analysis eQTL, whole-blood mQTL

PLEKHM1 PD, PSP cortex eQTL, frontal cortex BA9 eQTL, prefrontal cortex eQTL, caudate basal
ganglia eQTL, skeletal muscle eQTL, anterior cingulate cortex BA24 eQTL, putamen
basal ganglia eQTL, whole-brain eQTL

WNT3 AD, PD cortex eQTL metaBrain, skeletal muscle eQTL, tibial nerve eQTL

SPPL2C AD, PD cerebellum eQTL, prefrontal cortex eQTL

This table shows genes with functional inferences passing multiple test corrections for multiple neurodegenerative diseases. We provide details for all the omics
and diseases in which a given gene has significant associations. Asterisks indicate colocalized genes.
(MIM: 602754), and ADORA2B (MIM: 600446). Known

genes are genes that have at least one FDA-approved thera-

peutic for treatment of an NDD (Table S9). The 3 nominated

known gene targets are targeted by four therapeutics—

apomorphine, carbidopa, istradefylline, and riluzole.

Currently, these therapeutics are used for the treatment of

PD symptoms (apomorphine, carbidopa, istradefylline)

and prolonged survival for ALS (riluzole). In our last and

largest tier, difficult genes, we identified 115 gene targets

with no currently known therapeutics that target these

genes and no known druggability. A total of 52 of the iden-

tified difficult genes exhibited at least two significant associ-

ations, with LRRC37A2 having the maximum number of

significant associations at 25 associations across AD and PD.

Network analysis provides insight into druggable

companion genes to non-druggable genes of interest

We further implemented a gene network analysis for our

novel and difficult tier candidates to identify potential
The Americ
proxy gene targets within each nominated genes’ SIGNOR

curated network. In the novel gene tier, we identified 87

companion genes of which 58 are considered potentially

druggable (Table S9). Of the 58 druggable companion

genes, 30 were found to be targeted by a known drug,

and a further five are targeted by therapeutics approved

for treatment of AD. The five companion genes with AD-

targeted therapeutics are NCSTN (MIM: 605254),

MAPK14 (MIM: 600289), PSEN1 (MIM: 104311), PSEN2

(MIM: 600759), and PSENEN (MIM: 607632), which are

all targeted by tarenflurbil, semagacestat, and avagacestat.

MAPK14 is targeted by neflamapimod, an oral p38 alpha

kinase inhibitor that the FDA approved for use in the treat-

ment of AD and LBD (Figure 2). Further analysis of difficult

gene co-expression networks identified 27 genes with 65

curated companion genes (Tables S10, S11, and S12;

Figure S1). Of the 65 identified companion genes for the

difficult target tier, 34 were found to be druggable with

18 having known drugs.MAPK14was the only companion
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Table 3. Therapeutic classification scheme by tier

Tier Requirements Number of genes Genes

Novel druggable; not approved for use in treating
NDDs

41 ADAM10, SNCA, EGFR, POU5F1, STK39,
INPP5D, CRHR1, APH1B, MINK1, CLU, CR1,
ACE, CD38, RABEP1, ERCC2, KAT8, ITGAX,
GAK, STX4, EPHB4, EPHA1, GPNMB, STAG3,
CHRNE, NDUFS2, FCER1G, VKORC1, DNTT,
CKM, HSD3B7, BST1, STX1B, PSMC3, CDSN,
MICB,MS4A2, PSORS1C1, EPHX2, SLC44A4,
MAT1A, FBXL19

Known druggable; approved for use in treating NDD 3 MAPT, KCNN4, ADORA2B

Difficult no known druggability 115 TRIM27, PPP4C, SPI1, EFNA3, KIF1C, WNT3,
CD2AP*, CCNE2, KCTD13, C9orf72*, SRCAP,
CELF1, HIP1R*, GRN*, APOC2, ARHGAP27,
MEPCE, LRRFIP2, COPS6, GIGYF1, BCKDK,
POLR2E, EFNA4, DYDC1, ATF6B, LLGL1,
MTMR2, GPC2*, LRRC37A, ARL17B,
INO80E*, SNX31, CEACAM19*, DGKQ*,
NUP42, LRRC37A2, KANSL1, ARL17A,
ANXA11, TSPAN14, CASTOR3, ZNF232,
ZNF45, TSBP1, TREM2, PRSS36*, IDUA*,
CCDC158, CCDC189, ZSWIM7, PLEKHM1,
STH, PVRIG, YPEL3, MMRN1*, SPPL2C,
SCIMP, PILRB*, PILRA, LACTB*, FMNL1,
APOC4, ZNF646, CPSF3, ZSCAN9, ZKSCAN3,
TREML2, EPDR1, UFSP1, FAM131B,
TAS2R60*, USP6NL, MS4A4A, CASS4, G2E3,
SCFD1, PCGF3*, SETD1A, DCAKD, ZNF668,
AGFG2, TMEM175*, TOMM40, TRIM40,
WDR81, TMEM106B, FNBP4, SHROOM3,
CYP21A2*, REXO1, TNXB, MS4A3, AIF1,
RAB8B, ZFP57, FAM200B, BTNL2, IGSF9B*,
HS3ST1, ZNF311, NDUFAF6, TMEM163*,
APOC1, C17orf107, EXOC3L2, DYDC2,
DOC2A, ACMSD, TRIM31, PRDM7, TRIM10,
ZAN, MS4A6A, CPLX1, SFTA2

Table providing information on the three classifications tiers in our therapeutic classification scheme including requirements for each tier. Asterisks indicate colo-
calized genes.
gene to have a therapeutic approved (neflamapimod) to

treat an NDD in the difficult target tier. MAPK14 was iden-

tified as a companion gene to the difficult gene TRIM27

(MIM: 602165) (Figure 2).

Drug toxicity analyses were conducted using liver eQTL

data as a proxy. No novel gene was found to show signifi-

cant SMR expression in liver eQTL data. However, using

companion genes, we identified OXT (MIM: 167050), a

companion to the novel gene CD38 (MIM: 107270), to

be significantly expressed in liver eQTL in the context of

ALS. While CD38 was found to be significant in AD and

PD but not ALS, it is a consideration that should be consid-

ered as comorbidity may exist between ALS and AD or PD.

TOMM40 (MIM: 608061) is the only difficult gene to show

significance in liver eQTL data. There are no companion

genes to a difficult gene with significant expression in liver

eQTL data.

Multi-ancestry analyses reveal opposing gene

expression patterns in significant disease risk loci

between non-European and European ancestries

To investigate our findings in more diverse data, we also

performed SMR with multi-ancestry eQTL data, aiming to

replicate previous significant results (pSMR_multi < 2.95 3

10�6 and pHEIDI > 0.01) and nominate targets that show
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evidence toward generalizability across multiple ancestry

groups. After multiple test corrections, we significantly

replicated 11 total associations corresponding to 9 genes

that were nominated in our initial analysis: ARHGAP27,

ARL17A, GPNMB (MIM: 604368), KANSL1, LRRC37A2,

PILRA (MIM: 605341), PILRB (MIM: 605342), PRSS36,

and ZNF232 (MIM: 616463) (see Table S7).

We then categorized these nine replicated genes based

on their druggable status. One of the replicated hits,

GPNMB, is classified in our novel gene tier, meaning that

it is druggable and has no known treatment approved for

treatment of NDDs, which suggests this gene may be an

interesting but also potentially generalizable target across

ancestries. The remaining eight replicated genes were in

our difficult tier, meaning they are currently considered

non-druggable through the small molecule modality.

Nominated genes of interest found to be expressed in

disease-relevant adult human brain snRNA-seq

expression data

Toprovideadditional evidence forbiological relevanceofour

nominated targets, we investigated whether the 159 signifi-

cant genes nominated through SMR (PSMR_multi < 2.95 3

10�6 & PHEIDI > 0.01) were expressed in relevant cell types

from adult human brain snRNA-seq data.
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Figure 2. Network visualization of novel and difficult genes, companion genes, and drugs
Graph network visualization of both novel (green nodes) and difficult (purple nodes) genes and their SIGNOR-curated partners (blue
nodes). Drugs that interact with companion genes are denoted by orange-colored diamonds while FDA-approved drugs for use in
NDD treatment are colored pink. Connecting arrows indicate the direction from regulator gene to target gene. Note: green boxes sur-
rounding the gene-drug groupings serve as a visual guide to help separate non-connected groups.
We tested the 159 genes found to be significant against

adult human snRNA-seq data to identify expression in

varying brain single-cell types (PSMR_multi < 2.95 3

10�6 & PHEIDI > 0.01). We calculated the mean andmedian

EPR for each gene across cells corresponding to each of the

31 tested cell types. To ease interpretation, we additionally
The Americ
binned the mean EPR values into three expression cate-

gories: off, low, and high based on the mean EPR value

for each gene-cell-type combination. Using our binned

mean EPR values, we found that 40 genes had all exclu-

sively off EPR values while 16 genes had exclusively all

low EPR values across all 31 tested cell types (Figure 3;
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Figure 3. Single-cell RNA sequencing expression for significant genes (pSMR_multi < 2.95 3 10�6 and pHEIDI > 0.01)
Expression of a given gene within each cell type is categorized as being highly expressed (dark blue, top 10% of all genes), intermediately
expressed (green, middle 80%), or undetected (orange, bottom 10%). Genes that had off mean EPR values across all tested cell types were
excluded from the heatmap. Cell types found to be enrichedwith AD and/or PD-relevant genes aremarked by an asterisk. All other NDDs
did not show significant cell type enrichment in any tissue, partially impacted by the much-smaller reference disease GWAS sizes.
Tables S13 and S14). We identified 11 genes (KANSL1,

LRRFIP2 [MIM: 614043], CELF1 [MIM: 601074], MAPT,

STK39 [MIM: 607648], RABEP1 [MIM: 603616], SCFD1

[MIM: 618207], CLU [MIM: 185430], SNCA [MIM:

163890], TMEM163 [MIM: 618978], and SHROOM3

[MIM: 604570]) that had at least one gene highly expressed

in any single cell type, with KANSL1 having the most high

EPR values across 15 cell types (Figure 3; Tables S13 and

S14). Detailed breakdowns of both mean and median

EPR values are provided in Figures S2–S4 and Tables S13

and S14. Cell types hippocampal CA4 and deep-layer intra-

telencephalic had the most genes with high EPR values,

and hippocampal CA4 had the least number of genes

with off EPR values (nhigh ¼ 5, nlow ¼ 89, noff ¼ 65). The

vascular cell type had the highest number of genes with

off values (noff ¼ 123).

We also investigated the nominated genes in disease-

relevant cell types—Bergmann glia, caudal ganglionic

eminence (CGE) interneuron, committed oligodendrocyte

precursor, deep-layer intratelencephalic, eccentric medium

spiny neuron, hippocampal CA1–3, hippocampal dentate

gyrus, LAMP5, LHX6 and chandelier, medial ganglionic

eminence (MGE) interneuron, mammillary body, micro-

glia, midbrain derived inhibitory, oligodendrocyte precur-

sor, thalamic excitatory, upper layer intratelencephalic,
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and upper rhombic lip—identified in Alvarado et al. to be

significantly enriched with AD- and PD-relevant genes.7

Significant genes from our SMR analysis were highly ex-

pressed in three of these disease-relevant cell types:

thalamic excitatory, eccentric medium spiny neuron, and

mamillary body. KANSL1 had high expression in all three

listed cell types (Figure 3). Of the 159 tested genes, 20

had all low EPR values in the disease-relevant cell types.

The thalamic excitatory cell type had the least number of

off EPR values for genes INPP5D (MIM: 601582), ITGAX

(MIM: 151510), EGFR (MIM: 131550), and DOC2A (MIM:

604567).
Discussion

As the global population continues to age, the threat posed

by NDDs presents an overwhelming and multifaceted

challenge. Our research aims to address the challenge of

treating NDDs by identifying therapeutic targets anchored

in genetic data—a proven strategy in therapeutic develop-

ment. Our conservative approach primarily focuses on

small-molecule drug targets given the breadth of available

data as this class of therapeutics has the most studied and

reliable gene-based annotations available. Implementation
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of this strategy has been impeded by the small sample sizes

and the dispersed nature of genetic- and disease-related

data, such as proteomics and transcriptomics. Here, we at-

tempted to address this need by creating and implement-

ing an open-source framework to identify druggable targets

across varied NDDs.—/

In our targeted analyses, we were unable to identify any

potentially functionally relevant genes that were signifi-

cant across all six tested NDDs. While NDDs share promi-

nent hallmarks, such as cell death, inflammation, and

pathological protein aggregation, the role that each hall-

mark and its associated biological processes play in the

pathogenesis of each NDD differs, creating a spectrum.2,34

We identified MAPT, CRHR1, KANSL1, ARL17A, and ARH-

GAP27 to be independently significant in multiple

different omics for AD, PD, and PSP (Tables S3, S4, and

S5). MAPT was found to have significant associations

with primarily increased expression for AD, PD, and PSP

across eQTL and mQTL omic data, as supported by previ-

ous research.35–37 The MAPT locus, 17q21, contains genes

CRHR1, KANSL1, ARL17A, and ARHGAP27, and mutations

in this locus have been previously associated with both PD

and PSP.38 Due to the complexity and observed linkage

disequilibrium found in the 17q21 locus and the limita-

tions of the SMR framework, causality cannot be estab-

lished or inferred without further functional follow up.

Previous evidence of significant association of this locus

in AD is more fragmented and sparser. The 17q21 locus,

which includes genes KANSL1 and MAPT, has been previ-

ously implicated in AD.39 ARL17A has been reported to

harbor eQTL SNPs implicated in both brain and blood tis-

sues in relation to AD.40 CRHR1’s role in stress response has

been hypothesized to exacerbate AD pathologies given its

abundance in the brain, including areas implicated in

learning and memory.41 Lastly, evidence of ARHGAP27’s

significance in AD includes associations between complex

traits such as cognitive functioning, reaction time, and

cortical structure phenotypes.42,43

A deep dive into KANSL1 highlights its role in autophagy

pathways. KANSL1 is a core member of the non-specific le-

thal (NSL) complex that binds to MOF (also known as

KAT8), which is necessary for the acetylation of histone

H4 lysine 16 acetylation (H4K16ac).44,45 Some studies

have associated elevated expression levels of KANSL1

with over-promoted autophagic activity, resulting in cell

death and cytotoxicity from autophagosome accumula-

tion; however, further research is required to understand

this mechanism.46 Additional research into the role of

autophagy and lysosomal pathways in NDDs have indi-

cated that altered autophagy function results in the

inability to clear out protein aggregates, resulting in cell

death and potentially contributing to disease pathogenesis

and neurodegeneration.45,47–49 Our results are consistent

with previous research, linking increased expression of

KANSL1 with neurodegenerative effects. When assessing

associations with AD, PD, and PSP, KANSL1 is associated

with an increased expression in brain mQTLs, three
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different brain eQTLs (psychEncode, multi-ancestry, and

anterior cingulate cortex), and spinal cord eQTLs. The

consistent significance of KANSL1 and most of our gene

hits in mQTL omics highlights the influence of DNA

methylation for NDD pathogenesis and progression.

We identified 10 genes as significant in two diseases. The

nominated genes do not share any explicit relationships

but are common in their importance for varying biological

processes and cellular functions, such as cell proliferation

and differentiation, degradation of transmembrane pro-

teins, calcium homeostasis, and autophagy regula-

tion.50–54 Six of our nominated genes, ARL17B, KAT8,

LRRC37A2, PRSS36, SPPL2C, and WNT3, are associated

with both AD and PD. Given the significantly larger sam-

ple sizes and increased power of the two diseases in

GWAS summary statistics, we did not find this unexpected.

LBD and PD share two genes, IDUA and TMEM175, while

AD and PSP share FMNL1, and PD and PSP share PLEKHM1

(Tables S3, S4, and S6). In general, the bulk of the gene hits

were found to be significant in mQTL data for both brain

and blood tissues (nwhole brain¼ 4; nwhole blood¼ 4) followed

by cortex eQTLs (ncortex metaBrain ¼ 6, ncortex GTEx ¼ 3,

nFrontal Cortex BA9 ¼ 2, nprefrontal cortex ¼ 3).

The only gene found in two diseases, AD and PD, that

could be targeted therapeutically was KAT8, which we pre-

viously mentioned in the context of the KANSL1 gene. In

literature, KAT8 (lysine acetyltransferase 8) is identified as

a protein-coding gene that plays a vital role in the NSL

complex for acetylation of H4K16ac.49 Scientific observa-

tion has identified the consequences of autophagic

dysfunction in NDDs to include impaired neuronal func-

tion, neuronal death, and neuron loss. In opposition to

the expression pattern of KANSL1, decreased expression

of KAT8 is associated with deacetylation of H4K16ac in

AD patients, while an overexpression of KAT8 has been

linked to increased expression levels of neuroprotective

soluble amyloid precursor protein (sAPP)a and b-secretase

(BACE)2 and decreased levels of sAPPb and BACE1 (MIM:

604252).55 In our results, we found blood mQTLs for AD

and brain mQTLs for AD and PD to be associated with

increased expression of KAT8; this is in contrast to gene

expression in some of the same tissues, such as blood

and brain mQTLs, for KANSL1. The associated increased

expression of KAT8 in our results suggests that an increase

in expression may be correlated with excess autophagy re-

sulting in cell death, which is a hallmark symptom of all

three NDDs (AD, PD, and LBD).56,57 There are currently

no FDA-approved therapeutic that target KAT8 in NDDs.

However, compound MG149, a histone acetyltransferase

inhibitor, has been found to reduce proinflammatory

genes via inhibition of MYST (named for protein members

MOZ, Ybf2/Sas3, Sas2, and Tip60)-type histone acetyl-

transferase KAT8.58 MG149 has also been found to be effec-

tive in restoring impaired autophagic flux via the inhibi-

tion of histone acetylation of H4K16ac in cases of

ischemic stroke and inflammatory diseases.48,59 Further

research into the application of MG149 could result in a
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novel treatment targeting the characteristic accumulation

of toxic proteins in NDDs.

FTLDwas theonly testeddisease thatdidnothaveany sug-

gestive targets at our test correction threshold. This may be

because the FTLD GWASs had the smallest sample size out

of all the diseases tested, and results will likely improve as

larger FTLD GWASs are conducted. As there were no signifi-

cant results for FTLD after correction, we decided to investi-

gate potential pleiotropic relationships between FTLD and

the other NDDs. To do this, we looked for FTLD associations

at a less-stringent p value threshold (pSMR_multi < 0.05) only

in the 254 unique candidate genes passing our original

threshold of pSMR_multi < 2.95 3 10�6, a process detailed

by Baird et al.60 This resulted in 124 FTLD hits made up

of 31unique genes that have a potential pleiotropic relation-

ship between FTLD and another NDD. Of those 31, 12

were classified as druggable through our sources (STX4

[MIM: 186591], STX1B [MIM: 601485], VKORC1 [MIM:

608547], POU5F1 [MIM: 164177], HSD3B7 [MIM: 607764],

PSORS1C1 [MIM: 613525], SLC44A4 [MIM: 606107], CD38,

EPHX2 [MIM: 132811], FBXL19 [MIM: 609085], CLU, and

CDSN [MIM: 602593]). All 12 fall into the novel tier of drug

targets, representing potential avenues for drug repurposing

for FTLD.

Our creation of a drug target classification scheme is an

attempt to inform drug discovery and repurposing from

genes considered significantwith evidence of causative roles

in NDDs. Further inspection of our 41 novel genes provides

multiple insights into the genes that compose the tier.Many

genes that compose our novel tier have therapeutics used in

the treatment ofmultiple types of cancers and tumors. Four-

teenofournovel geneshave therapeutics approved foruse in

the treatment of cancer (MONDO_0004992). Other

commonly approved indications for therapeutics that target

our novel genes include, but are not limited to, neoplasm

(EFO_0000616), hypertension (EFO_0000537 [MIM:

145500]), and cardiovascular disease (EFO_0000319).

GPNMB, which is of particular interest due to support for

its role in PD, falls into this grouping of 14 genes. Similar

to its role in cancer and tumor growth, our results highlight

GPNMB’s pattern of increased expression as shown in brain-

related PD eQTLs. We were able to find replication of

increased GPNMB expression in brain-related tissues in Li

et al.,Ortiz et al., andNalls et al.61–63Glembatumumabvedo-

tin is one of the therapeutics that targets GPNMB where its

primarymechanismof action (MOA) is tubulin inhibition.25

Consequently, glembatumumab vedotin’s inhibitory MOA

could be repurposed for use in PD treatment for suppression

of inflammation given the recognized role of inflammatory

response/neuroinflammation in PD onset and progres-

sion.64,65 However, any treatment developed targeting

GPNMBwouldmost likelybe limited in treatingpeopleofEu-

ropean ancestries due to the gene’s importance and role

compared to non-European ancestries—further increasing

inequality.

Our largest and most uncertain classification tier con-

tains 121 difficult genes. Despite not having any currently
160 The American Journal of Human Genetics 111, 150–164, January
known therapeutics, this classification tier could lead to

the development of NDD-targeted therapeutics or the re-

purposing of existing ones. Our approach for these genes

focused on analyzing well curated networks centered on

each difficult gene to identify any partner genes with exist-

ing therapeutic drugs. This approach provides us context

into any biological pathways and processes that may be

affected by a targeted treatment, which could help elimi-

nate the time and resources spent on developing and re-

searching ineffective therapies.

The smallest tier, known genes, is composed of the three

genes targeted by NDD-targeted therapeutics. Apomor-

phine, carbidopa, and istradefylline are indicated for use

in treatment of PD. Riluzole is indicated for the treatment

of ALS but has undergone phase 2 clinical trials for use in

treatment of AD. The results in clinical trials for use of rilu-

zole in AD treatment were promising with cerebral glucose

metabolism, an AD biomarker, preserved in patients

receiving riluzole compared to those in the placebo

group.66 The researchers conducting the study suggested

amore powerful and longer study, but no follow up studies

have yet been initiated. Our results support the continued

follow up of riluzole clinical trials.

Focusing on genes we flagged as putatively associated

with risk across multiple diseases, 13 of 15 were noted as

being at least moderately expressed in cell types of interest

(those with enriched expression for GWAS risk signatures)

from single-nucleus sequencing. Positive beta coefficients

at these genes from the SMR analysis suggest that if an

expression effect was inhibited, it could be possible to

reduce disease risk. Two of these genes, KANSL1 and

MAPT, showed significant positive associations (defined

as a gene with positive beta values in more than 50% of

its significant SMR associations) between risk and expres-

sion in our SMR analyses, providing a contextual insight

for future follow up.

Genes such as GPNMB had different expression patterns

in European and non-European ancestries. For example,

GPNMB had decreased associated expression in multi-

ancestry eQTLs but an increased associated expression in

all other tested eQTLs. Previous research in certain Asian

populations has found no significant association between

GPNMB and PD.67,68 Rizig and colleagues, conducting the

largest PD GWAS in the African and African admixed pop-

ulations in�200,000 individuals, of which 1,488 are cases,

report the following per SNP in GPNMB: rs858275,

p ¼ 0.1250, beta ¼ �0.0824, indicating no association in

African/African admixed ancestries. Our multi-ancestry

data report the same direction of expression in GPNMB

SNP rs858275, p ¼ 1.080397 3 10�8, beta ¼ �0.107745

in PD. Interestingly, the reported direction of expression

in our multi-ancestry data and Rizig and colleagues’ data

contrasts with the direction of expression reported for Eu-

ropean ancestries in addition to indicating no significant

associations (Table S13).69

The limitations we encountered in our research included

limited GWAS data for diseases, excluding AD and PD,
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limited non-eQTL omic data, limited multi ancestry omic

data, and reference panels, as well as non-small-molecule

drug target annotations. In general, the availability of pub-

lic and free omic and drug target data is increasing. As new

data are published, we intend to conduct updates and

incorporate new omic types into our analysis, such as

more pQTL, single-cell QTLs, and splicing QTLs (sQTLs).

This was a hypothesis generating effort at scale, and while

there are too many results for us to follow up in detail our-

selves, we hope that the single-nucleus enrichments will

help guide others to the correct cell types for their studies

and further target nomination efforts. The incorporation

of additional multi-omic data should provide new and

novel insights into the complex underpinnings of NDDs,

while incorporating additional data on drug target modal-

ities, such as monoclonal antibodies and gene therapies,

will open new treatment possibilities.

The limitation we feel that presents the most barriers is

limited multi-ancestry data. The state of diversity in the

NDD research space has historically been Eurocentric,

which remains the case in this study due to the limited

availability of omic data from non-European participants.

One of the distinguishing aspects of this study is the inclu-

sion of multi-ancestry eQTL data in the search for general-

izable drug targets. This is particularly important in an era

where precision medicine and machine learning can intro-

duce inherent bias when using reference data from solely

European populations. We identified common hits, which

were consistent with current understanding that there are

NDD risk loci that are shared across genetic ancestries

while providing insight on which gene loci and differences

in expression may play a role in NDD development and

treatment in non-Europeans. It is worth noting that while

replication was limited at our stringent significance

threshold, we were able to make some interesting observa-

tions. While we made attempts to include a limited set of

multi ancestry data in the future, we would like to be

able to include more multi-ancestry disease GWASs and

omic data to make more meaningful insights. We recog-

nize that we will need more multi-ancestry QTL and

GWAS data for these results to be truly generalizable across

different populations. We look forward to the increasing

availability of non-European data with the growth of

data sources such All of Us, an NIH research program

focusing on inclusion of health data of marginalized pop-

ulations in the United States.70

This report is a description of the foundation for a com-

munity-driven resource to identify and investigate future

genetically derived drug targets in an open-source

context. Ultimately, we are working on creating a network

tool that incorporates multi-omic data, disease GWAS

summary statistics, drug data, and other relevant data

types to ease research such as this study, eliminating bar-

riers to drug discovery and drug repurposing and poten-

tially enabling precision medicine in the NDD space. Us-

ing multi-omics integration methods, deep learning

techniques, and most importantly, community input to
The Americ
better parse and interpret the data presented by the plat-

form, we aim to make our community resource a robust

tool for NDD research.
Data and code availability

This paper analyzes existing, publicly available data. All orig-

inal code has been deposited at GitHub, which can be found

on the Center for Alzheimer’s and Dementia GitHub

(https://github.com/NIH-CARD/NDD_SMR) and Zenodo:

https://doi.org/10.5281/zenodo.8425910. Results of SMR

analyses canbe browsed anddownloaded from the Streamlit

application (https://nih-card-ndd-smr-home-syboky.streamlit.

app/) and csv versions are located at (https://drive.google.

com/drive/folders/16lB70BgRKA8yjXuAdW3OntHIrR8gqADO).
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Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2023.12.006.
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Web resources

Biomart python package, https://github.com/sebriois/biomart

GWAS catalog, https://www.ebi.ac.uk/gwas/

metaBrain, https://www.metabrain.nl/

Open Targets Platform, https://platform.opentargets.org/

Pyensembl, https://github.com/openvax/pyensembl

SIGnaling Network Open Resource (SIGNOR), https://signor.

uniroma2.it/

Streamlit, https://nih-card-ndd-smr-home-syboky.streamlit.app/

Yang Lab, https://yanglab.westlake.edu.cn/software/smr/#Overview

Yang Lab, Data Resources, https://yanglab.westlake.edu.cn/software/

smr/#DataResource
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