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Long-read sequencing platforms provide unparalleled access to the structure and composition of 

all classes of tandemly repeated DNA from STRs to satellite arrays. This review summarizes 

our current understanding of their organization within the human genome, their importance 

with respect to disease, as well as the advances and challenges in understanding their genetic 

diversity and functional effects. Novel computational methods are being developed to visualize 

and associate these complex patterns of human variation with disease, expression, and epigenetic 

differences. We predict accurate characterization of this repeat-rich form of human variation will 

become increasingly relevant to both basic and clinical human genetics.

Introduction.

Tandem repeat DNA are hotspots of genetic variation and have a longstanding association 

with human disease. At least five categories of tandem repeats are recognized, defined 

primarily based on the length of the underlying repeating sequence motif and the total 

size of the resulting repeat structure. The shortest, termed short tandem repeats (STRs; aka 

microsatellites, Table 1), typically have a repeat motif length ≤6 bp and were used during 

early human genetic mapping studies because they exhibit a high degree of heterozygosity 

among human haplotypes [1]. The overall length of STR arrays rarely exceeds 1 kbp for any 

given locus, although there are disease-associated exceptions such as the FMR1 CGG repeat 

that leads to Fragile X syndrome in a hyperexpanded disease state with over 200 triplet 

repeats[2]. The motif length of variable number tandem repeats (VNTRs; aka minisatellites) 

are larger (≥7 bp) with the majority of VNTRs harboring motif length repeats between 

10–60 units [3]. Larger tandem repeats, typically >1 kbp with respect to the tandem repeat 

motif, are most often annotated as tandem segmental duplications (SDs; >1 kbp and >90% 

sequence identity) and are not annotated as other identified classes of repeats such as LINEs 

or endogenous retroviruses (ERVs), to name a few. Such tandem SDs are distinguished 

from interspersed SDs, which refer to non-retrotransposed repetitive segments of DNA 

[4] separated from the nearest identity paralog by >1 Mbp. The structure of these larger 

tandem SDs can be complex in their organization, often composites of different sequences, 

and particular subsets were recently dubbed as composite elements during the analysis 

of the finished human genome [5,6]. Finally, in humans the most abundant centromeric 

satellite repeats consist of a tandemly repeated alpha-satellite monomer repeat of 170–171 

bp. Alpha-satellite repeats are often organized into higher-order repeats (HORs) of specific 

sets of monomers that expand to reach multiple megabase pairs in length. A subset of these 

alpha-satellite HORs correspond to the site of kinetochore attachment. While alpha-satellites 

have a well-established function for mitotic and meiotic segregation of chromosomes, the 

role of other satellite classes is less well understood. In humans, these are most often 

associated with shorter motifs (Table 1) and have expanded into megabase-pair structures 

mapping most frequently within heterochromatic pericentromeric and acrocentric portions of 

human chromosomes [6,7]. Satellite DNA (HSAT2 &3), for example, typically consists of 

thousands to tens of thousands of tandem repeats of the pentamer “CATTC” and, in contrast 

to STRs, are isolated as a distinct fraction from centrifugation gradients of human DNA 

representing multiple Mbp of contiguous sequence.
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When plans to sequence and assemble the human genome were first laid out, there was 

considerable enthusiasm that the “anatomy” of these regions would be fully revealed [9]. 

Unfortunately, these regions were often the last to be sequence resolved [3,10–12]. The 

sequence identity and length of the tandem repeats, in particular, prevented both reliable 

assembly and cloning of the largest and most mutable regions of the human genome [12–

15]. Other factors like skewed GC composition contributed to amplification and cloning 

biases, such that both the regions and their variation could not be properly assessed. For 

almost two decades, these regions remained gaps in all human genomic analyses—often 

regarded as sequence non grata [16]. With the advent of long-read sequencing (LRS) of 

native DNA (i.e., no bacterial cloning), the telomere-to-telomere (T2T) completion of the 

first human genome [11], and sequencing of more than 100 human genomes [17,18], a more 

complete view of the genomic architecture of these regions has emerged. In this review, we 

apprise our understanding of human genomic organization, emerging properties regarding 

their variation, and outstanding challenges for visualizing, classifying, and genotyping 

tandem repeats. While many dozens of diseases have now been described in association 

tandem repeats as summarized in this review, we anticipate many more as human genetic 

variation in these dynamic regions becomes more routinely assessed, often for the first time, 

in the context of controls and patients with disease.

Distribution of tandem repeats in the human genome.

Our ability to accurately resolve the sequence of tandem repeats has significantly improved 

through the combination of LRS from population genomes where parental data are available 

or where phasing information can be obtained from specialized next-generation sequencing 

(NGS) methods, such as Strand-seq and Hi-C [19,20]. As a result, the average full repeat 

length of VNTRs in the finished human genome (T2T) has more than doubled (585 

bp) when compared to the average VNTR length reported for GRCh38 (215 bp). These 

larger tandem repeats have been placed into the context of chromosomal-level phased 

genome assemblies [21]. Concerted efforts from the Human Genome Structural Variation 

Consortium (HGSVC) [17], T2T Consortium [11], and Human Pangenome Reference 

Consortium (HPRC) [18] have produced valuable resources of long-read genome assemblies 

and structural variation from diverse human populations. These datasets have provided our 

first glimpse of the landscape of large tandem repeats in the human genome (Fig. 1).

Early studies of polymorphic tandem repeat markers identified an enrichment of variation in 

subtelomeric regions of the genome [22–24]. These studies were accurately quantified using 

long reads that found 55% of polymorphic VNTRs map to subtelomeric portions of human 

chromosome arms—the final 5 Mbp of sequence proximal to the telomere [25,26]. There 

is a modest yet significant association between the genome-wide distribution of VNTRs 

and sites of double-strand breaks (DSB, R2=0.23, P-value < 1E-22), suggesting a link 

between genomic regions prone to DSB and VNTR formation and we estimated that DSBs 

account for 23% of the variance in VNTR abundance across the genome. There are two 

distinct classes of VNTRs. The first is SINE-VNTR-Alu (SVA) retrotransposition-mediated 

events responsible for the expansion of VNTRs into GC-rich regions of the genome with 

a bias against genic regions. In contrast, non-SVA-associated VNTRs appear to accumulate 

preferentially near genes and are the most likely to be enriched in subtelomeric regions [3].
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The recently published phased genome assemblies from 47 diverse humans confirm these 

original observations [18]. Using structural variants reported by the long-read base caller 

PBSV [27], we identify 145,966 polymorphic VNTRs with repeat motif ≥7 bp and an 

overall length <1 kbp. The subtelomeric bias is still observed though less pronounced as 

more genomes of greater diversity are included; 33.5% and 9.6% of the VNTRs and STRs 

are located in the subtelomere, respectively. The difference in subtelomeric enrichment is 

likely due to a combination of the increased population diversity in the HPRC genomes and 

any biases introduced by the different variant-calling methods employed in both studies. An 

additional 20,952 VNTRs are greater than 1 kbp in length and are potentially more likely to 

become unstable generationally. STR elements (n=131,679) are more uniformly distributed 

within the human genome and have an average size of 217 bp. Even larger tandem SDs and 

nearly complete satellite arrays have now been assembled, although these regions still pose 

challenges for the complete T2T assembly of diploid genomes [28]. SDs are shown to have 

higher mutation rates and interlocus gene conversion rates than unique DNA [14]. Figure 1 

depicts our current understanding of the landscape of tandem repeats based on the analysis 

of 47 recently released HPRC genomes using Tandem Repeats Finder [29] and the GRCh38 

UCSC table browser tracks for SDs and satellite sequences.

Advances in the discovery and alignment of tandem repeats.

Computational analysis of tandem repeat sequences is performed by de novo identification 

in reference genomes followed by targeted analysis of variation from sample sequence 

reads. While the sequence and assembly of large tandem repeat sequences have now 

been made possible by LRS, the characterization of their underlying variation has been 

challenging. Generalized algorithms for discovering variation from short reads, including 

single-nucleotide variants and small indels [30,31], as well as structural variation [32–35] 

have been shown to perform poorly in repetitive DNA [21,36–38]. Additionally, although 

variation in tandem repeats is accurately identified in current long-read data analyzed by 

context-agnostic LRS software [21,27], there are difficulties in comparing variant calls in 

repetitive DNA between methods and across individuals [27,39,40]. To address this, several 

sequence analysis tools have been developed to analyze specific classes of tandem repeat 

variation, with the computational approach governed by the relative length of repeat alleles 

to read lengths, prior knowledge of repeat domain structure, and read error profile.

Tools that discover variation in tandem repeats rely on de novo computational annotation 

of tandem repeat loci in reference genomes. RepeatMasker [41] performs a naive scan for 

mono, di, and trinucleotide repeats, while Tandem Repeats Finder (TRF) [29], TANTAN 

[42], and ULTRA [43] use more sophisticated algorithms based on k-mer repeats and 

hidden Markov models to find inexact repetitions of longer motif patterns. While multiple 

algorithms and theoretical studies have demonstrated more sensitive results for tandem 

repeat annotation than TRF [44–47], this method is used by RepeatMasker and in the 

University of California, Santa Cruz Genome Browser [48] annotations and, thus, forms the 

basis for most targeted repeat studies. Reliance on the human reference GRCh38 annotations 

misses some tandem repeat loci; an analysis of TRF annotation of 148 haplotype-resolved 

assemblies discovered an additional 5,294 annotations missing from the default annotations. 

Larger repeats including SD may be annotated using DupMasker [49], as well as SEDEF 
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[50] and BISER [51] that are recently developed and are more computationally efficient. 

Finally, methods including SRF [52], RepeatNet [53], and Alpha-CENTAURI [54] have 

been written to annotate alpha-satellite repeats from sequencing reads because de novo 
assembly of centromeric DNA remains challenging.

The approaches to analyze tandem repeat variation using short reads fall into three groups: 

methods to genotype exact STR alleles fully contained by individual reads, targeted 

approaches to detect pathogenic repeat expansions, and methods that estimate VNTR length 

or composition by read depth. The RepeatSeq [55] and lobSTR [56] methods detect STR 

variation spanned by short reads (up to 100 bases) and provide exact counts of repeat 

motifs in each haplotype (Fig. 2a). The hipSTR method includes modeling of artifacts of 

polymerase chain reaction to improve genotype accuracy and enable identification of de 
novo repeat expansions. Furthermore, hipSTR identifies the non-reference repeat motifs 

common at highly variable loci.

Pathogenic repeat expansions such as those at the HTT and C9orf72 loci may be many 

times greater than the length of a short read and cannot be measured in short-read data 

using methods requiring reads to span the repeat allele. Nevertheless, they may be detected 

indirectly in short-read data by excess read alignments and paired-end discordance at known 

tandem repeat loci. TREDPARSE [57] and GangSTR [58] incorporate information from 

paired-end reads and likelihood models to genotype repeat expansions, including triplet 

repeat expansions with nearly 1,000 motif copies (FIg. 2b). exSTRa[59] uses similar read 

information but is designed to detect outliers rather than specific alleles. ExpansionHunter 

[60,61] genotypes pathogenic repeat expansions with known motif patterns, such as the HTT 
repeat expansion (CAG)*CAACAG(CCG)* that may have a variable number of CAG and 

CCG trinucleotide repeats (Fig. 2c). Because reads often misalign at tandem repeat loci, 

the GangSTR method and STRetch [62] include reads mapped to off-target or STR decoys 

to improve the estimated tandem repeat length. To allow the discovery of novel repeat 

expansions, STRling [63] and ExpansionHunter Denovo [64] can similarly estimate repeat 

expansions without specific tandem repeat intervals being specified but often fail to report 

both the true length or underlying sequence architecture.

The motif diversity and length of VNTR loci make them recalcitrant to variation analysis 

with software designed for STRs [65]. For relatively short VNTRs (up to 21 motif repeats), 

adVNTR and adVNTR-NN [65,66] use a hidden Markov model to estimate motif counts for 

targeted VNTR loci, with adVNTR-NN using a neural network to improve read recruitment 

(Fig. 2d). For relatively large VNTR loci, >100 bases with repeat motifs at least 10 

bases, read depth measured by CNVnator [67] calibrated by flanking sequences provides 

a relatively accurate measurement of tandem repeat length [68] (Fig. 2e). Read alignment to 

a repeat pangenome graph constructed from VNTR sequences using danbing-tk can identify 

VNTR expansions [69] as well as expansions of individual motifs (Fig. 2f) [70]. Finally, 

there are bespoke methods for genotyping specific disease or biologically relevant loci, such 

as LPA [71] and telomeres [72].

Exact measurement of tandem repeat variation using short reads is thus limited to short loci, 

and remaining loci only have estimations of repeat variation. These challenges are solved 
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using LRS because the long reads or their assemblies span the full length of the STR and 

VNTR loci enabling precise discovery of tandem repeat variation from alignments [21,73]. 

The initial methods for tandem repeat analysis using long reads focused on overcoming the 

high error rates of single-molecule sequencing to count repeat copy number from Pacific 

Biosciences (PacBio) continuous long reads [74], or from Oxford Nanopore Technologies 

(ONT) current signal data [75,76]. However, with the accuracy provided by PacBio HiFi 

(high-fidelity) sequencing [27] and pore improvements paired with consensus sequencing 

from ONT [77], low-level methods are not necessary. Instead, a greater challenge is in 

organizing highly polymorphic VNTR sequences at the population level. The SV-Merger 

[78] and Jasmine [40] methods use graph clustering to combine variant calls across 

individuals; however, they can underestimate diversity and do not distinguish tandem repeat 

motif composition. Two similar methods, TRviz [79] and vamos [80], annotate the motif 

composition of tandem repeats from long-read sequences. Both methods use an algorithmic 

approach called wrap-around dynamic programming (Fig. 2g) that in contrast to standard 

local alignment [81] aligns a single query sequence (motif) to a target (genomic VNTR 

sequence) and finds the optimal matching between repeated motifs to LRS or genome 

assemblies [82,83]. A summary of software and their targeted classes of variation is given in 

Table 2.

The PacBio and ONT technologies each currently offer distinct advantages in the analysis 

of tandem repeats. ONT supports an ultra-long sequencing protocol with N50 read lengths 

(minimum length contained by 50% of data) over 100 kbp [84]. In contrast, PacBio HiFi 

reads are consistently more accurate than ONT (r10.4) with error rates less than ~1 in 

1000 base pairs. Furthermore, more computational support is available for phased genome 

assembly using PacBio HiFi reads [85]. This combination of HiFi and ONT reads can 

produce telomere-to-telomere assemblies that resolve the majority of centromeres [86]. This 

is particularly useful for fully resolving the longest tandem repeat structures and was critical 

for the contiguous sequence assembly of the first human centromeric satellites [7]. While 

both platforms can now be used to reliably detect CpG methylation [87], it is possible 

to determine longer range phasing of methylated sites using ONT reads. For practical 

considerations, ONT sequencing is capable of higher-throughput sequencing of up to 48 

multiplex samples at once using the PromethION, offers portable sequencing using the 

MinION, and requires less up-front capital investment than the PacBio Revio. However, both 

technologies are rapidly advancing and future specifications may differ.

Expansions of tandem repeat sequences are often associated with changes in methylation 

[88–90], yet mapping methylated bases with the standard approach of bisulfite sequencing 

with short-read technologies is challenging because of the sequence divergence and 

alignment ambiguity. A promising application of LRS is the ability to detect methylated 

bases directly from native DNA. The Remora base caller for ONT sequences can detect 

5-methylcytosine (5mC) bases from current (squiggle) data. These data have been used to 

characterize methylation patterns in satellite repeats of a complete human genome [91]. 

When combined with phasing, this can produce haplotype-resolved methylation maps that 

have a genome-wide correlation of 0.949 with whole-genome bisulfite sequencing[92]. 

Recently, PacBio released the Jasmine software to detect 5mC from HiFi sequencing data. 

Both approaches rely on detecting changes in kinetics unique to methylated bases from low-
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level sequencing data. These properties have been used to map protein-DNA interactions 

by treating DNA with a methyltransferase such that interacting bases are protected from 

methylation and interactions are read as the inverse of the methylation signal [93,94].

Advances in visualization methods.

Sequenced-based resolution of the tandem repeats has revealed complex higher-order 

structures even for alleles with the same overall repeat length necessitating the need 

to develop more sophisticated tools to investigate their underlying architecture. Several 

groups have begun to tackle the challenge of resolving tandem repeat architecture by 

creating programs to extract sequence information, often specifically for STRs, VNTRs, and 

centromere satellites. Some of the early strategies for demonstrating variability in VNTR 

sequence and structure involve color-coding internal repeats, as is the case for PRDM9 
[96,97]. Dot plot graphs are often used to demonstrate commonality of repeat structure 

within a genomic region and variability of length; however, these matrices do little to 

demonstrate the diversity of sequence information (Fig. 3a). In the past, custom scripts were 

developed to align VNTRs and reveal their structure, such as in CACNA1C [98] and WDR7 
[99,100]. Other programs are now emerging that specifically address the need to visualize 

VNTRs, producing, for example, “waterfall” plots [3] (Fig. 3b) that show changes in cassette 

architecture based on tracking of k-mers as a function of VNTR length. The TRviz program 

takes VNTR sequences that have been extracted, identifies the most common k-mers (repeat 

motifs), next assigns an ASCII character to the most common character, and then converts 

the character to a color to produce an alignment based on internal sequence homology, what 

we refer to as a “Seattle plot” (Fig. 3c) [79]. A similar program, vamos, adjusts parameters 

for generating efficient motif sets at VNTRs and has the benefit of collapsing repeats into 

fewer colors to help visualize patterns when merging rare or private motifs [80]. Other 

tools like TRVZ have been made available to visualize VNTRs from long-read sequences 

based on the knowledge of individual repeat motifs [101] in addition to the tandem repeat 

annotation library (TRAL), which has been used to generate what are termed “Mola plots” 

for several VNTRs in SLC6A3 [102].

Some tools, such as StainedGlass and its derivative ModDotPlot, have been designed 

to interactively handle the massive amount of sequence associated with centromeric 

and pericentromeric satellite DNA [103]. StainedGlass, for example, generates colored 

heatmaps based on sequence identity across megabase pairs of DNA and can uncover 

long-range higher-order structures and regions of recent homogenization identifying distinct 

evolutionary layers in the formation of these regions (Fig. 3d) [104]. Given that higher 

sequence identity often reflects more recent evolutionary events, the tool provides a snapshot 

of evolutionary change and recent gene conversion across otherwise highly identical repeats. 

Other tools, such as DupMasker [49] and RepeatMasker [41], have proven very useful for 

defining the composition of tandem SDs by identifying the evolutionary structure of the 

underlying cassette that is tandemly repeated [5,11,103].

These programs notwithstanding, providing a robust and streamlined approach to visualize 

tandem repeats remains a challenge to the genetics community. All current programs, for 

example, prioritize stand-alone visualization of tandem repeats without consideration of 
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how they vary among different individuals. Such realizations may be uncovered through 

integrating repeat structure and variation via pangenome graphs [69,105] (Fig. 3e) although 

these regions have proven particularly challenging. Most of the popular tools, unfortunately, 

do not adequately resolve these details at present, at least for the largest and most variable 

tandem repeats in our genome. Part of the difficulty in visualizing high-copy tandem repeats 

arises from the diversity and complexity of the underlying sequence that is present. VNTRs 

differ in repeat length but also internal sequence differences that often cannot be evenly 

divided into individual repeat units. In some VNTRs, the repeat motif length is highly 

variable, or harbor repeats-within-repeats (such as in a VNTR near PROP1 [106]), which 

presents obstacles to identifying the various internal repeat sequence motifs. Centromere 

satellites similarly contain new higher-order repeat units that are derivative from a larger 

higher-order repeat unit sequence already present in the surrounding sequence making 

alignments challenging. These issues are further compounded by assembly errors and 

sequence errors, especially at homopolymer runs creating artifacts of variation. Moreover, 

VNTR start and end positions are often not precisely recorded, so portions of a repeat motif 

will appear at the end of a VNTR. For example, the WDR7 repeat ends in 46 bp of the 69 

bp motif [99]. Convention dictates that the repeat motif starts with the first nucleotide in the 

VNTR, but the true origination of the repeat may differ, and the repeat may originate and 

expand from a 3’ to 5’ (rather than 5’ to 3’) direction. Altogether, programs for visualizing 

VNTRs need to accommodate several pieces of information to produce an output that is 

accurate yet also clearly informative of the internal sequence.

Nevertheless, with appropriate methodology often geared to a particular class or even 

an individual locus, tandem repeat visualization methods have become powerful tools 

to quickly identify and demonstrate differences in repeat length and internal sequence 

composition. For instance, color-coding is effective at highlighting where a shift in repeat 

motif occurs in ATXN10 [107], or interruptions in the CAG repeat in HTT that correlate 

with age of onset of Huntington’s Disease. In the case of FMR1, the identification of alleles 

that have lost these interruptions has become a predictor of those that will ultimately become 

permutation alleles [108]. In a more complex example, a VNTR in ART1 ranges from 9 

to 500 copies (0.5 to 31.5 kbp) in HGSVC samples. Only after breaking the repeat into 

color-coded repeat units do patterns emerge for samples, consisting of higher order ~3 kbp 

(47 repeat motif copies) duplication events[106]. Overall, a universal tool for handling each 

repeat is not currently available, but conceivably could consist of a combination of tools 

that provide a comprehensive overview of a repeat, beginning with a high level view of the 

repeat structure (e.g. via StainedGlass), breaking the repeat apart into individual repeat units 

and clustering individuals based on length or sequence similarity (e.g. via vamos or TRviz), 

and then providing a combined output via a pangenome graph. As increasing numbers of 

long-read genomes become available, having the appropriate programs to visualize tandem 

repeats will be critical in deducing patterns variation and mechanisms of expansion events as 

well as their evolutionary origin.

Tandem repeats and disease.

One of the primary motivations for systematic discovery and characterization of these loci 

has been their association with genomic instability and disease. Tandem repeats have been 
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estimated to mutate at orders of magnitude higher than most other unique regions of the 

genome [109] and variation at these loci has been implicated in Mendelian, as well as 

seemingly non-Mendelian, and more complex genetic disease. Pathogenic mutations result 

typically when repeat lengths either go below or exceed some threshold often resulting in 

changes of expression of some nearby genes wherein the repeats are embedded. Such is 

the case with reductions of the D4Z4 repeat associated with facioscapulohumeral muscular 

dystrophy type I [110] where contraction below 11 copies leads to a permissive chromatin 

state and the expression of DUX4 in muscle tissue and disease. Similarly, reductions of the 

tandem SD encoding the two exons of the Kringle IV domain of lipoprotein A gene lead to 

higher levels of lipoprotein (a) in the circulating blood and is one of most significant genetic 

risk factors for coronary heart disease and stroke especially among individuals of African 

ancestry [111].

More often, however, an increase in repeat length is associated with pathogenicity. This is 

the case with many triplet repeat disorders where expanded repeats lead to disruption of the 

normal function of the protein or hypermethylation of the promoter and silencing [88–90]. 

In the case of Huntington’s disease, expansion of a protein-coding CAG repeat within HTT 
beyond 41 units results in the formation of an abnormal protein that accumulates in the 

brain, causing neurodegeneration [112]. In the case of myotonic dystrophy, expansion of 

the CTG nucleotide repeat beyond the normal range (5–37 repeats) in the 3′ untranslated 

region (UTR) of the dystrophia myotonica protein kinase (DMPK) gene leads to mRNA 

instability and decreased expression (Table 3) [113,114]. Several genes, such as XYLT1 
(Baratela-Scott syndrome) and FMR1 (Fragile X syndrome), possess CGG repeats within 

the 5′ UTR of the gene. In both cases expansion of the CGG repeat beyond the premutation 

size range (100–200 repeats) results in hypermethylation of the nearby promoter region 

followed by silencing of gene expression and disease [88,115]. Importantly, the discovery 

of expanding triplet repeats and their transmission within families provided the molecular 

basis for genetic anticipation for several genetic disorders, including increased penetrance, 

severity, as well as earlier age of onset in subsequent generations [116].

Over the last decade other more heterogeneous complex disorders often neurological in 

nature with diverse genetic etiologies have been shown to result from the instability of 

tandem repeats. A hexanucleotide repeat expansion of the GGGGCC motif in C9orf72 to 

thousands of base pairs in length is the cause of chromosome 9p21-linked amyotrophic 

lateral sclerosis and frontotemporal dementia (ALS-FTD) [89,90]. Interestingly, even 

carriers of two intermediate-size alleles (<20 repeats) may be at risk for ALS and associated 

disorders [117]. Expansions of the TTTCA and TTTTA repeats in a variety of genes 

(e.g., SAMD12, TNRC6A, RAPGEF2) are now thought to underlie benign adult familial 

myoclonic epilepsy [118]. Later, the same pentanucleotide TTTCA expansion beyond 10 

kbp in length was observed in association with familial autosomal myoclonic epilepsy, albeit 

mapping to the intron of different genes (MARCH6 and STARD7) [119,120]. The finding of 

the same pathogenic pentanucleotide expansion in genes that share no other property other 

than being highly expressed in the brain has led to speculation that it is the transcribed repeat 

itself instead of the specific function of the gene that underlies the epilepsy pathology. In 

a separate instance, a VNTR in an intron of CACNA1C was found to be associated with 

schizophrenia by motif composition rather than length [98]. In this light, understanding 
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not only the repeat length but also the composition of the repeat appears critical to the 

pathogenic state [121] making both detection and deciphering the sequence of the expanded 

repeat structures critical to understanding disease risk (see above).

LRS has been used to discover novel repeat sequences in individuals with familial adult 

myoclonic epilepsy with negative clinical testing [122] and to identify new genes and 

expand the phenotype of genes associated with spinocerebellar ataxia [123,124]. For 

example, in a cohort with late-onset spinocerebellar ataxia 27B, Pellerin and colleagues 

used LRS to clarify a heterozygous trinucleotide GAA repeat expansion in the gene, 

FGF14, initially identified with short-read sequencing (SRS) [123]. LRS has also been 

used to identify disease-causing expansions within duplicated genes–so-called repeats within 

repeats, as in neuronal intranuclear inclusion disease (NIID, OMIM: 603472) and the 

expanding CGG repeat mapped to the 5′ UTR of NOTCH2NLC or NBPF19–a human-

specific duplicated gene [118,125]. Expansion of this repeat beyond 100 repeat units has 

been associated not only with NIID but also with oculopharyngodistal myopathy with 

neurological manifestations (OMIM: 619473).

Until recently, clinical testing for tandem repeat disorders was limited to PCR-based 

approaches or Southern blot. Clinical testing labs have begun to evaluate limited loci 

using short-read-based approaches, likely due to the integration of ExpansionHunter [60] 

into the DRAGEN pipeline [126]. LRS has also been used to evaluate select repeats. In 

2021, for example, Invitae began evaluating PCR products from FMR1 alleles with 55–90 

triplet repeats on the PacBio platform [127]. While it is exciting to see both SRS and LRS 

approaches beginning to be used in the clinical space, there remains considerable need to 

broaden the number of tandem repeats that can be clinically evaluated (Table 3), which 

may be met by the introduction of LRS into the clinical environment [128]. Routine LRS 

of amplicons [129], CRISPR-CAS targets [122], and ultimately whole genomes will make 

routine clinical testing of these disorders possible [130] and perhaps drive novel therapeutic 

approaches [131].

Future prospects.

LRS has created a renaissance of interest in investigating the disease significance and 

biological mechanisms of expanding/contracting repeats and their epigenetic consequences. 

Tools are being developed to search for associations with gene expression [65,68,69,180] 

using GTEx genomes and trait association in the UK Biobank [181]. Intriguing candidate 

loci and genome-wide patterns of tandem repeat variation are being identified in families 

with autism and developmental delay[182,183] that will benefit from more extensive LRS 

characterization. Reports of enrichment of tandem repeat expansions in various cancer 

types [184] will justify LRS of tumor-matched patient samples. Still, the discovery of new 

disease or functional roles of tandem repeat variation is limited because almost all disease 

cohorts of sufficient sample size have been sequenced by short-read NGS platforms. New 

computational tools, such as PanGenie [73], are leveraging the sequence resolution and 

linkage disequilibrium provided by phased pangenomes to more accurately genotype and 

perform genome-wide associations in preexisting NGS datasets [17].
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Current population-level analyses of tandem repeats using LRS with digital readouts of 

motif counts and tandem repeat composition are from a relatively modest number of 

human diversity samples [17,18]. Improvement in accuracy from the ONT PromethION and 

increases in throughput and reduction in costs such as the PacBio recent release of the Revio 

system will make it possible to begin to more cost-effectively consider larger disease and 

population cohorts. The low-coverage LRS of 3,622 Icelandic individuals has already led to 

the association of two new loci with height and atrial fibrillation [78]. A smaller pilot study 

of familial LRS of simplex autism discovered de novo STR and VNTR variation missing 

from SRS [13]. As costs decrease and throughput increases, not only will more genomes 

be sequenced but so too will higher quality phased genomes of near T2T status providing 

access to the largest and most identical repeats. We anticipate the discovery of many new 

disease associations as LRS of unsolved Mendelian disorders and deeply phenotyped and 

diverse cohorts such as GTEx samples [185], autism families [186], tumor-normal cancer 

studies [187] and biobanks (e.g., All of Us) begin over the next few years.

Another important area of future development will be the application of new LRS platforms 

to investigate somatic variation and expression at the single-cell level. This will require 

the development of cost-effective methods to generate long-read sequences from low-input 

DNA and mRNA materials. New methods such as MAS-ISO-seq [188] are beginning to 

emerge, which allow quantitative sequencing of longer transcripts (~1 kbp) providing tissue-

specific spliceform characterization. In light of the extensive mosaicism already associated 

with tandem repeat disorders, the characterization of somatic variability at the DNA will 

be critical and clinically relevant. For example, somatic instability has been observed in 

Huntington’s disease, ALS [90], and Fragile X syndrome [189]. In these cases, the severity 

and age of onset of the disease can depend on the number of repeat units, as well as the 

extent of somatic instability in affected tissues. Some tissues may have a higher propensity 

for somatic instability than others, as has been shown forFMR1 where the instability 

of the CGG repeat expansion can vary, with higher instability observed in brain tissues 

compared to blood [190]. Similarly, instability of the CAG repeat expansion in the HTT 
gene can depend on genetic modifiers in other genes, such as DNA repair enzymes [191]. 

A better understanding of repeat structure, expression of genes known to be associated 

with somatic instability, and response of individual cells to repeat expansions will expand 

our understanding of the pathogenesis, uncover previously unknown associations [192], and 

potentially guide novel treatment approaches [193].
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Summary Points

• Tandem repeat sequences span multiple classes of DNA including short 

tandem repeats, variable-number tandem repeats, satellite DNA, and 

segmental duplications.

• Long-read sequencing is rapidly improving our understanding of tandem 

repeat organization and variation in human genomes.

• Current advancements in the scale and diversity of populations undergoing 

long-read sequencing have unveiled nearly 150,000 polymorphic VNTRs 

where 33.5% are located in the subtelomeric regions of the genome.

• Many different computational approaches are required to discover tandem 

repeat variation with short reads, depending on the class and scale of the 

variation.

• Standard approaches for variant analysis with long reads can detect variation 

in tandem repeats, however specific methods are required to organize and 

visualize tandem repeat variation.

• Patterns within the complex nature of tandem repeat variation becomes more 

clear when length and motif variation are visualized.

• Over 56 diseases linked to tandem repeat variation have been identified.

• The pace that tandem repeat disease loci are being discovered is increasing 

due to long-read sequencing.

• Detailed resolution of tandem repeats using new technologies may lead to 

novel therapeutic approaches
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Figure 1. Genome-wide distribution of tandem repeats in 47 HPRC human genomes.
The ideogram depicts the genome-wide distribution for VNTRs (n=166,918, purple) and 

STRs (n=131,679, green). We also show HOR regions of the genome enriched in satellite 

sequences (red) and tandem segmental duplications (SDs; blue) that map less than 1 Mbp 

apart. The average STR and VNTR lengths are 174 bp and 516 bp, while their average motif 

lengths are 3 bp and 49 bp, respectively. SDs and centromere satellite annotation are based 

only on the T2T reference genome.
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Figure 2. Methods for discovery, genotyping and annotations.
Top, methods to genotype STR expansions using short reads. a, STR genotyping methods 

that require reads to fully span alleles: RepeatSeq, lobSTR, and hipSTR. These may provide 

exact repeat counts as well as phased variants. b, STR genotyping methods that can 

genotype expansions larger than the length of a read or paired-end insert: TREDPARSE, 

GangSTR, STRetch, STRling, and ExpansionHunter Denovo. The resulting calls are an 

estimate of motif repeat counts. c, ExpansionHunter genotypes long expansions that fit 

predefined patterns. Middle, methods to genotype VNTR expansions using short reads. 

d, adVNTR and adVNTR-NN use a hidden Markov model to estimate repeat unit copy 

number. e, Copy number defined by CNVnator correlates with ground-truth copy number 

with sufficient accuracy for association analysis. f, Genotyping VNTR length using repeat 

pangenome graphs can detect changes in motif composition. Bottom, methods to genotype 

VNTR alleles with long reads. g, Schematic of algorithmic approach used by TRviz and 

vamos to annotate motif copies in LRS and genome assemblies using wrap-around dynamic 

programming that aligns an optimal number of copies of a motif sequence to a genomic 

sequence by copying alignment scores from the last row to the first and allowing the trace 

back path index (red) to wrap around from the beginning to the end of the motif.
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Figure 3. Methods to visualize tandem repeats and their variation.
a, A 63 bp VNTR in MIR4435-2 host gene (MIR4435-2HG) is used as an example (top). 

A dot plot alignment of one allele each from two individuals is shown (bottom). b, A 

Waterfall plot where repeat motifs are assigned various colors based on sequence identity 

(top) and then sorted by total length (bottom). This strategy is also often used to demonstrate 

individual reads separated by allele for one individual. c, A Seattle plot, which takes color-

coded alleles and organizes them by internal sequence similarity to highlight clusters of 

related alleles. Insertions and deletions (representing whitespace gaps) are observed in this 

context. d, A StainedGlass plot (reproduced from [104]) demonstrating sequence homology 

for a tandem repeat in heatmap form, often used for centromeric repeats. Heat map defines 

% identity of the higher-order repeat (red~99% identical versus blue ~70% identity) e, A 

Pangenome graph highlighting different common paths that a repeat can take in the context 

of the genome including other structural variants, like two that are shown here.
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Table 1:

Classes of tandem repeats in the human genome

Class Motif length Overall size*

STR Short tandem repeat 1–6 bp ~200 bp

VNTR Variable number tandem repeat ≥7 bp ~500 bp

SD Tandem segmental duplication >1 kbp 10–100 kbp

SAT Alpha centromeric satellite DNA ~171 bp 500 kbp - multiple Mbp

Human satellite 1 (HSat1A) 42 bp 890 kbp - multiple Mbp

Human satellite 1 (HSat1B) ~2.4 kbp ~14 Mbp

Human satellite 2 (HSat2) 5 bp 620 kbp or ~12.6 Mbp

Human satellite 3 (HSat3) 5 bp 890 kbp - multiple Mbp

Human satellite 4 (HSat4) 35 bp 10kbp - 100kbp

Beta satellite 68 bp Variable clusters

Gamma satellite 220 bp 10–220 kbp clusters

*
Overall size is based on the average length observed in the T2T (telomere-to-telomere) genome assembly but some STR and VNTR alleles, 

especially pathogenic events, can expand to multiple kilobase pairs in length. Satellite classification is based on telomere-to-telomere assemblies 
[7,8].
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Table 2:

Methods for tandem repeat variant annotation and discovery

Reference annotation

Class of repeat Method Reference

STR, VNTR Repeat Masker [41]

STR, VNTR Tandem Repeats Finder [29]

STR, VNTR TANTAN [42]

STR, VNTR ULTRA [43]

Satellite SRF [52]

Satellite Repeatnet [53]

Satellite Alpha-CENTAURI [54]

Segmental Duplication DupMasker [49]

Segmental Duplication SEDEF [50]

Segmental Duplication BISER [51]

Variant discovery, short-reads

Class of variant Method Size range* Precision Untargeted**

STR RepeatSeq < RL exact [55]

STR LobSTR < RL exact [56]

STR hipSTR < RL exact [95]

STR TREDPARSE < 500 bp exact, estimate [57]

STR ExpansionHunter < 1kb exact, estimate [60]

STR exSTRa Any estimate [59]

STR ExpansionHunter-denovo Any estimate yes [64]

STR STRetch Any estimate [62]

STR STRling Any exact, estimate yes [63]

STR,VNTR GangSTR Any exact, estimate [58]

VNTR adVNTR-NN Any estimate [66]

VNTR CNVnator Any estimate [67]

VNTR danbing-tk Any estimate [69]

Variant discovery, long-reads

VNTR TRViz < RL exact [79]

VNTR/STR vamos < RL exact [80]

*
Size range <RL are limited to the sample read length.

**
Untargeted methods do not require a list of input tandem repeat loci to analyze.
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Table 3:

Tandem repeats associated with disease.

Gene Repeat
Normal 
length

Pathogenic 
Length Context Cyto Inheritance Disease

Phenotype 
OMIM #

Clin 
testing for 
expansion? Ref

ABCA7 25 bp 12–427 >200 intron 19p13.3 AD
Susceptibility to 
Alzheimer’s disease 608907 n [132]

AFF2 CCG 4–39 >200–900 5’UTR Xq28 XLR

Intellectual 
developmental 
disorder, X-linked 
109 309548 n [133]

AR CAG 9–36 > 37–68 exon Xq12 XLR

Spinal and bulbar 
muscular atrophy of 
Kennedy (SBMA) 313200 y [134]

ARX GCN 12–16 20–23 exon Xp21.3 XLR

Developmental 
and epileptic 
encephalopathy 1 
(EIEE1) 308350 n [135]

ATN1 CAG 3–35 >47–93 exon 12p13.31 AD

Dentatorubral-
pallidoluysian 
atrophy (DRPLA) 125370 y [136]

ATXN1 CAG 6–38 >38–88 exon 6p22.3 AD
Spinocerebellar 
ataxia 1 (SCA1) 164400 y [137]

ATXN10 ATTCT/ATTGT 10–32 >280–4500 intron 22q13 AD
Spinocerebellar 
ataxia 10 (SCA10) 611150 n [138]

ATXN2 CAG 13–31 >31–500 exon 12q24.12 AD
Spinocerebellar 
ataxia 2 (SCA2) 183090 y [139]

ATXN3 CAG 12–44 >54–87 exon 14q32.12 AD

Spinocerebellar 
ataxia 3 (SCA3); 
Machado-Joseph 
disease 109150 y [140]

ATXN7 CAG 4–33 >36–460 exon 3p14.1 AD
Spinocerebellar 
ataxia 7 (SCA7) 164500 y [141]

ATXN8 / 
ATXN8OS CAG/CTG 15–50 >74 3’UTR 13q21 AD

Spinocerebellar 
ataxia 8 (SCA8) 608768 y [142]

BEAN1/TK2 TAAAA* variable ≥ 110–760 intron 16q22 AD
Spinocerebellar 
ataxia 31 (SCA31) 117210 n [143]

C9orf72 GGGGCC 3–25 >30
5’UTR/
intron 9p21.2 AD

Frontotemporal 
dementia and/or 
amyotrophic lateral 
sclerosis 1 105550 y [144]

CACNA1A CAG 4–18 19–33 exon 19p13.13 AD
Spinocerebellar 
ataxia 6 (SCA6) 183086 y [145]

CACNA1C 30 bp variable na**** intron 12p13.33 AD
Schizophrenia and 
bipolar disorders 620029 n [98]

CNBP CCTG/CAGG 11–30 >50–11000 intron 3q21.3 AD
Myotonic dystrophy 
type 2 (DM2) 602668 y [146]

CSTB CCCCGCCCCGCG 2–3 ≥ 30–75
promoter/

5’UTR 21q22.3 AR

Unverricht-
Lundborg syndrome 
(EPM1) 254800 y [147]

DAB1 ATTTT** 7–400 >31–75 intron 1p32 AD
Spinocerebellar 
ataxia 37 (SCA37) 615945 n [148]

DMPK CTG 5 – 37
>50 – 
2,000 3’UTR 19q13.32 AD

Steinert myotonic 
dystrophy syndrome 
(DM1) 160900 y [149]
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Gene Repeat
Normal 
length

Pathogenic 
Length Context Cyto Inheritance Disease

Phenotype 
OMIM #

Clin 
testing for 
expansion? Ref

FGF14 GAA 50 >250 intron 13q33.1 AD

Late-Onset 
Spinocerebellar 
Ataxia 27B 620174 y [123]

FMR1 CGG 5–50 >200 5’UTR Xq27.3 XLD
Fragile X syndrome 
(FXS) 300624 y [150]

FMR1 CGG 5–50 55–200 5’UTR Xq27.3 XLR
Premature ovarian 
failure 1 (POF1) 311360 y [151]

FMR1 CGG 5–50 55–200 5’UTR Xq27.3 XLR

Fragile X-associated 
tremor/ataxia 
syndrome (FXTAS) 300623 y [152]

FOXL2 GCN 14 19–24 exon 3q22.3 AD

Blepharophimosis, 
epicanthus inversus, 
and ptosis, type 1 
(BPES) 110100 n [153]

FXN GAA 5–34 >66–1300 intron 9121.11 AR
Friedreich ataxia 1 
(FRDA) 229300 y [154]

GIPC1 CGG 12–32 ≥ 97–120 5’UTR 19p13.12 AD

Oculopharyngodistal 
myopathy 2 
(OPDM2) 618940 n [155]

GLS GCA 8–16
≥ 680 – 

1400 5’UTR 2q32.2 AR

Global 
developmental delay, 
progressive ataxia, 
and elevated 
glutamine 618412 n [156]

HOXA13 GCG 12–18 18–30 exon 7p15.2 AD

HFGSHand-foot-
uterus syndrome 
(HFU) 140000 n [157]

HOXD13 GCG 15 24 exon 2q31.1 AD
Synpolydactyly 
(SPD1) 186000 n [158]

HTT CAG 6–35 >36 exon 4p16.3 AD
Huntington disease 
(HD) 143100 y [159]

JPH3 CAG 6–28 >40–58 exon 16q24.2 AD
Huntington disease-
like 2 (HDL2) 606438 n [160]

LRP12 CGG 13–45 90–130 5’UTR 8q22.3 AD

Oculopharyngodistal 
myopathy 1 
(OPDM1) 164310 n [161]

MARCHF6 ATTTT** 10–30
≥ 660–
2800 intron 5p15.2 AD

Epilepsy, myoclonic, 
familial adult, 3 
(FAME3) 613608 n [120]

NOP56 GGCCTG 5–14
≥ 650–
2500 intron 20p13 AD

Spinocerebellar 
ataxia 36 (SCA36) 614153 n [162]

NOTCH2NLC CGG 7–60 ≥ 61–500
5’UTR/
exon1 1q21.2 AD

Neuronal 
intranuclear 
inclusion disease 
(NIID) 603472 n [163]

NUTM2B-
AS1 CGG/CCG 3–16 40–60

noncoding 
RNA 10q22.3 AD

Oculopharyngeal 
myopathy with 
leukoencephalopathy 
1 (OPML1) 618637 n [121]

PABPN1 GCG 6–10 >11–17 exon 14q11.2 AD

Oculopharyngeal 
muscular dystrophy 
(OPMD) 164300 n [164]

PHOX2B GCN 20 25–29 exon 4p13 AD

Central 
hypoventilation 
syndrome 1 (CCHS) 209880 n [165]
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Gene Repeat
Normal 
length

Pathogenic 
Length Context Cyto Inheritance Disease

Phenotype 
OMIM #

Clin 
testing for 
expansion? Ref

PLIN4 99 bp 27–31 40 exon 19p13.3 AD

Myopathy with 
rimmed ubiquitin-
positive autophagic 
vacuolation 
(MPUPAV) 613247+ n [166]

PPP2R2B CAG 4–32 ≥ 43–78 5’UTR 5q31 AD
Spinocerebellar 
ataxia 12 (SCA12) 604326 y [167]

PRDM12 GCG 12 18–19 exon 9q34.12 AR

Neuropathy, 
hereditary sensory 
and autonomic, type 
VIII (HSAN8) 616488 n [168]

PRNP 24 bp 1 6 exon 20p13 AD
Creutzfeldt-Jakob 
Disease 123400 n [169]

RAPGEF2 ATTTT** na na intron 4q32.1 AD

Epilepsy, myoclonic, 
familial adult, 7 
(FAME7) 618075 n [118]

RFC1

AAAAG / 
AAAGG / 
AAGAG / 

AGAGG*** variable
≥ 400 – 

2000 intron 4p14 AR

Cerebellar ataxia 
with neuropathy and 
bilateral vestibular 
areflexia syndrome 
(CANVAS) 614575 y [170]

RUNX2 GCN 17 27 exon 6p21.1 AD
Cleidocranial 
dysplasia 1 119600 n [171]

SAMD12 ATTTT** 7-exp
≥ 440–
3680 intron 8q24 AD

Epilepsy, myoclonic, 
familial adult, 1 
(FAME1) 601068 n [172]

SOX3 GCN 15 26 exon Xq27.1 XLR

Intellectual 
developmental 
disorder, X-linked, 
with isolated growth 
hormone deficiency 300123 n [173]

STARD7 ATTTT** 9–20 ≥ 661–735 intron 2q11.2 AD

Epilepsy, myoclonic, 
familial adult, 2 
(FAME2) 607876 n [119]

TAF1 CCTCT none 30–55 intron Xq13.1 XLR
X-linked Dystonia-
Parkinsonism (XDP) 314250 n [174]

TBP
CAG (or CAG/

CAA) 25–40 >42–66 exon 6q27 AD
Spinocerebellar 
ataxia 17 (SCA17) 607136 y [175]

TCF4 CTG 5–31 > 50 intron 18q21.2 AD

Fuchs endothelial 
corneal dystrophy 3 
(FECD3) 613267 y [176]

TNRC6A ATTTT** na na intron 16p12.1 AD

Epilepsy, myoclonic, 
familial adult, 6 
(FAME6) 618074 n [118]

WDR7 69 bp variable na ***** intron 18q21.31 AD
Amyotrophic lateral 
sclerosis (ALS) 606640 n [99]

XYLT1 GGC 9–20 > 100 promoter 16p12.3 AR

Desbuquois 
dysplasia 2; 
Baratela-Scott 
Syndrome (BSS) 615777 n [177]

YEATS2 ATTTT** 7–400 na intron 3q27.1 AD

Epilepsy, myoclonic, 
familial adult, 4 
(FAME4) 615127 n [178]

ZIC2 GCG 15 25 exon 13q32.3 AD
Holoprosencephaly 
5 (HPE5) 609637 n [179]
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*
repeat motif is TGGAA/TAGAA when pathogenic

**
repeat motif is ATTTC when pathogenic

***
repeat motif is AAGGG when pathogenic

****
specific 30-mer sequences are associated with disease risk

*****
longer repeat associated with ALS

+
MIM for PLIN4, as the phenotype is not in OMIM
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