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Abstract 

Diabetes cell replacement therapy has the potential to be transformed by human pluripotent stem cell-derived β 
cells (SC-β cells). However, the precise identity of SC-β cells in relationship to primary fetal and adult β-cells remains 
unclear. Here, we used single-cell sequencing datasets to characterize the transcriptional identity of islets from in vitro 
differentiation, fetal islets, and adult islets. Our analysis revealed that SC-β cells share a core β-cell transcriptional 
identity with human adult and fetal β-cells, however SC-β cells possess a unique transcriptional profile characterized 
by the persistent expression and activation of progenitor and neural-biased gene networks. These networks are pre-
sent in SC-β cells, irrespective of the derivation protocol used. Notably, fetal β-cells also exhibit this neural signature 
at the transcriptional level. Our findings offer insights into the transcriptional identity of SC-β cells and underscore 
the need for further investigation of the role of neural transcriptional networks in their development.
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Introduction
Pancreatic β-cells are the primary insulin-producing cells 
and therefore play a crucial role in maintaining blood 
glucose levels. Dysfunction or autoimmune destruction 
of these cells leads to diabetes mellitus, a chronic meta-
bolic disease that is currently incurable. Directed differ-
entiation of human pluripotent stem cells (hPSCs) into 
insulin-producing stem cell-derived β (SC-β) cells holds 

immense promise as a potentially unlimited supply of 
functional β-cells to treat insulin-dependent diabetes 
through cell replacement therapy [1–3]. This process 
involves a stepwise combination of small molecules, 
growth factors, and microenvironmental cues to drive 
cells through several intermediate progenitor cell types 
[4–7]. The resulting hPSC-derived islets (SC-islets) pos-
sess many features of primary human islets, such as a 
similar cell composition consisting of SC-β cells along 
with other islet cell types and, most notably, the abil-
ity to secrete insulin in response to glucose and restore 
normoglycemia in animal models. Several protocols for 
producing SC-islets via in vitro differentiation have been 
published [4–7]. These methods differ in many significant 
process parameters, including the composition of factors 
in the media, the types of culture vessels, and formation 
of the final three-dimensional aggregates. However, all of 
these protocols produce 3D cellular constructs that are 
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uncontrollably heterogeneous, resulting in off-target cell 
populations, and are transcriptionally and functionally 
immature compared to their primary islet counterparts. 
This suggests that current in vitro differentiation meth-
odologies do not fully replicate normal in vivo pancreatic 
development.

Understanding the specific pattern of gene expression 
that directs differentiation and maintains cell identity 
is critical to improving the efficiency of SC-β cell gen-
eration protocols. Recently, single-cell RNA sequencing 
(scRNA-seq) has been applied to characterize the tran-
scriptomic profile of SC-islets and primary human islets 
in various contexts [8–10]. Notably, this technology led 
to the identification of a substantial off-target population 
in SC-islets consisting of serotonin producing-cells that 
express genes associated with intestinal enterochromaffin 
cells [8]. Additionally, scRNA-seq of SC-islets after trans-
plantation into mice demonstrated that cellular identity 
and maturation state changes significantly in vivo  [10–
12]. While these studies have provided a comprehen-
sive characterization of cellular identities generated by 
their respective protocols, no prior study has thoroughly 
compared cellular identities of SC-islets across different 
protocols. Further, the transcriptional profile of SC-islets 
generated by current state-of-the-art protocols has not 
been robustly benchmarked against the transcriptional 
profile of both primary adult islets and fetal islets. As a 
result, there is a gap in knowledge of how the transcrip-
tional profile of SC-islets compares to that of normal 
human development [8, 13].

Here, we leverage published scRNA-seq datasets of 
SC-islets from multiple protocols, both before and after 
transplantation, and datasets from both human adult 
and fetal islets to perform a novel comparative analysis 
of β-cell transcriptional profile across maturation states. 
The results provide robust definitions of the cell types 
produced across in vitro differentiation protocols and 
uncover commonalities and discrepancies between SC-
islet development and human pancreatic development. 
Collectively, these data provide a resource that improves 
the characterization of cell identities found within SC-
islets, facilitating the discovery of misexpressed genes 
and gene regulatory networks that can be targeted to fur-
ther improve SC-β cell differentiation strategies.

Results
Identification of pancreatic endocrine cell types using 
integrated transcriptomic atlas
To understand the transcriptional maturation state of SC-
islets in direct comparison to their human adult and fetal 
counterparts, we collected published scRNA-seq datasets 
of human pancreatic islets from a variety of sources for 
comparative analysis. This included SC-islets cultured 

to their endpoint [8–11], SC-islets transplanted into the 
kidney capsules of mice for 1 or 6 months [10, 11], pri-
mary adult islets from healthy, male and female donors 
age 19 to 56 [14–16], and primary fetal islets from 110 
to 122 days post-conception (dpc) [17, 18]. Raw data was 
processed, and quality control measures were performed 
to remove dead cells and sequencing doublets (see Meth-
ods, Fig. S1, and Table S1). We performed unsupervised 
clustering on each individual dataset to generate Uni-
form Manifold Approximation and Projection (UMAP) 
plots to visualize dimensional reductions in 2D (Fig. S2). 
For each dataset, clusters expressing high levels of chro-
mogranin A (CHGA) were isolated as probable endocrine 
cell types [19, 20], narrowing down our analysis from 
128,204 total pancreatic islet cells to 60,197 CHGA+ pan-
creatic islet cells (Fig. 1a).

All CHGA+ cells were integrated to identify shared cell 
populations present across each dataset. This led to the 
identification of 10 unique endocrine cell populations 
(Fig.  1b) of which the top differentially expressed genes 
(DEGs) are listed in Table S1. The only identifiable cell 
populations in the adult islets were β, α, PP, δ, ε, and pro-
liferating endocrine, and these cell populations were also 
present in fetal and SC-islets (Fig. 1c-d). High expression 
of hormones INS, GCG​, SST, PPY, and GHRL, along with 
enrichment of other cell-specific markers assisted in the 
identification and validation of these endocrine cell pop-
ulations (Fig.  1e-f ). An endocrine progenitor (Prog) cell 
population with enriched expression of transcription fac-
tors NKX2-2, SOX4, and NGN3 was found to be present 
in both fetal and SC-islets. Consistent with previous find-
ings [8], a population resembling enterochromaffin-like 
cells (EC), marked by expression of TPH1, FEV, and DDC 
was only identifiable in SC-islets. Interestingly, a popula-
tion of cells with neuroendocrine (NE) features, marked 
by enrichment of GAP43, RTN1, and CNTNAP2, was 
found to be present in both SC-islets and fetal islets. The 
identity and role of these endocrine cells with neuronal 
properties in the developing human islet has not been 
previously characterized. Finally, a cluster of polyhormo-
nal (Poly) cells was identified and enriched in the fetal 
islets. This population is consistent with previous stud-
ies which show that cells expressing multiple hormones 
arise early in islet development and eventually give rise 
to α-cells [21, 22]. This suggests the utility of this dataset 
to more precisely identify islet endocrine cell types than 
what can be surmised from the individual clustering of 
SC-islet scRNA-seq datasets.

A universal definition of β-cell identity would not only 
serve as a useful resource in research, but also a poten-
tially important attribute of cells to be used for therapy 
[23]. This can be particularly difficult in SC-islets, as 
SC-β cell identity can lack distinctiveness compared to 
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other cell types in the tissue, particularly the SC-EC cells 
[8, 10, 24]. To establish a universal definition of healthy 
β-cell identity, we identified genes enriched in β-cells 
compared to all other endocrine cells and highlighted 

the genes whose expression is shared across all tissue 
sources (Fig. 1g). The β-cell genes that were most highly 
conserved across all sources were INS, IAPP, DLK1, 
PDX1, HADH, and PCSK1. We also define core identity 

Fig. 1  SC-islets share endocrine cell types with fetal and adult islets, see also Tables S1 & S2. a Schematic of 19 human adult islets, male and female, 
age 19-56; 9 human fetal pancreases, male and female, 110-122 dpc; SC-islets derived from 4 unique protocols; and SC-islets derived from 2 unique 
protocols and transplanted into the kidney capsules of mice for 1-6 months. Each individual dataset is plotted onto a UMAP which indicates scaled 
expression of CHGA after quality control filtering. b UMAP of all endocrine cells integrated from each published dataset with 10 unique cell types 
identified. Polyhormonal (Poly), Endocrine Progenitor (Prog), Proliferating Endocrine (Prolif ), Enterochromaffin-like (EC), Neuroendocrine (NE). c 
Proportion of identified cell-types from SC, SC-TXP, adult, and fetal islet sources. d Integrated endocrine UMAP split between SC, SC-TXP, adult, 
and fetal sources. e Feature plots indicating scaled expression level of various islet cell hormones. f Heatmap indicating top differentially expressed 
genes for each endocrine cell population. g Pairwise analysis indicating differentially expressed genes (log2FC > 0.3) between β-cells and all other 
endocrine cells shared between SC, SC-TXP, fetal, and adult islets. DEGs enriched in β-cells from all four sources make up core β-cell identity
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gene lists for α, δ, and EC cells in the same manner as 
was done for β-cells. These core identity gene sets, found 
in Table S2, provide an important definition of cell-spe-
cific islet markers that arise early in development and 
whose expression persists over time and across unique 
conditions. The strongest conserved gene signature was 
seen in α-cells which had a total of 32 genes that were 
enriched across all sources including ARX, GC, GCG​, 
IRX2, and TTR​, while δ-cells only possessed 5 conserved 
identity genes (HHEX, LEPR, SEC11C, SST, and TSHZ2). 
Taken together, the assembly of an integrated pancreatic 
islet scRNA-seq dataset with islets from human adult, 
fetal, and SC sources led to the precise definition of islet 
endocrine cell types. This dataset can serve as a tool for 
researchers to understand transcriptomic differences 
between islet cell types across unique maturation states.

Directed differentiation protocols produce 
transcriptionally similar SC‑islets
While several protocols for producing SC-islets have 
been described [25], commonalities and differences in 
their transcriptional profiles are not well understood. To 
explore cellular heterogeneity and benchmark matura-
tion across protocols, SC-β cells, adult-β cells, and fetal-β 
cells were isolated from the combined dataset and re-
clustered (Fig.  2a). A detailed summary of the four dif-
ferentiation protocols explored in this analysis and their 
associated datasets is available in Table S1. Based on 
clustering and Pearson correlation analysis, SC-β cells, 
regardless of the protocol they were derived from, appear 
to be transcriptionally similar when compared to adult 
and fetal β cells (Fig.  2b). Furthermore, SC-β cells from 
all protocols expressed significantly less G6PC2, IAPP, 
HADH, UCN3, CHGB, ADCYAP1 and SIX3 than adult-β 
cells (Fig. 2c). Despite their overall transcriptional simi-
larities, unique transcriptional profiles of SC-β cells from 
differing protocols was still observed (Fig.  2d and Table 
S3). This includes SC-β cells generated by Augsorn-
worawat, et al. expressing higher levels of TTR​, F10, and 
C1QL1, while those generated by Veres, et  al. express 
higher levels of POTEE, CHGA, and ONECUT2. SC-β 
cells generated by Weng, et al. had higher expression of 
NEFM, AMBP, and NCL, while those derived from the 
protocol reported by Balboa, et al. have high expression 
of RPL39, CRYBA2, and CALB2. Further work is needed 
to decipher if these observed differences from each pro-
tocol are important for SC-β cell function. It is important 
to note that Augsornworawat and Veres employed Hues8 
hESC in their differentiation protocol, while Balboa and 
Weng employed the H1 hESC line. It is unclear whether 
these transcriptional differences are due to different 
genetic background of hESCs, culture conditions, cell 

preparations, and/or sequencing platforms. Despite these 
minute differences, the SC-β cells analyzed from these 
four unique datasets appear to be very similar at the tran-
scriptional level.

A similar comparative analysis was performed on 
SC-EC cells from each SC-islet dataset, which are marked 
by high expression of TPH1. From the combined dataset, 
SC-EC cells were isolated and re-clustered (Fig. 2e). The 
expression of key SC-EC marker genes and Pearson cor-
relation analysis suggested that the overall transcriptional 
profile of SC-EC was similar across protocols (Fig. 2f-g). 
Analysis of DEGs revealed key differences between the 
SC-EC cells from different protocols (Fig.  2h). Notably, 
cells derived by Augsornworawat, et  al. had increased 
expression of α-cell markers GCG​, TTR​, and GC; while 
SC-EC cells from Veres, et  al. had the highest expres-
sion of the canonical EC-identity markers SLC18A1, 
DDC, and FEV. Interestingly, the SC-EC cells generated 
by Weng, et al. had the lowest expression of these SC-EC 
cell markers, and SC-EC cells generated by Balboa, et al. 
were unique for having high expression of ribosomal 
genes, similar to the SC-β cells from this study.

We also explored other SC-islet endocrine cell types 
across protocols. DEGs for SC-α, SC-δ, and SC-EC from 
each protocol are highlighted in Table S3. We observed 
few major differences in the transcriptome of SC-α and 
SC-δ cells from the different protocols (Fig. S3). Of note, 
SC-α cells from all four protocols expressed equivalent 
amounts of GCG​ and TTR​ to their human counterparts 
(Fig. S3d). Furthermore, SC-δ cells from each protocol 
were greatly lacking expression of RBP4 compared to 
adult-δ cells (Fig. S3h). In conclusion, these results indi-
cate that SC-endocrine cells derived from different SC-
islet protocols all have similar gene expression profiles to 
one another, with a few notable differences. Further stud-
ies will be necessary to decipher if these transcriptional 
similarities in SC-islet cell types are translated to their 
functionality, and if the minor transcriptional differences 
are due in fact to differences in the differentiation pro-
tocol itself or other experimentally uncontrolled factors 
evident in this analysis of published datasets.

SC‑β cells are transcriptionally more mature than fetal β 
cells
Previous single-cell sequencing studies have shown that 
SC-β cells are transcriptionally immature [8–10]. We 
first characterized maturation in SC-β cells by compar-
ing their global transcriptional landscape to adult and 
fetal β-cells (Fig.  3a). Pearson correlation of the 2000 
most variably expressed β-cell genes revealed that SC-β 
cells had a correlation coefficient of 0.6 compared to 
adult β-cells and increased slightly after transplantation 
(Fig.  3b). Meanwhile the Pearson correlation coefficient 
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of fetal β-cells compared to adult β-cells was just 0.33. To 
gain a better understanding of the unique transcriptional 
profile associated with SC-β cells, we performed pairwise 

comparisons with their primary adult and fetal counter-
parts. DEGs previously characterized in the context of 
β-cells, as well as genes with no previously identified role 

Fig. 2  SC-β cells derived from different protocols possess similar transcriptional profiles relative to adult β cells, see also Fig. S3 & Table S3. a 
UMAP of adult β-cells, fetal β-cells, and SC β-cells clustered and split by their derivation protocol. b Heatmap of Pearson correlation coefficient 
for 1000 most variable expressed genes in β-cells. c Heatmap indicating average expression of β-cell maturation markers. d Heatmap of scaled RNA 
expression indicating top 20 most differentially expressed genes for β-cells derived by unique protocols, fetal β-cells, and adult β-cells. e UMAP 
of SC-EC cells clustered and split by their derivation protocol. f Heatmap of Pearson correlation coefficient for 1000 most variable expressed genes 
in SC-EC cells. g Violin plots indicating expression level of SC-EC identity markers across derivation protocols. h Heatmap of scaled RNA expression 
indicating top 20 most differentially expressed genes for SC-EC cells across protocols
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Fig. 3  SC-β and fetal-β cells lack expression of key transcripts, see also Fig. S4 & Table S4. a UMAP of adult β-cells, fetal β-cells, SC β-cells, and TXP 
SC β-cells clustered. b Pearson correlation coefficient for 2000 most variable expressed genes. c Heatmap of scaled RNA expression indicating top 
50 most differentially expressed genes for adult-β, fetal-β, SC-β cells, and TXP SC-β cells. d Volcano plots indicating all differentially expressed genes 
in SC-β vs adult-β, SC-β vs fetal-β, and fetal-β vs adult-β cells. (Adjusted p-value <0.05) e Violin plots indicating expression level of β-cell maturation 
associated genes in adult-β, fetal-β, SC-β cells, and TXP SC-β cells. f Bar graphs indicating average RNA counts of various exocrine markers in adult-β, 
fetal-β, SC-β cells, and TXP SC-β cells. g Heatmap indicating the scaled expression level of ribosomal genes in adult-β, fetal-β, SC-β cells, and TXP 
SC-β cells
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in β-cell identity or function were found to be enriched 
in either SC-β, adult-β, or fetal-β cells (Fig.  3c-d and 
Table S4). Interestingly, among the DEGs with log2(fold 
change) > 2 enrichment in SC-β cells were the genes 
NEFM, CALB2, NEFL, and STMN1, which all serve an 
important role in neurons.

We characterized the maturation state of SC-β cells 
to their mature, adult counterpart by comparing the 
expression level of well-known β-cell maturation mark-
ers. This included INS, IAPP, FAM159B, CHGB, G6PC2, 
ADCYAP1, MAFA, and HADH which were all expressed 
at lower levels in SC-β cells compared to adult β-cells, 
yet most of these genes were non-existent in fetal β-cells 
(Fig.  3e). Transplantation of SC-islets into mice for an 
extended period led to the increase in expression of 
these maturation markers, as previously reported [10, 
11].  These findings show that human β-cells sourced 
from in-vitro differentiation of hPSCs and those sourced 
from primary adult and fetal islets differ in expression of 
a large number of genes [8, 26–29], including genes well-
established to be associated with β-cell identity [30, 31]. 
Altogether, SC-β cells lack transcriptional maturation 
due not only to global transcriptional disparities, but also 
lower expression of important β cell-maturation genes.

Our analysis also revealed that fetal β-cells possess a 
uniquely immature transcriptional profile. We revealed 
that while fetal β-cells have high expression of INS, 
but they lack expression of many important β-maturation 
markers and have high expression of genes important for 
the exocrine pancreas, including CLPS, CEL, CPA1, and 
CPA2 (Fig.  3e-f ). Further, fetal β-cells have low expres-
sion of  ribosomal genes that are likely necessary for the 
production of peptides (Fig. 3g). Lastly, they have a lower 
fraction of cells expressing genes important for the insu-
lin secretion mechanism (GO: 0032024) and β-cell iden-
tity [32] compared to SC-β and adult β-cells (Fig. S4). 
This data supports the notion that fetal β-cells from 110 
to 122 dpc represent a transcriptional state that is less 
mature than SC-β cells.

SC‑β cells have persistent activity of progenitor 
transcription factors
Next, we set out to determine if the immature transcrip-
tional state of SC-β cells was closely related to a β-cell 
progenitor state, and if we could find evidence of this pro-
genitor state by analyzing the expression and activation 
of transcription factors. Therefore, we filtered our previ-
ously defined DEGs for genes that encode transcription 
factors and observed that both SC-β and fetal-β cells have 
a significantly larger enrichment of transcription factors 
compared to adult-β cells (Fig. 4a-b). To decipher which 
of these transcription factors have a role in specifying 

progenitor states, we filtered all expressed transcription 
factors for those with a previously characterized role in 
β-cell development. This revealed that nearly all tran-
scription factors expressed in β cell-progenitor states 
are expressed in a higher percentage of SC-β cells than 
adult or fetal β-cells (Fig. 4c). The only exception for this 
was MEIS2 which is expressed in a higher percentage of 
fetal and adult β-cells.  To validate this observation, we 
generated SC-islets [33] and compared their expression 
of known progenitor transcription factor to cadaveric 
human islets using RT-qPCR, this revealed similar trends 
as seen in the single-cell analysis (Fig. S5a).

We further explored these transcription factors by 
using regulon analysis [34] to deduce and rank inferred 
gene regulatory networks. The most highly enriched gene 
regulatory networks between SC-β, adult-β, and fetal-β 
cells were identified (Fig.  4d and Table S5). Consistent 
with gene expression data, transcription factors associ-
ated with β-cell progenitor states were most highly active 
in SC-β cells, this includes but is not limited to: FOXA1, 
FOXA2, ONECUT2, PAX4, PBX1, SOX4, and SOX11 
(Fig. 4e-g). To validate the results of this regulatory gene 
network analysis, the expression level of the most active 
transcription factors and their proposed downstream tar-
gets were evaluated (Fig. S5b-c). This analysis revealed 
that transcription factors associated with β-cell pro-
genitor states and their downstream targets were in fact 
enriched in SC-β cells.

Next, we sought to determine if the transplantation of 
SC-β cells into the kidney capsule of mice for 1-month 
or 6-months would reduce the expression of transcrip-
tion factors associated with β-progenitor states, and more 
closely mirror what is seen in adult-β cells. We found that 
nearly every transcription factor associated with β-cell 
development had a significantly lower expression after 
transplantation (Fig. S6a). To ascertain whether transcrip-
tion factor activity was also reduced, we again ran tran-
scription factor regulon analysis on SC-β and transplanted 
SC-β cells, and the most highly enriched regulons between 
both conditions were identified (Fig. S6b and Table S5). 
The average activity of transcription factors associated 
with β-progenitor states FOXA2, ISL1, ONECUT2, PAX4, 
PBX1, PDX1, SOX4, and SOX11 all significantly decreased 
after transplantation (Fig. S6c). Furthermore, the decrease 
in expression and activity of these genes after transplanta-
tion was correlated (Fig. S6d). Collectively, these results 
indicate that SC-β cells have persistent expression of tran-
scription factors associated with β-progenitor states which 
are reduced after transplantation. Additionally, this analy-
sis supports that these transcription factors, especially 
PAX4, PBX1, SOX4, and SOX11, are still actively regulating 
their downstream targets.
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Dysregulated transcription factor activity drives neuronal 
gene program in SC‑β cells
Finally, we sought to ascertain the major gene pro-
grams enriched in SC-β cells that account for their 

transcriptional immaturity. We employed gene set 
enrichment analysis (GSEA) between SC-β cells and 
adult β-cells and found that the top gene ontology (GO) 
terms enriched in SC-β cells were closely associated with 

Fig. 4  SC-β cells have high expression and activity of transcription factors associated with progenitor states, see also Fig. S5, Fig. S6, & Table S5. a 
Volcano plot indicating all expressed transcription factors between SC-β and adult-β cells (Adjusted p-value <0.05). b Volcano plot indicating all 
expressed transcription factors between fetal-β and adult-β cells (Adjusted p-value <0.05). c Bar plots indicating percent of cells expressing known 
islet developmental transcription factors in SC-β, TXP SC-β, adult-β, and fetal-β cells. d Chart indicating most highly enriched regulons in SC-β, 
adult-β, and fetal-β cells. e Heatmap indicating scaled regulon activity of transcription factors expressed in SC-β, adult-β, and fetal-β cells. f UMAP 
of SC-β, adult-β, and fetal-β clustered by regulon activity. g Feature plots indicating expression and activity of β-progenitor transcription factors
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neuronal morphology and function (Fig.  5a-b). β-cells 
have been show to share a variety of similarities with 
neurons including exocytotic machinery [35], GABA 
containing microvesicles [36, 37], Ca2+ stimulated excita-
tion [38], neurofilament extensions [39, 40], and adhesion 
molecules [41]. However, the functional role these neu-
ronal traits play in the development and function of SC-β 
and to the extent that they are expressed has not been 
previously considered.

Exocytosis of insulin-containing granules in β-cells 
is essential to their function, and many of the genes 
involved in this process have a similar role in neuro-
transmission. Therefore, we investigated the expression 
of VAMP2, VAMP3, STX1A, STXBP1, SNAP25, and 
SYT7, which are the essential components of the insulin-
exocytosis machinery, yet we saw no differences in their 
expression between SC and adult β-cells (Fig. 5c). To fur-
ther investigate the neuronal traits enriched in SC-β cells, 

Fig. 5  Transcripts involved in neuronal development and morphology are enriched in SC and fetal β-cells, see also Fig, S7, Fig. S8, & Table S6. a 
Bar chart indicating gene ontology: cellular component enrichment scoring of differentially expressed genes between SC-β and adult-β cells. b 
Bar chart indicating gene ontology: biological process enrichment scoring of differentially expressed genes between SC-β and adult-β cells. c 
Dotplot indicating expression level of genes associated with insulin granule exocytosis. d Panel of violin plots indicating expression level of genes 
(>1 log2FC of SC vs adult β) associated with various neuronal traits between SC, SC-TXP, adult, and fetal β-cells. e RT-qPCR of SC-islets (n=6) at s6d7 
and human cadaveric islets (n=6) indicating fold change (FC) expression relative to TBP. All data are represented as the mean, and all error bars 
represent the s.e.m. Individual data points are shown for all bar graphs. ns, not significant; *P< 0.05, **P< 0.01
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we analyzed the expression level of large gene sets asso-
ciated with axonal, synaptic, and dendritic morphology 
and observed their broad overexpression in SC-β cells 
compared to adult β-cells (Fig. S7a). Our analysis also 
revealed that, compared to both adult and fetal β-cells, 
SC-β cells overexpress genes encoding for neurofilaments 
and their associated proteins involved in axon guid-
ance, genes needed in neural migration, genes essential 
for neurotransmission, and genes necessary for generat-
ing and maintaining action potentials (Fig. 5d). Of inter-
est, SC-β had significant enrichment in the expression 
of genes that play a major role in neuronal development 
including GTF2I, ASCL1, SOX4, and SOX11. These genes 
were compiled into a curated list which defines the neu-
ronal program that is overly enriched in SC-β cells (Table 
S6). We validated this observation by generating SC-islets 
[33] and compared their expression of neuronal markers 
to cadaveric human islets using RT-qPCR, confirming 
that SC-islets expressed neuronal genes at a significantly 
higher level than adult islets (Fig 5e).

To decipher if these neuronal traits expressed widely 
in SC-β cells are biologically relevant or simply the effect 
of their in-vitro differentiation environment, we exam-
ined the neuronal gene program present in fetal β-cells. 
Similarly, when compared to adult β-cells, fetal β-cells are 
enriched for GO terms associated with neuronal mor-
phology and function (Fig. S7b-c). Furthermore, they also 
contain higher expression of genes necessary for the for-
mation of synapses, axons, and dendrites when compared 
to adult β-cells. We also found that SC-β cells that had 
been transplanted into mice showed loss of these previ-
ously described neuronal properties. To further validate 
that this neural gene program was not a result of cell-lines 
used, differentiation protocol, or sequencing platform, 
we analyzed three additional datasets. These additional 
analyses showed that SC-β derived with induced pluri-
potent stem cells (iPSC) [10] and other cell-lines [42], as 
well as the use of the single-nuclei sequencing method 
[12] all shared the same neural gene program when com-
pared to human adult β-cells (Fig. S8). Furthermore, we 
discovered that this neural gene program is also active 
in SC-EC cells (Fig. S7d-f ). Similar to SC-β cells, SC-EC 
cells possess and enrichment for mRNAs involved in 
axon growth, synapse function, and excitability. Despite 
the fact that neonatal and adolescent mouse β-cells pro-
duce serotonin through a TPH1-mediated pathway [43, 
44], we confirmed that SC-β cells do not express TPH1 or 
other known genes associated with serotonin production 
in comparison to SC-EC cells (Fig. S7e). Therefore, we 
concluded that the population of SC-β used throughout 
the analysis were not contaminated with enterochromaf-
fin-like cells. Yet, the fact that this neural gene program 
is shared between SC-β and SC-EC cells is an important 

finding and suggests that this dysfunctional neuronal 
gene program in SC-β cell development may be relevant 
to the generation of EC cells during directed differentia-
tion. All of this suggests that a neuronal gene program is 
a biologically relevant phenomenon of immature β-cells, 
and its removal is essential for the maturation of the SC-β 
cell transcriptional landscape.

Several transcription factors and gene regulatory net-
works are shared in both β-cells and neurons during 
development [45]. We found that the transcription fac-
tors shared in both pancreas and neuron development 
are more highly expressed in SC-β cells than fetal or 
adult β-cells, especially genes of interest PBX1, SOX4, 
and SOX11 (Fig. 6a). To see if persistent activity of pro-
genitor associated transcription factors are activating 
neural gene programs in SC-β cells, we systematically 
analyzed the downstream  target genes of those tran-
scription factors that are conserved in both pancreas and 
neuron development looking to see if they were enriched 
in SC-β cells. We found that the transcription factors 
PBX1, SOX4, PAX4, ISL1, SOX11, SMAD1, NKX2-2, and 
DNMT3A all possessed gene targets involved in neu-
ronal gene programs which were highly active in SC-β 
cells and not present in adult β-cells (Fig.  6b). Further-
more, for PBX1, SOX4, SOX11, and other transcription 
factors, we isolated their top 50 most expressed targets 
in SC-β cells. When these 50 genes were analyzed with 
EnrichR [46–48], the most common GO terms include 
axonal growth cone, synaptic vesicle membrane, neurofi-
brillary tangle, synaptic membrane, dopamine secretion, 
dendritic transport, and other cellular and biological pro-
cesses in neurons (Fig. S9). Lastly, the previously curated 
list of genes defining the neuronal program enriched in 
SC-β was cross referenced with the target genes of all 
active transcription factors in β-cells to determine likely 
transcription factors that are involved in activating this 
neural program. The transcription factors with the most 
predicted targets were nearly all enriched in SC-β cells 
and previously implicated PAX4, SOX11, SOX4, and 
PBX1 shared some of the most target genes with our 
newly defined SC-β neuronal gene program (Fig.  6c). 
We are not surprised to find that β-cells express neural 
transcription factors that play a role in pancreas devel-
opment, however we find it interesting that these tran-
scription factors are highly enriched in SC-β cells and are 
likely contributing to gene regulatory networks that drive 
a neuronal transcriptional program in SC-β cells.

Discussion
As SC-islets have the potential to functionally cure dia-
betes and move into clinic trials, the importance of 
understanding what defines islet and β-cell identity and 
maturation has become increasingly important [25]. 
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Improving our understanding of the differences and com-
monalities in lineage specification could enhance the dif-
ferentiation of hPSCs into islet cells, thereby boosting the 
efficacy of SC-islet therapy. The present study aimed to 

integrate multiple publicly available datasets to identify 
and characterize islet endocrine cell types, including β, α, 
and δ cells from SC-islets, fetal islets, and adult islets. This 
integrated dataset provides a detailed characterization of 

Fig. 6  Transcription factors involved in progenitor β-cell states drive neuronal gene programs, see also Fig. S9 & Table S6. a Bar plots indicating 
percent of cells expressing transcription factors that have a role in both islet and neuron development in SC-β, TXP SC-β, adult-β, and fetal-β cells. b 
Panel of heatmaps indicating expression level of genes that are associated with neuronal traits and are targets of SC-β enriched regulons. c Bar plot 
indicates transcription factors active in β-cells with the most targets of SC-β neural genes (65 genes in total)
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β-cell and all other islet cellular identities across a wide 
range of contexts. This not only distinguishes each cellu-
lar identity but also provides this information across tis-
sue sources. The genetic programs described here could 
be targeted to better understand the acquisition of β-cell 
identity and to improve differentiation and maturation of 
SC-β cells during in vitro differentiation.

This analysis demonstrated that SC-β cells were tran-
scriptionally more similar to adult rather than fetal 
β-cells. This finding is consistent with prior microarray 
and flow cytometry based-analysis [26, 29] but provides 
much greater detail and rigor for β-cell and other cell 
types. Although fetal β-cells express INS, they lack other 
important β-cell machinery and ribosomal genes. Yet, it 
is important to note that the fetal β-cells in this analy-
sis were sequenced only at a single developmental stage 
(110-122 dpc) and it may be possible that fetal, human 
β-cells during late gestation possess a more mature tran-
scriptional signature. Prior work has identified that fetal 
β-cells have higher expression of ISL1, NEUROG3, and 
genes associated with immune function compared to 
adult β-cells [49], and fetal islet maturation is marked 
by loss of polyhormonal state and decreased prolifera-
tive capacity, which occurs at approximately 15 weeks 
post-conception (wpc) [50]. Like SC-β cells [11, 33], fetal 
β-cells are functionally immature compared to adult 
β-cells [26], consistent with the immature gene expres-
sion signature observed in this study. Despite the het-
erogeneity observed in β-cells, we were able to discover 
that β-cells possess a core β-cell identity when compared 
to other endocrine cell types, consisting of expression of 
INS, IAPP, DLK1, PDX1, HADH, and PCSK1. We believe 
the β-cell and other identities defined here will be help-
ful for cellular identification in the field and complements 
prior efforts that have provided definitions of β-cells in 
primary tissues [32, 51].

Several groups have reported differentiation protocols 
that produce SC-islets [25]. This study is focused on pub-
licly available scRNA-seq datasets [8–11] based on pro-
tocols first published by the Rezania/Kieffer [28], Melton 
[29], Millman [52], and Otonkoski [11] groups. While 
there are considerable differences in the reported in vitro 
and in vivo function of cells produced by these protocols, 
the comparability of transcriptional identities of the final 
cellular populations was unclear in the literature. Our 
analysis reveals that in general the transcriptional iden-
tities of all major cell types, including SC-β cells, was 
largely similar among all the protocols. This includes 
very low expression of MAFA and UCN3, indicating that 
development of protocols that can generate cells express-
ing high levels of these maturation markers in vitro is 
still lacking in the field. All differentiation protocols also 
produced enterochromaffin-like cells that were absent 

in fetal and adult primary tissue samples. Furthermore, 
there may indeed still be differences in the chromatin 
accessibility signature of cells produced from different 
in vitro differentiation protocols, which we expect to be 
answered in the near future as this line of investigation is 
gaining in attention [12, 42].

This study also found that that SC-β cells differed from 
adult β-cells through expression of neuronal and pro-
genitor transcriptional programs. While a substantial 
fraction of genes are normally expressed by both β-cells 
and neurons [53], such as synaptic-like microvesicles [36] 
and gamma aminobutyric acid (GABA) [54], the extent 
of expression of these genes is greatly elevated in SC-β 
and fetal β-cells. Furthermore, SC-β cells had enriched 
expression of progenitor-associated transcription factors 
[55–57], such as PAX4, PBX1, SOX4, and SOX11, and 
these transcription factors were predicted to be among 
the most active in SC-β cells. Interestingly, SOX4 and 
SOX11 are also of critical importance in pan-neuronal 
protein expression [58]. Future studies could look at the 
relationship of these transcriptional identities to epi-
genetic states, as recent papers have demonstrated the 
importance of chromatin accessibility on SC-β cell iden-
tity [12, 42] and another prior study has shown that that 
pancreatic β-cells exhibit an active chromatin signature 
similar to neural tissues that appear to be dynamically 
regulated by Polycomb repression programs [59].

This resource will serve as a tool for hypothesis gen-
eration in hopes of further optimizing protocols for the 
generation of SC-β cells. Future studies should work 
to understand the effects of perpetual expression and 
activation of progenitor transcription factors on SC-β 
cell function and if it is possible to enhance the matura-
tion of SC-β cells by inhibition of these progenitor tran-
scriptional networks. Furthermore, persistent activity of 
progenitor transcription factors in SC-β cells should be 
investigated to determine if they are responsible for the 
abnormal neural gene network identified in this study. 
To this point, further studies are needed to understand 
to what extent this neural gene program, ever present 
in SC-β cells, is translated to their functional proper-
ties. In addition, our finding that SC-EC and SC-β cells, 
despite being distinct cell types, share commonalities 
in this irregular neural gene program is interesting and 
presents the hypothesis that this dysregulated neural 
transcriptional profile present in SC-β development may 
contribute to the generation of SC-EC cells. Lastly, while 
transplantation of SC-β cells greatly refines the transcrip-
tional profile of these cells, the mechanisms by which this 
is achieved still needs to be worked out.

Our analysis provides novel insights into the identity 
and characteristics of islet endocrine cells and high-
lights the importance of SC-β cells in understanding 
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development and function. The findings contribute to 
a better understanding of the differences and similari-
ties between SC, fetal, and adult islet cells and shed light 
on the potential of SC-β cells in diabetes treatment. We 
hope that these findings will allow for future studies using 
more robust hypothesis impacted by our novel findings.

Limitations of study
A limitation of this study is that we relied on published 
datasets for our analysis. This was done because we 
believed that a comprehensive and rigorous analysis and 
comparison of the best-in-class single-cell RNA sequenc-
ing data would lead to novel insights into islet identity 
and transcriptional regulation.

Experimental procedures
scRNA‑seq datasets
Pancreatic islet scRNA-seq datasets from healthy pri-
mary adult, primary fetal, stem-cell derived islets, and 
transplanted stem-cell derived islets, were compiled 
from multiple published sources [8–11, 14–18]. Pri-
mary adult islet datasets from 19 donors, 15 male and 
4 female aged between 19 and 56 years of age were 
obtained from GSE84133, GSE101207, and GSE114297. 
Primary fetal islets datasets from 9 donors, 3 male and 
6 female aged between 110 and 122 days post concep-
tion were obtained from of the Human Gene Expres-
sion Development Atlas (dbGaP accession number 
phs002003), generated and analyzed by the laboratories 
of Drs. Ian Glass, Jay Shendure, and Cole Trapnell, sup-
ported by funding from the National Institutes of Health 
to Dr. Glass (HD000836), Brotman Baty Institute for 
Precision Medicine to Dr. Shendure and Dr. Trapnell, 
the Paul G. Allen Frontiers Foundation to Dr. Shen-
dure and Dr. Trapnell, and the Howard Hughes Medi-
cal Institute to Dr. Shendure. SC-islet datasets, in-vitro 
and those transplanted, were obtained from GSE151117, 
GSE114412, GSE143783, and GSE167880. All SC-islet 
datasets employed were accumulated from SC-islets that 
had been cultured to their mature endpoint. All other 
information pertaining to the raw data employed in this 
analysis can be found in Table S1.

Quality control and clustering of scRNA‑seq datasets
RStudio [v1.3.1093] running R [v4.0.3] and the Seu-
rat [v4.3.0] [60] package were used to perform all initial 
analyses. Imported datasets were aligned and annotated 
with the reference human genome (hg38) from the 
EnsDb.Hsapeins.v86 database [61]. Poor quality cells 
including dead cells, doublets and poorly sequenced cells 
were excluded from this study. Briefly, dead, or apop-
totic cells were excluded by filtering out cells containing 
high mitochondrial counts. Doublets were excluded by 

removing cells with exceedingly high RNA counts. Poorly 
sequenced cells were removed by excluding cells with 
low unique RNA features and low total RNA features. 
Thresholds for filtering poor quality cells of each indi-
vidual dataset can be found in Table S1 and Fig. S1. Data-
sets obtained from SC-islet cells transplanted into mice 
required an additional removal of host cells via exclusion 
of cells expressing TTC36, a kidney gene that aligns to 
both the mouse and human genome. Some datasets did 
not contain mitochondrial genes, therefore mitochon-
drial genes were removed from all datasets, prior to fur-
ther downstream analysis. When applicable, meta data 
information including original dataset, donor age, donor 
BMI, and donor gender were added.

Gene expression data from each individual dataset was 
processed using ScaleData and NormalizeData to adjust 
gene counts. Each individual scRNA-seq dataset was 
then clustered by employing the standard Seurat work-
flow which included the use of the FindNeighbors and 
FindClusters functions with 20 dimensions and resolu-
tions ranging from 0.4 - 4.5 to determine distinct clus-
ters. Cell types were identified by performing differential 
gene expression analysis using FindAllMarkers (Fig. S2). 
Clusters of cells with high expression of endocrine 
marker gene CHGA were isolated using subset for further 
analysis.

Integration of datasets and identification of endocrine cell 
types
Subsequently, we performed integration and normaliza-
tion using the Seurat [v4.3.0] [60] package.

Integration of endocrine cells from each dataset was 
performed by combining subset endocrine datasets into 
a single Seurat object using FindIntegrationAnchors. Cell 
types from multiple datasets were assigned based on the 
2000 most variably expressed genes. Clustering was per-
formed using RunPCA and FindClusters with parameters 
adjusted to a resolution of 2 and dimensions of 30. The 
top genes that separate each cluster within the integrated 
islet UMAP were identified with FindMarkers and these 
gene lists, included in Table S1, were used to designate 
the different islet endocrine cell types. Fetal islets con-
tained a population of acinar cells with expression of 
CHGA, these cells were not included in further analysis. 
Endocrine cell type identifiers were added to metadata.

Comparative expression analysis
Differential gene expression analyses comparing cell 
types of various conditions were computed using the 
wilcox test method of FindMarkers. The expression level 
of differentially expressed genes were visualized using 
FeaturePlot, DoHeatmap, VlnPlot, and DotPlot. Vol-
cano plots were generated by performing differential 
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gene expression analysis across two conditions and using 
EnhancedVolcano of the EnhancedVolcano [v1.8.0] [62] 
package. Heatmaps indicating average expression were 
generated by computing the average values across two or 
more conditions using AverageExpression and visualized 
with the heatmap.2 function of gplots [v3.1.3] package.

Inferred gene regulatory network analysis
To perform inferred regulatory gene network analysis, 
we employed the SCENIC [v0.9.18] command line inter-
face (CLI) to construct gene regulatory networks from 
our scRNA-seq data [34]. A loom object was created 
from the Seurat object which includes raw RNA counts 
and the assigned metadata of each cell. This loom object 
was used as input for the CLI workflow to score network 
activity. Candidate regulons, which includes a list of 
transcription factors for hg38 along with motif annota-
tions and rankings, were downloaded from cisTargetDB 
(https://​resou​rces.​aerts​lab.​org/​cista​rget/). The activ-
ity of each regulon was calculated using area under the 
curve (AUC) calculations to assess significant recovery of 
a set of genes for individual cells. To generate regulons 
enriched in one group of cells a regulon specificity score 
(RSS) was computed. RSS and scaled expression of regu-
lon activity was visualized in R using the plotRSS_oneSet 
and ComplexHeatmap functions.

Gene set enrichment analysis
Gene set enrichment analyses were performed using the 
singleseqgset [v0.1.2.9000] package (https://​github.​com/​
arc85/​singl​eseqg​set) and the EnrichR interactive website 
[46]. For singleseqgset package, we used variance inflated 
Wilcoxon rank sum testing to determine enrichment of 
gene sets across specified conditions. All ontology gene 
sets in the Human MSigDB Collection [63–65] were 
tested. For analysis using EnrichR, combined enrichment 
scores were computed and visualized based on Gene 
ontology gene sets. Combined enrichment scores were 
computed using Fisher exact test and multiplying that by 
the z-score of the deviation from the expected rank.

SC‑islet differentiation
The HUES8 (RRID: CVCL_B207) human embryonic 
stem cell (hESC) line (authenticated August 2022) was 
provided by Douglas Melton (Harvard University) [29]. 
All hESC work was approved by the Washington Uni-
versity Embryonic Stem Cell Research Oversight Com-
mittee (approval no. 15-002) with appropriate conditions 
and consent. Hues8 cells (passage 78) were removed 
from liquid nitrogen, unthawed, and plated with mTeSR1 
(StemCell Technologies; 05850) which was used for the 
culture of undifferentiated stem cells. All cell culture 
was maintained in a humidified incubator at 5% CO2 

and 37 °C. Cells were passaged every 4 days by washing 
cell with phosphate-buffered saline (PBS) and incubat-
ing with TrypLE at 0.2 ml cm−2 (Gibco; 12-604-013) for 
10 min or less at 37 °C. Dispersed cells were then mixed 
with an equal volume of mTeSR1 supplemented with 
10 µM Y-27632 (Pepro Tech; 129382310MG). Cells were 
counted on Vi-Cell XR (Beckman Coulter) and spun at 
300g for 3 min at room temperature (RT). The super-
natant was aspirated, and cells were seeded at a density 
of 0.8 × 105 cm-2 for propagation onto Matrigel (Corn-
ing; 356230)-coated plates in mTeSR1 supplemented 
with 10 µM Y-27632. After 24 h, medium was replaced 
daily with mTeSR1 without Y-27632. SC-islet differentia-
tion was performed as described previously [33]. Briefly, 
hESCs were seeded at a density of 6.3 × 105 cells cm-2. 
Twenty-four hours later, the mTeSR1 was replaced with 
differentiation medium supplemented with small mol-
ecules and growth factors.

SC‑islet and primary islet culture
After 7 days in stage 6 of the differentiation protocol, 
cells were dispersed from the culture plate with Try-
pLE (Gibco; 12-604-013) for up to 10 min at 37 °C. 
The cells were mixed with an equal volume of stage 6 
enriched serum-free medium (ESFM), centrifuged at 
300g, and resuspended in ESFM at a concentration of 
1 million cells ml−1. Five milliliters of this solution were 
pipetted in each well of a six-well plate and placed on 
an orbital shaker (Orbi-Shaker CO2, Benchmark Sci-
entific) at 115 r.p.m. to form SC-islet clusters. These 
clusters were maintained by aspirating and replacing 
4 ml of ESFM every 2 days. Primary human islets were 
acquired as clusters and shipped from Prodo Laborato-
ries, which required consent from the donor’s relatives 
for use in research. Consent information can be found 
on their website (https://​prodo​labs.​com/​human-​islets-​
for-​resea​rch). These islets have been refused for human 
islet transplants and meet specific criteria for research 
use. Our study consists of six donors. Upon arrival, 
islets were transferred into a six-well plate on an orbital 
shaker at 115 r.p.m. and maintained with 4 ml per well of 
CMRL1066 Supplemented medium (Corning; 99-603-
CV) with 10% heat-inactivated fetal bovine serum 
(Gibco; 26140-079).

Real‑Time qPCR
RNA was extracted from primary islets 2 days after 
arrival and from SC-islets (Hues8 passage 80) at s6d7 
with the RNeasy Mini Kit (74016, Qiagen). Samples were 
treated with a DNase kit (79254, Qiagen) during extrac-
tion. The High Capacity cDNA Reverse Transcriptase Kit 
(4368814, Applied Biosystems) was used to synthesize 
cDNA on a thermocycler (A37028, Applied Biosystems). 

https://resources.aertslab.org/cistarget/
https://github.com/arc85/singleseqgset
https://github.com/arc85/singleseqgset
https://prodolabs.com/human-islets-for-research
https://prodolabs.com/human-islets-for-research
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The PowerUp SYBR Green Master Mix (A25741, Applied 
Biosystems) was used on a QuantStudio™ 6 Pro Real-
Time PCR System (A43180, Applied Biosystems), and 
real-time qPCR results were analyzed using a ΔΔCt 
methodology. TBP was used as a housekeeping gene. 
Primer sequences were as follows:

NCBI GENE 
SYMBOL

NCBI 
GeneID

GenBank 
Accession

FWD 
Sequence

REV 
Sequence

TBP 6908 NM_003194 GCC​ATA​AGG​
CAT​CAT​TGG​
AC

AAC​AAC​AGC​
CTG​CCA​CCT​
TA

FOXA2 3170 NM_153675 GGA​GCA​
GCT​ACT​ATG​
CAG​AGC​

CGT​GTT​CAT​
GCC​GTT​CAT​
CC

SOX4 6659 NM_003107 AGC​GAC​
AAG​ATC​CCT​
TTC​ATTC​

CGT​TGC​CGG​
ACT​TCA​CCT​T

PAX4 5078 NM_006193 ATA​CCC​GGC​
AGC​AGA​
TTG​TG

AAG​ACA​CCT​
GTG​CGG​TAG​
TAA​

ONECUT2 9480 NM_004852 GGA​ATC​
CAA​AAC​CGT​
GGA​GTAA​

CTC​TTT​GCG​
TTT​GCA​CGC​
TG

PBX1 5087 NM_002585 CAT​GCT​GTT​
AGC​GGA​
AGG​C

CTC​CAC​TGA​
GTT​GTC​TGA​
ACC​

NEFL 4747 NM_006158 ATG​AGT​TCC​
TTC​AGC​TAC​
GAGC​

CTG​GGC​ATC​
AAC​GAT​CCA​
GA

STMN1 3925 NM_203401 TCA​GCC​CTC​
GGT​CAA​
AAG​AAT​

TTC​TCG​TGC​
TCT​CGT​TTC​
TCA​

BASP1 10409 NM_006317 AGG​GGA​
ACC​CAA​
AAA​GAC​
TGA​

GGT​GTG​GAA​
CTA​GGC​GCT​
TC

CALB2 794 NM_001740 ACT​TTG​ACG​
CAG​ACG​
GAA​ATG​

GAA​GTT​CTC​
TTC​GGT​TGG​
CAG​

Statistics
Statistical analysis was performed by 2-tailed unpaired 
t test calculated by GraphPad Prism (8.0.1). All data are 
presented mean ± SEM. p < 0.05 was considered statisti-
cally significant. Data analysis was not blinded.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12864-​024-​10013-x.

Additional file 1: Fig. S1. Quality control of raw sequencing data from 
each individual islet dataset, related to Fig. 1. Violin plots indicating: the 
percent of mitochondrial RNA counts that make up the total RNA count 
(percent.mt), the total unique RNA features (nFeature_RNA), and the total 
number of RNA counts (nCount_RNA). Each datapoint corresponds to an 
individual cell. Indicated thresholds are such that green area indicates cells 
that were kept for further analysis while the red area indicates cells that 
were removed for quality control purposes. More detailed information 

can be found in Methods section and Table S1. Fig. S2. Independ-
ent clustering of scRNA-seq data from 11 unique pancreatic islet 
datasets, related to Fig. 1. UMAPs generated from individual scRNA-seq 
datasets after quality control and prior to removal of exocrine and other 
CHGA- populations. Fig. S3. SC-α and SC-δ cells derived from different 
protocols have distinct transcriptional differences compared to their 
adult counterparts, related to Fig. 2. (a) UMAP of adult α-cells, fetal 
α-cells, and SC-α cells clustered and split by their derivation protocol. 
(b) Heatmap of Pearson correlation coefficient for 1000 most variable 
expressed genes. (c) Heatmap of scaled RNA expression indicating top 
20 most differentially expressed genes for α-cells derived by unique 
protocols, fetal α-cells, and adult α-cells. (d) Violin plots indicating 
expression level of α-cell identity markers. (e) UMAP of adult δ-cells, 
fetal δ-cells, and SC-δ cells clustered and split by their derivation 
protocol. (f ) Heatmap of Pearson correlation coefficient for 1000 most 
variable expressed genes. (g) Heatmap of scaled RNA expression 
indicating top 20 most differentially expressed genes for δ-cells derived 
by unique protocols, fetal δ-cells, and adult δ-cells. (h) Violin plots indi-
cating expression level of δ-cell identity markers. Fig. S4. Fetal β-cells 
lack expression of important β-cell machinery, related to Fig. 3. (a) Dot 
plot indicating proportion of cells expressing and average expression 
of genes involved in insulin secretion. (b) Dot plot indicating propor-
tion of cells expressing and average expression of genes involved in 
β-cell identity. Fig. S5. Validation of enriched regulons in SC and fetal 
β-cells through expression of transcription factor target genes, related 
to Fig. 4. (a) RT-qPCR of SC-islets (n=6) at s6d7 and human cadaveric 
islets (n=6) indicating fold change (FC) expression relative to TBP. (b) 
Violin plots indicating expression level of transcription factors that have 
enriched regulon activity. (c) Violin plots indicating expression level of 
highly expressed transcription factors targets associated with indicated 
regulon. All data are represented as the mean, and all error bars repre-
sent the s.e.m. Individual data points are shown for all bar graphs. ns, 
not significant; *P< 0.05, **P< 0.01,***P< 0.001. Fig. S6. Expression and 
activity of progenitor transcription factors decreases in SC-β cells after 
transplantation, related to Fig. 4. (a) Line graphs indicating decrease 
in average expression of known transcription factors associated with 
β-cell development after transplantation of SC-β cells. (b) Chart indicat-
ing highest predicted active regulons in SC-β versus transplanted SC-β 
cells. (c) Line graph indicating decrease in average activity of known 
β-cell progenitor transcription factors after transplantation of SC-β 
cells. (d) UMAP of SC-β and SC-β TXP cells clustered by RNA expression 
and feature plots indicating expression and activity of β-progenitor 
transcription factors. Fig. S7. Transcripts involved in synaptic function 
are enriched in SC-β, fetal β-cells, and SC-EC cells, related to Fig. 5. (a) 
Heatmap indicating average expression of genes associated with axon, 
synapse, and dendrite formation between SC, SC-TXP, adult, and fetal 
β-cells. (b) Bar chart indicating gene ontology: cellular component 
enrichment scoring of differentially expressed genes between fetal-β 
and adult-β cells. (c) Bar chart indicating gene ontology: biological 
process enrichment scoring of differentially expressed genes between 
fetal-β and adult-β cells. (d) Integrated UMAP of all SC/SC-TXP β and 
EC cells. (e) Violin plots indicating expression level of genes associated 
with serotonin machinery in SC/SC-TXP β and EC cells. (f ) Panel of 
violin plots indicating expression level of genes associated with various 
neuronal traits between SC-β, SC-EC, and adult-β cells. Fig. S8. Valida-
tion of neural gene program using additional datasets, related to Fig. 5. 
(a) Integrated endocrine islet UMAP of cells from SC-islets derived from 
an IPSC cell-line (Augsornworawat et al. 2020), SC-islets derived from 
the H1 hESC cell-line (Zhu et al. 2023), SC-islets derived from the Hues8 
hESC cell-line and sequenced using single-nuclei RNAseq method 
(Augsornworawat et al. 2023), and human adult islet cells. 7 cell 
types were identified. Enterochromaffin-like (EC), Exocrine (Exo). (b) 
Integrated endocrine islet UMAP grouped by their source. (c) Panel of 
violin plots indicating expression level of genes associated with various 
neuronal traits between adult β-cells and populations of SC-β derived 
with unique cell-lines and sequencing platforms. Fig. S9. EnrichR iden-
tifies neuronal morphological and biological gene sets enriched in 
gene targets of implicated transcription factors, related to Fig. 6. (a) 
High Enrichr scoring GO: Cellular Component terms associated with the 

https://doi.org/10.1186/s12864-024-10013-x
https://doi.org/10.1186/s12864-024-10013-x


Page 16 of 18Schmidt et al. BMC Genomics          (2024) 25:105 

top-50 expressed gene targets of indicated regulon. (b) High Enrichr scor-
ing GO: Biological Process terms associated with the top-50 expressed 
gene targets of indicated regulon.

Additional file 2: Table S1. Differentiation Protocols Summary, Quality 
Control, Filtering, and Integrating Islet Endocrine Cells.

Additional file 3: Table S2. Core Endocrine Cell Identity for β, α, δ, and 
EC-cells.

Additional file 4: Table S3. Differentially Expressed Genes between SC-
islet protocols for β, α, δ, and EC-cells.

Additional file 5: Table S4. Differentially Expressed Genes between SC-β, 
Adult-β, and Fetal-β cells.

Additional file 6: Table S5. Differentially Enriched Regulatory Networks in 
β-Cells Between Various Sources.

Additional file 7: Table S6. Genes Characterizing Neural Gene Program 
Enriched in SC-β Cells.
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