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The Nrf2 transcription factor is a master regulator of the cellular response to oxidative stress, and 

Keap1 is its primary negative regulator. Activating Nrf2 by inhibiting the Nrf2–Keap1 protein–

protein interaction has shown promise for treating cancer and inflammatory diseases. A loop 

derived from Nrf2 has been shown to inhibit Keap1 selectively, especially when cyclized, but 

there are no reliable design methods for predicting an optimal macrocyclization strategy. In this 

work, we employed all-atom, explicit-solvent molecular dynamics simulations with enhanced 

sampling methods to predict the relative degree of preorganization for a series of peptides cyclized 

with a set of bis-thioether “staples”. We then correlated these predictions to experimentally 

measured binding affinities for Keap1 and crystal structures of the cyclic peptides bound to Keap1. 

This work showcases a computational method for designing cyclic peptides by simulating and 

comparing their entire solution-phase ensembles, providing key insights into designing cyclic 

peptides as selective inhibitors of protein–protein interactions.

Graphical Abstract

INTRODUCTION

Cyclic peptides (CPs) are a privileged chemical space in drug design. Their ability to 

position functional groups into a three-dimensional (3D) binding epitope allows them 

to modulate protein–protein interactions (PPIs) with high affinity and specificity.1–3 CP 

natural products and artificial CP libraries are common sources for new PPI inhibitors, 

yielding exciting new clinical candidates.4 While these approaches can be successful, 

computational design approaches would greatly accelerate the development of CP drugs. 

Baker and colleagues have reported methods for designing well-structured head-to-tail CPs 

and recently extended their methodology to designing CPs with greater passive membrane 

permeability.5,6 However, these efforts have been limited to well-structured head-to-tail 

CPs with natural amino acids and their enantiomers, and they have not yet succeeded 

in the routine design of PPI inhibitors. As an alternative to head-to-tail cyclization, 

cysteine alkylation reactions allow for improved rational design and library development 

for CP discovery,7–11 and they can induce a variety of secondary structures in peptides 

to improve affinity and specificity.12 For example, cross-linking using cysteine alkylation 

increased α-helicity, bioactivity, and cell permeability for a series of BH3 peptide-derived 
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MCL-1 ligands.13,14 The Kritzer group has also used cysteine alkylation with ortho-, 

meta-, and para-dibromomethylbenzene linkers, originally described by Timmerman et 

al.,15 for “diversity-oriented stapling” in the development of helical and nonhelical PPI 

inhibitors.10,12,15 However, to date, such strategies have rarely been performed without 

computational methods to guide them. It remains impossible to predict computationally 

which non-natural linker will best stabilize a desired CP conformation, particularly for 

nonhelical binding epitopes.

Indeed, accurate prediction of structural ensembles is one of the major challenges in 

designing CPs as PPI inhibitors. NMR data indicate that even relatively structured CPs 

interconvert among several conformations in solution.16,17 Thus, beyond just predicting 

a single low-energy structure, understanding the full structural ensembles is essential for 

the accurate design of structured CPs. The primary difficulty in simulating CP structural 

ensembles is in ensuring sufficient sampling of the conformational space because CPs have a 

uniquely rugged energy landscape.18,19 In recent years, the Lin group has applied molecular 

dynamics (MD) methods with enhanced sampling to simulate conformational ensembles of 

head-to-tail CPs.20–22 The work presented here expands this method to CPs with several 

linkers produced by alkylating cysteines. Also, for the first time, we directly applied these 

methods to the design of a PPI inhibitor.

Here, we apply these expanded methods to the PPI between nuclear factor-erythroid 2 

p45-related factor 2 (Nrf2) and Kelch-like ECH-associated protein-1 (Keap1).23–26 Nrf2 

is a transcription factor that binds to the antioxidant response element enhancer sequence 

and activates more than 200 genes that encode for cytoprotective proteins, which attenuate 

cellular injury from oxidative stress.23 When no chemical stress is present, Nrf2 is bound to 

Keap1 in the cytosol. However, oxidative stress induces intramolecular and intermolecular 

disulfide formation for cysteine-rich Keap1, releasing Nrf2 from Keap1 binding. Nrf2 then 

translocates to the nucleus and activates the antioxidant response.25,27,28 The Nrf2 activator 

dimethyl fumarate is used clinically to treat psoriasis and relapsing remitting multiple 

sclerosis,29 and sulforaphane and bardoxolone methyl are Nrf2 activators currently going 

through stages of clinical trials for kidney failure and for rheumatoid arthritis.30–32 Nrf2 

activators have also been tested as potential therapies for other pathologies including cancer, 

cardiovascular, respiratory, renal, digestive, metabolic, auto-immune, and neurodegenerative 

diseases.33,34 Despite their wide use, these Nrf2 activators have limited target specificity 

because they are electrophilic compounds that react with the redox-sensitive cysteines 

in Keap1. Therefore, these compounds can also react with cysteines in other proteins, 

producing off-target effects.26 Inhibitors that can selectively target the Nrf2–Keap1 PPI, 

rather than targeting redox-sensitive cysteines, could lead to improved treatments with fewer 

side effects.

Previous studies have used Nrf2–Keap1 as a testing ground for designing CPs and have 

developed CP inhibitors with nanomolar affinity for Keap1. Begnini et al. were able to 

improve the potency of a 4 μM macrocyclic, natural product-derived inhibitor to 30–70 

nM by first using molecular docking to select smaller sets of compounds for synthesis and 

then performing iterative structure–activity relationship studies.35 A key loop of Nrf2 at 

its Keap1 binding interface, sequence 76LDEETGEFL84 with 79ETGE82 as the minimum 
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binding sequence,24,36,37 was used by several groups to develop CP inhibitors of Keap1. 

Steel et al. used rational design to cyclize the native Nrf2 binding loop with a disulfide 

bridge or a perfluoroaryl linker.38 They also substituted Glu78 with proline. These changes 

resulted in a Ki improvement from 1400 to 6.1 nM for the Nrf2–Keap1 interaction. Recently, 

Whitty, Allen, and colleagues reported the design of CP inhibitors using data from X-ray 

crystal structures and machine learning, which exposed a trade-off between preorganization 

and strain.39 These computational methods were able to rationalize structure–activity 

relationships but not to predict high-affinity binders.

In this study, we sought to develop computational methods that could guide the design of 

CPs that mimic the bound conformation of the Keap1-binding loop of Nrf2, 77DEETGE82 

(Figure 1A).24 Computational alanine scans show that Glu79, Thr80, and Glu82 make 

relevant contributions to binding with 4.4, 0.5, and 3.8 kcal/mol to the total binding 

ΔΔG, respectively.40–42 Alanine scanning mutagenesis measurements have estimated the 

interaction energy for Glu79, Thr80, and Glu82 to be 4.3, 2.0, and 3.0 kcal/mol.43 The 

amide proton in Gly81 forms an important intramolecular interaction to the backbone 

carbonyl of Asp77 and stabilizes the bound conformation (Figure 1A).36 Figure 1B 

shows the backbone torsional angles of DEETGE in its Keap1-bound conformation. These 

torsional angles represent the desired ETGE backbone conformations for our CP designs. 

A key assumption for our approach is that CPs with structural ensembles that preorganize 

the ETGE region toward these specific torsional angles will have better binding affinities 

for Keap1. Similar assumptions are common in medicinal chemistry and often lead to 

high-affinity ligands.3

In this work, we applied all-atom, explicit-solvent MD simulations and enhanced 

sampling methods to nine designed peptide sequences containing the DEETGE epitope 

(or derivatives) with various linkers (Figure S1) to predict their relative degree of structural 

preorganization. We then performed experimental binding assays and X-ray crystallography 

to verify whether these predictions indeed correlated with the experimentally measured 

binding affinities and Keap1-bound structures. By employing this newly developed method, 

we were able to accurately predict high-affinity CP binders to Keap1.

METHOD

Bias-Exchange Metadynamics Molecular Dynamics Simulations.

To overcome the difficulty in conformational sampling of CPs, the Lin group developed 

a method that incorporates bias-exchange metadynamics (BE-META) simulations44–46,49 

tailored to CPs, principal component analysis (PCA),47 and a modified density peak-

based cluster analysis to provide a converged set of clusters that describes the entire 

conformational ensemble.48 Sampling was enhanced by identifying essential transitional 

motions that involved coupled two-dihedral changes that represent the slowest degrees of 

freedom for the peptide’s motions.20 As developed in our previous work, we performed 

BE-META simulations of the CP systems here with two-dimensional (2D) biases of (φi, 

ψi) and (ψi, φi+1) to enhance the coordinated torsional motions and help the simulations 

sample thermodynamically relevant conformations in our BE-META simulations. In 

preliminary simulations, we noticed that CPs were getting stuck in very few and consistent 
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conformations, even when we biased the coordinated backbone torsional motions. This was 

not observed in prior work, which used head-to-tail cyclic peptides, so we hypothesized 

that adding replicas with biased torsional motions in the linkers was needed to promote 

more comprehensive sampling of the conformational landscape. To obtain the equilibrium 

structural ensembles for an unbiased data analysis, we added five neutral replicas, which 

were allowed to exchange conformations with other replicas but did not have any biases 

themselves.

For every simulated CP, two initial random conformations were built and two independent 

sets of BE-META simulations starting from these conformations were performed. We then 

performed dihedral principal component analysis47 (see below) and projected the structures 

in the 2D principal component space. Convergence was considered satisfactory once a 

normalized integrated product between the density distributions in the principal component 

space between the two independent trajectories was 0.9 or above.50,51 The simulation 

duration ranged from 100 to 500 ns, depending on when the duplicate simulations reached 

convergence.

The GROMACS 2018 package was used to perform all simulations.52 The RSFF2 force 

field and the TIP3P water model were used to model each CP.53,54 The RSFF2 force field 

was parametrized using a coil library of the 20 natural amino acids, intending to capture 

their intrinsic structural preferences.53 A generalized AMBER force field (GAFF) was used 

for the perfluoroaryl (pfl), ortho-dimethylbenzene (ortho), meta-dimethylbenzene (meta), 

and para-dimethylbenzene (para) linkers (Figure S1A–D).55 The Antechamber program in 

AmberTools was used to generate partial atomic charges for each linker (Figure S2) as 

described in the charge generating protocol described in the Supporting Information.56

Initial structures were solvated in a cubic box of pre-equilibrated water with a minimum 

distance between the peptide and the walls of the box set to 1.0 nm. The steepest descent 

algorithm was used to minimize the solvated structure. Upon minimization, the system 

was equilibrated in two stages: First, all peptide heavy atoms were position-restrained, and 

50 ps of NVT simulation at 300 K and 50 ps of NPT simulation at 300 K and 1 bar 

were performed. In the second stage, the position restraints were removed, and the same 

sequence of NVT and NPT simulations was performed for a second time, this time for 

100 ps each. BE-META production runs were then performed in the NPT ensemble, at 

300 K and 1 bar, with a 2 fs time step, and data were recorded every 500 steps (every 1 

ps). The last 100 ns of these BE-META production runs was used for data analysis. All 

simulations were run using the leapfrog algorithm, with water geometry maintained using 

SETTLE and hydrogen-containing bonds constrained to equilibrium lengths using LINCS. 

The nonbonded interaction cutoff was set to 1.0 nm, with coulombic interactions beyond 

the cutoff computed using particle mesh Ewald summation with a Fourier spacing of 0.12 

nm and cubic interpolation. Dispersion corrections for both the energy and pressure were 

applied to the long-range van der Waals interactions. Temperature was controlled by velocity 

rescaling with a coupling time constant of 0.1 ps. A Parrinello–Rahman barostat was used 

for pressure control, with a coupling time constant of 2.0 ps and isothermal compressibility 

of 4.5 × 10−5 bar−1. Files describing how to run BE-META simulations of cyclic peptides 

can be found on GitHub (https://github.com/ysl-lab/CP_tutorial).
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Analysis of Predicted Structural Ensembles.

Dihedral Principal Component Analysis and Cluster Analysis.—Dihedral 

principal component analysis, followed by cluster analysis, was performed on the neutral 

replicas in the BE-META simulations to characterize the structural ensemble of the CPs. 

Principal component analysis (PCA) is a well-established approach for dimensionality 

reduction without significant information loss. When attempting to account for essential 

dynamics of the system on a low-dimensional free energy landscape, internal coordinates 

such as backbone dihedral angles are favored over Cartesian coordinates since the latter 

tend to reflect the dominant overall motion rather than the much smaller internal motion 

of the protein.57 Therefore, to employ a sensitive metric to separate conformations for a 

CP owing to its circular nature, we used the dihedral angle principal component analysis 

(dPCA)57,58 with the Φ and Ψ angles involved in each CP. First, we calculated the backbone 

φ and ψ dihedral angles for the entire trajectories. We then performed a dihedral angle PCA 

(dPCA)57,58 utilizing the cosines and sines of the φ and ψ dihedral angles of all amino acids 

followed by a grid-based density peak-based clustering to quantify the population of each 

cluster.59 During the clustering, the 2D principal subspace along principal components 1 and 

2 was first divided into 200 × 200 grids. Cluster analysis was performed only on the grid 

subsections with data populations larger than 0.1%. To describe the convergence behavior 

of each enhanced sampling simulation, we monitored the overlap of probability densities 

between the two independent sets of BE-META simulations as a function of the simulation 

time. The normalized integrated product of the population densities in the 2D principal 

subspace was obtained to test for convergence. Convergence was considered satisfactory 

once a normalized integrated product50 between the last 100 ns of the two independent 

trajectories was found to be 0.9 or above.,51 Scripts to perform dihedral principal component 

analysis can be found on GitHub (https://github.com/ysl-lab/CP_tutorial).

Mimicry Analysis.—To evaluate how well each CP preorganized the ETGE residues, for 

each frame sampled in a CP simulation, we first aligned the backbone atoms of the ETGE 

region of the CP to the backbone atoms of the ETGE region of Nrf2 bound to Keap1 (PDB 

ID: 2FLU)24 and computed a backbone root-mean-square deviation (RMSD) value for that 

frame. We then plotted the backbone RMSD distribution for the entire CP ensemble to 

evaluate how well each CP preorganized the ETGE residues into the desired structure. To 

further quantify the degree of mimicry for a CP, we calculated the % of frames that had 

backbone RMSD < 0.5 Å, which we call the “preorganized population” of that ensemble. 

We also calculated the average backbone RMSD for the preorganized population for each 

CP simulated.

Clash Analysis.—To analyze whether a CP conformation would result in steric clashes 

with Keap1, we first positioned the CP conformation within the Keap1 binding pocket by 

aligning the backbone atoms of the ETGE region of the CP to the backbone atoms of 

the ETGE region of Nrf2 bound to Keap1 (PDB ID: 2FLU).24 We then used the Chimera 

molecular modeling package60 to detect steric clashes, defined as the number of heavy 

atoms in the superimposed CP (excluding the side chain of the hotspot residues), which 

have overlapping van der Waals radii with atoms in the binding pocket of Keap1. No 

docking, relaxation, or energy minimization was performed on the positioned structures, 
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leading to a relatively static, conservative clash analysis. The CP conformations that passed 

the mimicry analysis and the clash analysis thus represent the most ideal situation, i.e., the 

hotspot residues are preorganized, and no rearrangements of the linker are required for the 

preorganized hotspot resides to engage Keap1.

Wet-Lab Experiments.

Details on peptide synthesis, protein expression and purification, biolayer interferometry, 

protein expression and purification for crystallography, and X-ray crystallography can be 

found in the Supporting Information.

RESULTS

Cyclic Peptide Design and MD Simulations.

To benchmark our computational methodology, we started with control CPs for which there 

were published binding affinity data.38 The first control was pfl-CDEETGEC (denoted 

CP1), which contains the Nrf2-derived DEETGE flanked by cysteines, which are further 

cross-linked using a perfluoroarene (pfl) linker. CP1 was previously developed by Steel 

et al. and its Ki for the Nrf2–Keap1 protein–protein interaction was measured at 1400 

nM using a competition fluorescence polarization assay. Steel et al. also designed an 

analogue, pfl-CDPETGEC (denoted CP2), replacing the glutamate corresponding to Nrf2 

Glu78, which we will renumber as Glu3, with proline. The authors reasoned that Glu3 

is the second residue of a β-turn, and thus, proline might stabilize the turn in that 

position.38 They measured the Ki at 6.1 nM, making CP2 one of the highest-affinity 

Keap1 inhibitors reported to date. We simulated the conformational ensembles of CP1 and 

CP2 using the enhanced sampling BE-META methodology described in the Methods. We 

found that neither of the CPs was predicted to be well-structured in solution. However, 

some portion of the structural ensembles indeed adopt conformations that preorganize 

the ETGE residues for Keap1 binding (Figure 2). To better quantify the overall degree 

of preorganization, specifically how well the entire conformational ensemble mimics the 

desired structure, we calculated the probability density distribution of the RMSD values, 

where RMSD is calculated between the CP conformation and the desired conformation 

using the backbone atoms of the ETGE residues (Figure 3). These data show that a sizable 

proportion of the conformational ensemble of CP1 has its ETGE sequence preorganized 

into a conformation similar to the Keap1-bound conformation of the corresponding residues 

on Nrf2. We define the preorganized population of the ensemble to be the percentage 

of frames with an RMSD less than 0.5 Å compared to the desired structure. For CP1, 

the preorganized population represented 15% of the conformational ensemble and the 

average RMSD for the preorganized population was 0.335 Å (Figure 4A,4B and Table 

1). For CP2, the preorganized population was 29% of the conformational ensemble and the 

average RMSD for the preorganized population was 0.257 Å. Therefore, our simulations 

predicted that the conformational ensemble of CP2 is more preorganized toward the desired 

conformation in terms of both the time it spends in similar conformations and how closely 

those conformations match the desired conformation. Overall, these data helped validate 

the simulation methods and explained the improvement in binding affinity due to the 

substitution from glutamate to proline at position 3.
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Next, we moved forward with simulations of novel CPs. We found the chemical 

synthesis of CPs with perfluoroarene linker chemistry to be relatively low-yielding 

(<10% for CP1 and prohibitively low for CP2; see below).61 We also noted that other 

chemistries would allow installation of different linkers, which could modulate CP structural 

preferences and therefore influence the preorganization of the ETGE residues. Therefore, we 

simulated CPs that would use more robust macrocyclization chemistry, cysteine alkylation 

with dibromomethylbenzenes.10,15 BE-META MD simulations were performed for ortho-

CDEETGEC and ortho-CDPETGEC (CP3 and CP4, respectively). The substitution of the 

perfluoroaryl linker with the ortho-dimethylbenzene linker led to an increase in predicted 

preorganized population, from 15% for CP1 to 43% for CP3 (Figure 4A and Table 1). When 

Glu3 was substituted with proline within the ortho-dimethylbenzene-linked macrocycle 

(compound CP4), the preorganized population increased to 53%. For CP3 and CP4, the 

mean backbone RMSD values for the preorganized population were 0.258 and 0.242 

Å, respectively (Figure 4B and Table 1). Thus, for both the native sequence and the 

Glu3 → Pro-substituted sequence, the ortho-dimethylbenzene linker better preorganized 

the ensemble toward the desired structure, and the preorganized conformations also better 

matched the desired conformation.

While examining the (φ, ψ) dihedrals for the desired ETGE epitope, we noted that Gly6 

had a positive φ torsional angle (Gly81 in Figure 1B). Therefore, we hypothesized that 

replacing Gly6 with a D-alanine would further shift the conformational ensemble toward the 

desired structure. Simulations of ortho-CDPETaEC (compound CP5) showed an increase 

in the preorganized population relative to CP4, which had a Gly in position 6 (62% 

preorganized compared to 53%, Figure 4A, Table 1). The preorganized population had an 

average backbone RMSD of 0.231 Å, compared to 0.242 Å for CP4 (Figure 4B, Table 1). 

Thus, these simulations predicted that CP5 would be more preorganized for Keap1 binding 

compared to CP1–CP4.

Experimental Binding Data with Recombinant Keap1.

Following the computational studies, we sought to compare our predictions with 

experimental data. Based on the previous work on CPs that mimic Nrf2′s Keap1-binding 

loop,38,62 we used binding affinity for recombinant Keap1 as an experimental measure that 

should correlate with the degree of preorganization of the binding epitope. Synthesis of CPs 

required us to adapt our design strategies in several ways. First, we had poor yields for 

macrocyclization using the perfluoroaryl linker.38,61,63 We were able to synthesize enough 

CP1 to test it experimentally but not CP2, and this further prompted our switch to the 

more robust dimethylbenzene linker chemistry.10,15 Second, to allow for analysis using 

biolayer interferometry (BLI), we introduced a biotin on the peptides’ N-termini. BLI is 

a technique that measures the interference pattern of white light reflected from a layer of 

biomolecules immobilized on the surface of a streptavidin sensor tip.64 BLI provides a 

direct Kd rather than an indirect Ki value and also measures binding kinetics in the form of 

on- and off-rates. Finally, we introduced a Trp-Arg sequence as a spacer for the biotin, to 

allow for accurate concentration determination by UV–vis spectrophotometry and to allow 

for robust characterization by mass spectrometry. To confirm that these additions did not 

substantially alter the simulation results, we performed identical simulations on analogues of 
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CP3 and CP4 with the added N-terminal Trp-Arg. For CP3, the added residues decreased the 

preorganized population and made it closer to that of CP1, but the effects on the predicted 

ensembles of CP4 and a later design, CP11, were minimal (see Table S2).

We measured binding affinities for Keap1 for CP1, CP3, and CP4 using BLI (Figures 

4D, 5, and Table 1). CP1 had a Kd of 1400 ± 80 nM, which agreed well with the 

experimental Ki value found by Steel et al. in a competition fluorescence polarization 

assay (Ki of 1400 nM).38 CP3 had a Kd value of 48 ± 10 nM, which represents a 29-fold 

improvement over CP1. This trend matched the MD results, which predicted a higher degree 

of preorganization for CP3 with the ortho-dimethylbenzene linker compared to CP1 with the 

perfluoroaryl linker. CP4, which included the ortho-dimethylbenzene linker and the Glu3 → 
Pro substitution, had a Kd of 15 ± 1 nM, a threefold improvement over CP3. This result 

also matched the simulations, which predicted a further degree of preorganization for CP4 

relative to CP3. CP5, which introduced the Gly6 → D-Ala substitution, had a Kd for Keap1 

of 8.4 ± 0.6 nM, representing a further twofold improvement in binding affinity compared 

to CP4 (Figure 4D and Table 1). Overall, the binding affinity data confirmed predictions 

made by the simulated conformational ensembles. In this initial series of designs, we 

improved binding by 160-fold compared to CP1 using a simple torsional analysis strategy 

to guide a series of substitutions and predict the effects of those substitutions using our MD 

methodology.

Design, MD Simulations, Binding Data, and Clash Analysis for Analogues with Altered 
Staple Geometries.

Alkylation of cysteines using the dibromomethylbenzenes allows for diversity-oriented 

stapling, in which the shape of the linker is varied to sample different macrocycle 

geometries.10,15 One of the most valuable applications for our methodology would thus be 

to predict which linker, for example, among ortho-, meta-, or para-dimethylbenzene, would 

best preorganize the conformational ensemble toward the desired conformation. To address 

this need, we next simulated isomers of CP5 (ortho-CDPETaEC), which incorporated meta-

dimethylbenzene and para-dimethylbenzene linkers. Meta-CDPETaEC and para-CDPETaEC 

are denoted as CP6 and CP7, respectively. Both had a less preorganized conformational 

ensemble compared to CP5 and the preorganized population had a greater average backbone 

RMSD compared to that of CP5 (Figures 3, 4A,B, and Table 1). Thus, we predicted that 

the ortho linker would outperform the meta- and para-linkers. In addition to different 

linker isomers, varying the stereo-chemistry of the cysteines is also a common method 

for diversifying macrocycle geometry.10,12,15 Consequently, we also simulated macrocycles 

that had ortho-, meta-, and para-dimethylbenzene linkers linked to two D-cysteines, denoted 

as CP8, CP9, and CP10, respectively. These three CPs all had somewhat less preorganized 

populations than their L-cysteine-containing counterparts CP5, CP6, and CP7 (Figures 3, 

4A,B, and Table 1).

To this point, we had only considered the degree of preorganization within the 

conformational ensemble. However, given the diversity of the macrocycle linkers we were 

simulating, we anticipated that these CPs could have different degrees of steric clash in 

the Keap1-binding pocket. To obtain a simple measure of predicted steric clash for each 
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conformational ensemble, we positioned each frame in the ensemble within the Keap1-

binding pocket by overlaying the ETGE epitope with the corresponding residues of the 

Nrf2-bound structure.24 We then computed the degree of steric clash between that frame’s 

conformation and Keap1 in terms of the number of atoms in the CP whose van der Waals 

radii overlapped with those of atoms of Keap1. While this measure of predicted steric clash 

did not consider the flexibility of the macrocycle and the receptor, it provided a simple 

measure of the relative degree of predicted clash that could be compared across entire 

conformational ensembles. Some of the effects of the predicted clash could be visualized 

across an ensemble by removing all frames with any clash and then replotting the “clash-

free” ensemble as a population density distribution with respect to backbone RMSD to 

the ETGE sequence (Figure 3, dashed lines). Comparing these distributions to the full 

ensembles, it is clear that the preorganized populations are predominantly clash-free. To 

make more quantitative comparisons among all the CP ensembles, we calculated the average 

clash for the preorganized population for each CP (Figure 4C and Table 1). This analysis 

revealed that the preorganized conformations of CP1–CP5 all had a small degree of clash. 

CP6 and CP7, isomers of CP5 with meta- and para-dibromomethylbenzene linkers, also had 

a relatively low degree of clash for their preorganized conformations. However, CP8–CP10, 

isomers of CP5–CP7 with D-cysteines, had a much higher overall degree of clash (Figure 

4C and Table 1). This led us to predict that despite their preorganization of the ETGE 

conformation, these CPs would be much less compatible with Keap1 binding compared to 

their L-cysteine-containing isomers.

To test our predictions, we synthesized CP6–CP10 and measured their binding to 

recombinant Keap1 using BLI. CP6 and CP7 had Kd values of 72 ± 9 nM and 48 ± 3 nM, 

respectively. These are 10- and 5-fold poorer in affinity compared to CP5, confirming the 

prediction that the ortho linker would preorganize the macrocycle to a greater degree than 

the meta- or para-linkers. It is unclear whether the meta-dimethylbenzene-linked CP6 had 

the poorest affinity among these isomers because it had the least degree of preorganization 

(Figures 3 and 4A,B) or a somewhat higher degree of clash (Figure 4C) or whether both 

factors were important. Finally, CP8, CP9, and CP10 all showed no detectable binding 

to Keap1 by BLI at concentrations as high as 15 μM. These experimental findings are 

consistent with the relatively high degree of clash precluding binding altogether for CP8 and 

CP10 (Figure 3C and Table 1).

Design of Analogues with a Neutral Analogue Substituted for Asp2.

As a final demonstration of the new methodology, we examined the role of Asp2 that 

occupies the first position of the β-turn in the ETGE conformation (Figure 1A). We noticed 

that in the crystal structure of Nrf2 bound to Keap1, Asp2 (corresponds to Asp77 of 

Nrf2) is responsible for crucial intramolecular hydrogen bonds between its side chain and 

other backbone amides (Figure 1A). We hypothesized that aspartate could be substituted 

for asparagine in this position to provide for the same set of hydrogen bonds without the 

additional negative charge. We designed a CP identical to CP5 (ortho-CDPETaEC) but 

with Asp2 substituted with Asn, CP11 (ortho-CNPETaEC). In the simulations, CP11 had 

a preorganized population that represented 87% of the conformational ensemble and the 

average backbone RMSD for the preorganized population was 0.206 Å (Figures 3, 4A,B, 
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and Table 1). CP11 had the most preorganized conformational ensemble compared to all 

other CPs. CP11 also had the smallest degree of clash (Figure 4C and Table 1). Binding 

assays to recombinant Keap1 revealed a Kd of 4.7 ± 1.7 nM, a twofold improvement 

from CP5. Overall, the results from CP11 demonstrated that the H-bond interactions and 

not the charge-mediated interactions were important at position 2 of the binding epitope. 

Furthermore, the results provide additional support for the predictive nature of the MD 

simulations.

Crystal Structures of Cyclic Peptides Bound to Keap1.

To further evaluate our design strategy, we crystallized the Keap1 Kelch domain in complex 

with each of CP3, CP4, CP5, and CP11, using a crystal form reported by the Allen 

lab.43 The crystals diffracted to resolutions between 1.5 and 1.8 Å, allowing unambiguous 

placement of the cyclic peptides in the Nrf2-binding pocket, except for the benzene rings 

of the ortho-dimethylbenzene linkers (Figure S7). All four CPs bound Keap1 with the 

ETGE binding epitopes in conformations highly similar to the desired conformation of 

Nrf2 (Figure 6A). Importantly, the conformations of the ETGE epitopes and of the larger 

cysteine-to-cysteine peptide backbones all matched the preorganized populations from the 

MD simulations (Figures 2 and 6B) with backbone RMSD values between 0.20 and 0.24 

Å for the ETGE epitopes and between 0.37 and 0.67 Å for the entire peptide backbones 

(Table S5). Because the ortho-dimethylbenzene linkers were not well-defined in the four 

structures, we infer that there may be multiple binding modes or some flexibility within 

the binding pocket (Figure S6). To investigate the linker structure further, we clustered the 

preorganized populations of each CP taking into account backbone torsional angles as well 

as the eight additional torsional angles in the linker. This analysis revealed subpopulations of 

these preorganized populations with distinct linker geometries (Figure S8). These results are 

highly valuable for continued improvements in the accuracy of modeling these commonly 

used dimethylbenzene linkers.

The crystal structures directly revealed the effects of our designed substitutions on the CP 

geometry and interactions with Keap1. Replacing Glu at position 3 with Pro (producing 

CP4 from CP3) preorganized the β-turn at positions 2–5 while losing a polar contact 

to Tyr525 of Keap1. The binding affinity data suggest that the loss of the polar contact 

was not as important as preorganization of the β-turn. Replacing Gly at position 6 with 

D-Ala (producing CP5 from CP4) led to a slight rotation of nearby Tyr572 on Keap1, but 

these residues are not close enough to interact via van der Waals forces, so there was a 

plenty of room for the D-Ala in the bound structure. Replacing Asp at position 2 with Asn 

(producing CP11 from CP5) maintained intramolecular hydrogen bonds between the side 

chain carbonyl of Asp/Asn and backbone amides of residues 4 and 5, further stabilizing 

the β-turn, and also maintained a water network that connects to polar residues of Keap1 

including Arg415 and Arg483. In the bound structure of CP5, the side chain carboxylate of 

Glu4 is only 5 Å from the side chain carboxylate of Asp2. Thus, it is possible that changing 

the Asp2 to an Asn in CP11 may reduce repulsive interactions in the bound conformation, 

leading to greater preorganization and higher binding affinity.
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DISCUSSION

Most prior work on all-atom CP simulations has been limited to head-to-tail CPs using only 

natural amino acids and enantiomers of natural amino acids.21,22,65 In this work, we sought 

to use a set of commonly used, high-yielding cyclization linkers derived from reacting 

two cysteines with ortho-, meta-, or para-dibromomethylbenzene. This chemistry, originally 

termed “CLIPS” by Timmerman and co-workers,15 has been used for over 15 years for 

rapid and high-yielding peptide macrocyclization reactions.7–12 To allow MD simulations 

of these commonly used cyclization linkers, we parametrized the charges following a 

protocol that is compatible with the general Amber force fields. Similar parametrization 

was also performed for the perfluoroaryl (pfl) linker, originally described by Pentelute and 

co-workers,61 to allow simulation of a control CP that was previously reported as a Keap1 

inhibitor. The development of parameters for each linker was a key roadblock to this work, 

and the parameters developed here may greatly facilitate continued design efforts using these 

convenient linkers.

In this work, we applied an enhanced sampling BE-META methodology to test a series 

of predictions based on individual amino acid substitutions in a Keap1-binding peptide 

sequence derived from Nrf2. With adjustments for the degree of predicted clash, the 

methodology successfully predicted the effects of a variety of substitutions including 

substitutions primarily affecting backbone torsions (Glu3 → Pro and Gly5 → D-Ala), 

substitutions of different linker geometries (perfluoroarene and ortho-, meta-, and para-

dimethylbenzene linkers, as well as substitution of the cross-linked L-Cys with D-Cys), 

substitutions affecting backbone chirality (Gly5 → D-Ala and L-Cys → D-Cys), and 

substitutions affecting subtle side chain interactions (Asp2 → Asn). The binding affinity 

results confirmed predictions made by the simulated conformational ensembles and 

permitted us to use a simple torsional analysis strategy to design substitutions that better 

promoted the ETGE conformation.

The ability of our computational methodology to predict the relative binding affinities of 

peptides cyclized with ortho-, meta-, and para-dimethylbenzene linkers provides evidence 

that our parametrization of these artificial groups is valid for further studies. The robust 

yields, low cost, and simple implementation of this cyclization chemistry have ensured its 

broad usage in early stages of drug design.10,12 Despite this extensive use, the most common 

method for applying this chemistry is still largely trial and error. Thus, the newly developed 

ability to perform high-level MD simulations on CPs incorporating these linkers and the 

opportunity to understand how the linker structure and dynamics affect the macrocycle 

structure represent significant steps forward for design efforts in this promising chemical 

space.

This computational method is versatile and highly complementary to alternative methods 

used to predict the structures of CPs. Notable efforts in this field include recent work by 

Baker and co-workers, who have used Rosetta66 successfully to design well-structured CPs 

of lengths 7–14 as well as membrane-permeable CPs of lengths 6–12.5,6 However, these 

sequences all comprised a very limited number of naturally occurring residues, with an 

emphasis on hydro-phobic amino acids and high proline content.6 The extent to which 
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these limitations will also limit useful chemical space when this method is applied to 

the design of PPI inhibitors remains unknown. Furthermore, while tools such as Rosetta 

have demonstrated great capability in identifying well-structured sequences, this method 

described herein breaks new ground when it comes to predicting the entire structural 

landscape of flexible CPs and using that more nuanced view of the CP structure to guide 

design.

Several prior efforts have sought to use conformational constraints to promote high-affinity 

binding of Nrf2-derived sequences to Keap1.34,38,39,42,62,67–70 In a particularly notable 

example, Allen, Whitty, and co-workers recently reported crystal structures of head-to-tail 

CPs bound to Keap1; the CPs were designed using solution NMR and machine learning 

to rationalize structure–activity relationships.39 Their highest-affinity peptide was similar 

to CP4, but with a D-β-homoalanine (Dha) residue linking the termini instead of two 

cysteines cross-linked with ortho-dimethylbenzene. The Dha-cyclized peptide was unable 

to preserve a hydrogen bond between Glu7 and Asp2 present in the native ligand (HB3 in 

Figure 6C), and the authors ascribed this to strain imposed by the Dha cyclization linker.39 

By contrast, all four CPs with the ortho-dimethylbenzene linker are able to bind Keap1 

while maintaining this hydrogen bond. The native ligand from Nrf2 also has an additional 

hydrogen bond between the Nrf2 residues Gln75 and Leu84 (HB4 in Figure 6C), which 

matches closely in the bound structures of all four CPs by a hydrogen bond between 

the carboxamide at the C-terminus and the backbone carbonyl of the N-terminal arginine 

residue (Figure 6C). These additional hydrogen bonds likely increase the preorganization of 

these CPs. Interestingly, our observations suggest that cross-linking two cysteines with an 

ortho-dimethylbenzene linker is particularly stabilizing within antiparallel β-sheet structures. 

Despite many applications of this cross-linking chemistry, to the best of our knowledge, 

this is the first time this cross-link has been shown to stabilize an antiparallel β-sheet or 

β-hairpin structure.

Finally, the end result of our sequence optimization scheme, CP11, was found to display 

binding affinity improved by 280-fold over that of the initial compound. In fact, CP11 rivals 

the most favorable binding affinity for Keap1 reported to date (4.7 nM compared to 2.8 

nM for a disulfide-mediated cyclic peptide of similar size).42 Outstanding challenges for 

developing Keap1 inhibitors and other CP inhibitors of PPIs include designing for improved 

bioavailability.25,71,72 The Asp2 → Asn mutation described herein presents a good first step 

toward improving cell penetration, as a negative charge is typically observed to decrease 

cell penetration.73,74 Future improvements may include the incorporation of N-methylated 

or noncanonical amino acids to additionally improve the membrane permeability. Despite 

these challenges, the computational methodology described here represents an exciting new 

avenue for developing macrocyclic inhibitors of protein–protein interactions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
DEETGE loop of Nrf2 binds to Keap1. (A) Three-dimensional visualization of the DEETGE 

motif of Nrf2 (gray and cyan balls and sticks) occupying the binding pocket of Keap1 

(shown in the electrostatic potential surface; PDB 2FLU).24 Residues D77 and E78 are 

shown in gray, residues E79 to E82 are shown in cyan, and key intramolecular hydrogen 

bonds are shown as yellow dotted lines. (B) Backbone torsional angles of the DEETGE 

epitope bound to Nrf2. Cyan lines indicate the (Φ, Ψ) values in the desired conformation for 

the residues in the core binding sequence ETGE. Gray lines indicate the (Φ, Ψ) values in the 

desired conformations for D77 and E78.
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Figure 2. 
Ramachandran plots showing the entire simulated ensembles for selected CPs. Cyan lines 

indicate the (φ, ψ) values in the desired conformation for the residues in the core binding 

sequence ETGE. Light-green, green, dark-green, and magenta lines indicate the (φ, ψ) 

values of Keap1-bound crystal structures of CP3, CP4, CP5, and CP11, respectively. Similar 

plots for CP6–10 are shown in Figure S4.
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Figure 3. 
Snapshot of the simulated ensembles of 11 CPs. Plots show probability density versus 

backbone RMSD to the desired conformation for each of the CPs simulated; two 

independent simulations were performed for each CPs and results from both are shown. 

Solid lines show the entire ensemble, and dashed lines show the ensemble with no clash (the 

entire ensemble excluding any frames that would clash with Keap1 when overlaid with the 

desired conformation within the binding site). Each plot shows a shaded area for backbone 

RMSD below 0.5 Å, which denotes the preorganized population, which can be compared 

across all CPs.
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Figure 4. 
Summary of results from simulations (A–C) and experimental affinity measurements (D). 

(A) Percentage of each ensemble which has a backbone RMSD of less than 0.5 Å compared 

to the desired ETGE conformation (preorganized population). (B) Average backbone RMSD 

compared to the desired ETGE conformation for the preorganized population. (C) Average 

number of clashes in the preorganized population, defined as the average number of 

atoms with van der Waals radii that overlap with atoms of Keap1 when each frame is 

overlaid with the desired ETGE conformation within the Keap1 binding pockets. Error 

bars for computationally derived values represent the standard error of the mean from 

two independent simulations using different starting conformations. (D) Binding affinity 

of each CP, experimentally measured by biolayer interferometry. Error bars for the Kd 

values represent the standard error of the mean from three independent trials. CP8, CP9, 

and CP10 showed no detectable binding at concentrations as high as 15 μM. n/m refers to 

measurements that were not made due to poor synthesis yields.
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Figure 5. 
Biolayer interferometry data (various colors) and curve fits (red) for representative CPs 

binding to Keap1. Each trial tested at least three different protein concentrations (labeled on 

the plots). These data represent one of three independent trials for each CP. Additional data 

are listed in Figure S6.
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Figure 6. 
Crystal structures of CP3, CP4, CP5, and CP11 bound to Keap1. (a) Overlay showing 

excellent match between the ETGE binding epitope of Keap1-bound Nrf2 (cyan) and the 

Keap1-bound conformations of all four CPs. (b) Overlays showing excellent match between 

the preorganized populations of each CP with its Keap1-bound structure. 100 randomly 

selected frames of each CP’s preorganized population are shown in wireframe, and each 

CP’s Keap1-bound structure is shown in sticks. Portions of the N-terminal arginine and 

tryptophan residues are omitted for clarity. (c) Comparison of the Keap1-bound structures of 

a head-to-tail CP reported by Allen, Whitty, and co-workers (PDB 7K2S),39 a Nrf2-derived 

peptide,24 and CP11. Key intrabackbone hydrogen bonds are shown as dotted lines in the 

corresponding colors and are labeled HB1–HB4. CPs cyclized with ortho-dimethylbenzene 

linkers preserve two additional backbone hydrogen bonds present in the native ligand (HB3 

and HB4). The image shows only backbone atoms for clarity. Structures have been deposited 

in the RCSB Protein Data Bank under the accession codes 8PKU (CP3), 8PKV (CP4), 

8PKW (CP5), and 8PKX (CP11).
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