Skip to main content
. 2023 Jul 12;8(3):306. doi: 10.3390/biomimetics8030306

Table 4.

Experimental results of four datasets: BreastEW, CongressEW, Hepatitis, and JPNdata.

Metrics Algorithm BreastEW CongressEW Hepatitis JPNdata
Accuracy PSO-KELM 0.95583 0.93182 0.80625 0.80625
BBA-KELM 0.95583 0.90909 0.87083 0.74167
BOA-KELM 0.9646 0.95455 0.87083 0.79286
PSOBOA-KELM 0.96491 0.96564 0.87868 0.83958
precision PSO-KELM 0.94666 1 0.5 0.76389
BBA-KELM 0.9452 0.96 1 0.77778
BOA-KELM 0.94666 1 0.875 0.77778
PSOBOA-KELM 0.9598 1 1 0.78889
F-measure PSO-KELM 0.96517 0.9434 0.57143 0.82353
BBA-KELM 0.96611 0.92308 0.5 0.76842
BOA-KELM 0.9726 0.96154 0.66667 0.80065
PSOBOA-KELM 0.97297 0.97097 0.70833 0.84034
Sensitivity PSO-KELM 0.98611 0.9245 0.66667 0.875
BBA-KELM 1 0.92593 0.33333 0.86607
BOA-KELM 1 0.92593 0.58333 0.875
PSOBOA-KELM 1 0.94373 0.58333 0.9375
Specificity PSO-KELM 0.90909 1 0.88141 0.73214
BBA-KELM 0.90476 0.94118 1 0.71429
BOA-KELM 0.90476 1 1 0.75
PSOBOA-KELM 0.92857 1 1 0.75
MCC PSO-KELM 0.90622 0.86923 0.45227 0.64569
BBA-KELM 0.90731 0.81597 0.536 0.57071
BOA-KELM 0.92547 0.9102 0.61899 0.58872
PSOBOA-KELM 0.92582 0.93158 0.66387 0.68104