Table 4.
Metrics | Algorithm | BreastEW | CongressEW | Hepatitis | JPNdata |
---|---|---|---|---|---|
Accuracy | PSO-KELM | 0.95583 | 0.93182 | 0.80625 | 0.80625 |
BBA-KELM | 0.95583 | 0.90909 | 0.87083 | 0.74167 | |
BOA-KELM | 0.9646 | 0.95455 | 0.87083 | 0.79286 | |
PSOBOA-KELM | 0.96491 | 0.96564 | 0.87868 | 0.83958 | |
precision | PSO-KELM | 0.94666 | 1 | 0.5 | 0.76389 |
BBA-KELM | 0.9452 | 0.96 | 1 | 0.77778 | |
BOA-KELM | 0.94666 | 1 | 0.875 | 0.77778 | |
PSOBOA-KELM | 0.9598 | 1 | 1 | 0.78889 | |
F-measure | PSO-KELM | 0.96517 | 0.9434 | 0.57143 | 0.82353 |
BBA-KELM | 0.96611 | 0.92308 | 0.5 | 0.76842 | |
BOA-KELM | 0.9726 | 0.96154 | 0.66667 | 0.80065 | |
PSOBOA-KELM | 0.97297 | 0.97097 | 0.70833 | 0.84034 | |
Sensitivity | PSO-KELM | 0.98611 | 0.9245 | 0.66667 | 0.875 |
BBA-KELM | 1 | 0.92593 | 0.33333 | 0.86607 | |
BOA-KELM | 1 | 0.92593 | 0.58333 | 0.875 | |
PSOBOA-KELM | 1 | 0.94373 | 0.58333 | 0.9375 | |
Specificity | PSO-KELM | 0.90909 | 1 | 0.88141 | 0.73214 |
BBA-KELM | 0.90476 | 0.94118 | 1 | 0.71429 | |
BOA-KELM | 0.90476 | 1 | 1 | 0.75 | |
PSOBOA-KELM | 0.92857 | 1 | 1 | 0.75 | |
MCC | PSO-KELM | 0.90622 | 0.86923 | 0.45227 | 0.64569 |
BBA-KELM | 0.90731 | 0.81597 | 0.536 | 0.57071 | |
BOA-KELM | 0.92547 | 0.9102 | 0.61899 | 0.58872 | |
PSOBOA-KELM | 0.92582 | 0.93158 | 0.66387 | 0.68104 |