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The ability to detect and learn about the predictive relations existing between events in the world is essential for
adaptive behavior. It allows us to use past events to predict the future and to adjust our behavior accordingly.
Pavlovian fear conditioning allows anticipation of sources of danger in the environment. It guides attention away
from poorer predictors toward better predictors of danger and elicits defensive behavior appropriate to these
threats. This article reviews the differences between learning about predictive relations and learning about
contiguous relations in Pavlovian fear conditioning. It then describes behavioral approaches to the study of these
differences and to the examination of subtle variations in the nature and consequences of predictive learning. Finally,
it reviews recent data from rodent and human studies that have begun to identify the neural mechanisms for direct
and indirect predictive fear learning.

The ability to detect and learn about predictive relations existing
between events in the world is essential for adaptive behavior.
Such learning allows us to use past events to predict the future
and to adjust our behavior accordingly. Learning about predic-
tive relations depends on what is already known about the events
in the relation: If an outcome is unexpected, we learn about cues
that predict its occurrence; if the outcome is already expected,
information provided by other cues about its occurrence is re-
dundant and our learning about them is impaired. Pavlovian fear
conditioning enables learning about, and adaptive responding
to, sources of danger in the environment. It involves encoding
the predictive relation between a conditioned stimulus (CS) and
an aversive unconditioned stimulus (US) stimulus. In this way
Pavlovian fear conditioning allows anticipation of sources of
danger in the environment. It guides attention away from poorer
predictors toward better predictors of danger, and it elicits defen-
sive behavior appropriate to these threats.

A wealth of data accumulated over the past �20 years has
provided significant insights into the neurobiological mecha-
nisms underlying the formation of fear memories in the mam-
malian brain. These data support the view that the amygdala is
essential for encoding, storing, and retrieving fear memories. In
contrast to this knowledge of the brain mechanisms for storage of
fear memories, the brain mechanisms for predicting danger are
only just beginning to be understood. This article begins by re-
viewing the differences between learning about predictive rela-
tions and learning about contiguous relations in Pavlovian fear
conditioning. It then describes some behavioral designs that per-
mit differentiation between the neural mechanisms for predic-
tive versus contiguity learning and also permit examination of
the nature and consequences of predictive learning. Finally, it
considers recent data from rodent and human experiments that
reveal the brain mechanisms for predicting danger.

Predicting danger: More than just contiguous relations

Contingency versus contiguity
Learning about predictive relations should be distinguished from
learning about contiguous relations. In the latter, learning pro-

ceeds as a function of the contiguous relationship between
stimuli. Procedurally, fear conditioning involves a particular
temporal relationship between a CS and an aversive US. The CS
is arranged by the experimenter to precede the occurrence of the
US. If this contiguous relation is broken, so that the trace interval
between the offset of the CS and the onset of the US is increased,
fear learning is severely retarded (Yeo 1974). If the trace interval
is long enough, then learning is abolished. That fear learning
entails temporal pairings of two events and does not occur across
long trace intervals between those events suggests that the tem-
poral relation between the CS and US is critical for learning.
Indeed, most early theories of Pavlovian conditioning took for
granted that CS–US contiguity was the critical determinant of
learning. Hebb’s learning rule is an important example of this
approach (Hebb 1949).

Learning about predictive relations involves learning about
more than just the contiguous pairing between the CS and US.
It involves learning about the causal relationship between the
two events (Dickinson 1980; Rescorla 1988). Predictive learn-
ing depends on what is already known about those events.
If little is known about the relation between the events, so
that the US is not predicted by the CS, then learning occurs.
If much is known about this relation, so that the US is adequately
predicted by the CS, then learning fails. The Rescorla-Wag-
ner learning rule (Rescorla and Wagner 1972; Wagner and
Rescorla 1972) is an important example of a theory that cap-
tures this role for prediction in learning. It states that the amount
learned about a CS on a conditioning trial, or the associa-
tive strength (V) that accrues to a CS on that trial, is a function
of the discrepancy, or predictive error, between the actual out-
come of the conditioning trial (�) and the expected outcome
of the conditioning (∑V). The expected outcome of the
conditioning trial is the summed associative strengths of all
CSs present on that trial. The parenthetical term, (� � ∑V),
drives learning. When the output of this discrepancy is positive,
that is, when � > ∑V, so that the actual outcome of the trial
exceeds the predicted outcome, excitatory conditioning occurs.
When the output of this discrepancy is zero, that is, when
� = ∑V, so that the actual and predicted outcomes are the same,
no conditioning occurs. Finally, when the output of this discrep-
ancy is negative, that is, when � < ∑V, so that the expected out-
come exceeds the actual outcome, then inhibitory conditioning
occurs.
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Trial-level versus real-time models
In its original application, the Rescorla-Wagner learning rule op-
erated at the level of the conditioning trial. Predictions are made
and knowledge updated, based on the outcomes of those predic-
tions, after a CS–US pairing. A complex but more realistic ap-
proach has been to suppose that learning occurs not on a trial-
by-trial basis but instead continuously across a trial. The tempo-
ral-difference (TD) model (Sutton 1988; Sutton and Barto 1990) is
among the most influential of these models (see also Sutton and
Barto 1981; Schmajuk and Moore 1988; Lamoureaux et al. 1998).
According to this real-time approach, predictions are made and
knowledge updated, based on the outcomes of those predictions,
continually during a trial. In a trial-by-trial instantiation of the
Rescorla-Wagner model, there can be no predictive error until
receipt or omission of the US. In time derivative models of the
Rescorla-Wagner learning rule, such as the TD model, there can
be multiple sources of predictive error within a trial. For example,
there can be predictive error immediately upon receipt of a CS if
the associative strength of that CS is different to the associative
strength of stimuli present (e.g., contextual cues) in the time
immediately before it just as there may be predictive error upon
receipt or omission of the US. Moreover, there can be predictive
error within an individual CS presentation so that subjects can
learn different things about different temporal components of
a CS.

The real-time approach adopted by these models is an im-
portant distinction in the nature of predictive learning. A real-
time approach is used extensively in contemporary computa-
tional and cognitive neuroscience investigations of predictive
learning. This article focuses on trial level models of predictive
learning and discusses real-time models only when behavioral
designs explicitly require them. This focus may be justified on
two grounds. First, under most of the behavioral conditions con-
sidered here (e.g., a CS compound of two simultaneously pre-
sented elements, such as a light and noise), the TD model and
other real-time models often reduce to the Rescorla-Wagner
model. Second, the TD model does not explicitly address the role
of attention and learned changes in CS salience and therefore has
somewhat less clear applications to understanding the indirect
actions of predictive error on learning.

Direct versus indirect predictive learning: Variations in US versus
CS processing
A second important distinction is whether predictive error has a
direct or indirect action on fear learning. This distinction can be
rephrased in terms of whether the important consequence of
predictive error is a change in how the nervous system processes
the shock US (direct action) or how it processes the CS (indirect
action). In the Rescorla-Wagner model, for example, predictive
error regulates learning directly by altering the effectiveness of
the shock US. An unexpected or surprising shock US is more
effective in promoting learning than is an expected or unsurpris-
ing shock US. In this way predictive error has an immediate and
direct action on learning.

Predictive error can also have delayed and indirect actions
on learning. These actions are achieved by regulating the amount
of attention allocated to the CS (e.g., Mackintosh 1975; Pearce
and Hall 1980). Learning about predictive relations requires at-
tention to the events in those relations. Theories of indirect pre-
dictive learning note that the amount of attention allocated to a
CS is not static; rather, attention varies as a function of how
accurately that CS predicts danger. Better predictors of danger are
attended to and learned about, whereas poorer predictors of dan-
ger are ignored and consequently are not learned about. Predic-
tive learning is indirect because it involves learned changes in the

attentional processing of the CS. Predictive learning is delayed
because learning to ignore unreliable predictors of danger, or
learning to attend to reliable predictors, requires prior experience
with the predictor and the source of danger. An important ex-
ample of this approach to understanding predictive learning is
the Mackintosh model (Mackintosh 1975), which states that the
organism extracts the best predictor (e.g., CSA or CSB) of an
aversive event by comparing their respective discrepancies
|� � VA| versus |� � VB|. The smaller the discrepancy, the better
the predictor and the more attention allocated to that CS, at the
expense of the other CS, on subsequent trials. In this way, learn-
ing about predictive relations guides attention toward better pre-
dictors of danger and away from poorer predictors.

Different circumstances favor a direct action of predictive
error over an indirect action and vice versa. These are reviewed
below. Recent research, described later in this article, has ex-
ploited these circumstances to study the distinct neural sub-
strates of direct and indirect predictive learning. Separating the
influences of these two actions is important for empirical inves-
tigations into the mechanisms for predictive learning. However,
this separation should not be taken to imply that predicting dan-
ger always relies exclusively on one action over the other. Pre-
dicting danger is multiply determined, involving both direct and
indirect actions of predictive error on fear learning.

Behavioral approaches for studying predictive learning
In a standard fear conditioning experiment, a subject (e.g., a rat,
mouse, or human), is exposed to pairings of a CS with footshock.
The CS is later presented, and the subject’s fear reactions are
assessed. Often performance is compared to the performance of a
number of control conditions that may include CS-only or US-
only presentations during conditioning or unpaired presenta-
tions of the CS and US during conditioning. The fact that Pav-
lovian fear learning is sensitive to both the contiguous and pre-
dictive relationship between a CS and US requires the use of a
different approach that is able to dissociate these two relations.

Blocking, unblocking, and the role of affective learning
The classic behavioral preparation for studying predictive learn-
ing is blocking (Table 1). Kamin (1968, 1969) subjected rats to
CSA–shock pairings. In stage 2, rats received a compound stimu-
lus of CSA and CSB followed by shock. Kamin’s seminal finding
was that prior conditioning of fear to CSA blocked fear from
accruing to CSB compared with a control group that received no
training in stage 1 training. Conditioning failed to CSB, despite
adequate CSB–US contiguity, because the shock was not surpris-
ing when it was preceded by CSA. The animals could predict the
occurrence of the US from CSA, and so conditioning to CSB failed
because it was uninformative. Blocking has been observed in
many species across many conditioning preparations, including
appetitive and aversive conditioning, spatial learning, and hu-
man causal judgements (Khallad and Moore 1996; Biegler and
Morris 1999; Roberts and Pearce 1999; McNish et al. 2000; Dick-
inson 2001; McNally et al. 2004a). Simple variants of the basic
blocking design (Table 1) permit direct selection between the
different mechanisms for predictive learning. According to the
Rescorla-Wagner model, blocking occurs because the expected
shock in stage 2 is less effective than is a surprising shock. Ac-
cording to attentional theories, blocking occurs due to the with-
drawal of attention from the added CS in stage 2 because it is a
worse predictor of shock than the pre-trained CS. These learned
variations in attention can only develop across multiple condi-
tioning trials. So, according to attentional theories, blocking does
not occur on the first conditioning in stage 2. Rather, it occurs on
subsequent trials because the subject ignores the blocked CS on
these later trials and therefore does not learn about it (Mackintosh
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et al. 1980; but see Dickinson et al. 1983). These differences have
been exploited to study the neural mechanisms for indirect pre-
dictive learning (Iordanova et al. 2006a,b).

Unblocking also permits study of predictive learning. Kamin
(1968, 1969) reported that blocking was abolished (i.e., unblock-
ing occurred) when the intensity of footshock was increased from
stage 1 to stage 2. Rats that had received pairings of a CSA with
a 1-mA footshock in stage 1 and pairings of the CSA–CSB com-
pound with a 4-mA footshock in stage 2 showed robust condi-
tioning to CSB. Expressed casually, fear accrued normally to CSB
because it was predictive of the increase in US intensity. Unblock-
ing also permits direct selection between different mechanisms
of predictive learning (Table 1). According to the Rescorla-
Wagner model, unblocking will only occur when the number,
magnitude, or duration of the US is increased in stage 2. Atten-
tional theories of predictive learning make different predictions
regarding the locus of the effects of a surprising US and the cir-
cumstances under which unblocking of fear will be observed.
Regarding the locus of unblocking, theories of indirect predictive
learning hold that a surprising US prevents the decline in atten-
tion otherwise suffered by a blocked CS and so permits the CS to
associate with shock on subsequent trials (Mackintosh et al.
1977, 1980). Regarding the circumstances that produce unblock-
ing, theories of indirect predictive learning state that unblocking
occurs with increases or decreases in the US from stage 1 to stage
2 (Pearce and Hall 1980). Unblocking of fear learning with de-
creases or increases in stage 2 US intensity have been reported un-
der different circumstances (e.g., Dickinson et al. 1976; McNally
et al. 2004a), and these differences have been exploited to di-
rectly study the neural mechanisms for direct predictive learning.

The original Sutton-Barto model of TD learning (Sutton and
Barto 1981) makes an important and unique claim about predic-
tive learning in a variant of the blocking and unblocking designs.
In the standard blocking design, CSA is paired with shock. A
compound of CSA and CSB is then paired with shock. The Sut-
ton-Barto model is identical to the Rescorla-Wagner model under
these conditions. However, suppose that during a third stage of
training, CSB is arranged to precede and overlap with CSA and
this compound is then followed by shock. The Sutton-Barto
model uniquely predicts that A will lose, and B will gain, asso-

ciative strength under these condi-
tions. In other words, a change in
the temporal order of CS presenta-
tions produces unblocking of CSB
and instates blocking of CSA. This
prediction has been confirmed in
rabbit eyeblink conditioning (Ke-
hoe et al. 1987). It is another dem-
onstration that learning about con-
tiguous relations is distinct from
learning about predictive relations.
During each stage of the experi-
ment, the pre-trained CS, A, stands
in a close contiguous relation to the
US yet what is learned about CSA
changes across the course of the ex-
periment.

Predictive learning is espe-
cially sensitive to the affective value
of the US. For example, CSA could
signal a shock US during stage 1 of a
blocking experiment and the AB
compound signal a frightening
loud noise US in stage 2 (Bakal et al.
1974). Blocking of fear learning to
CSB still occurs despite the use of

different USs in stage 1 and 2. This sensitivity to the affective not
sensory properties of a US is even more dramatically illustrated
by the fact that the pre-trained CS need never have been paired
with an aversive US at all. For example, the blocking CS, CSA,
could be trained to signal the absence of an appetitive event.
Having been established as an appetitive conditioned inhibitor,
CSA is able to block fear learning from accruing to CSB when the
AB compound is paired with shock (Dickinson and Dearing
1979). Betts et al. (1996) provided an important demonstration
of the power of the blocking paradigm in dissociating learning
about the sensory versus affective properties of a shock US. They
arranged that CSA signaled a shock US to one eye of a rabbit. One
consequence of these pairings was that the subjects came to show
a defensive eyeblink CR to the CS. A second consequence was
that the subjects came to fear the CS as indexed by a potentiated
startle response. A compound of CSA and novel CSB then sig-
naled the occurrence of shock to the other eye of the same sub-
jects. The outcome of stage 2 training was that subjects showed
conditioned eyeblink responses but not potentiated startle to CSB.
The subjects had learned that CSB signaled shock to the other
eye, but they were not afraid of CSB. This finding is important
because it constrains any explanation of the action of predictive
error on fear learning. It shows that subjects detect and respond
to the shock US during stage 2 of the blocking paradigm and they
even learn defensive motor responses to the blocked CS; they
simply do not learn to fear that CS. Blocking is specific to the
affective properties of the US and is not due to some sensory
failure to detect or process the US.

Overexpectation and extinction
The designs described above highlight the role of predictive error
in acquiring fear. Analogous designs can be used to study the role
of predictive error in the loss of fear. Overexpectation is a pow-
erful design for studying predictive error in the loss of fear (Table
1). In stage 1, rats learn to fear CSA and CSB by pairing each CS
with shock. In stage 2, rats in the experimental group receive
compound presentations of CSA and CSB with shock, whereas
rats in the control groups receive either additional CSA–shock
pairings or no additional training. Stage 2 compound training of
CSA and CSB reduces the amount of fear provoked by either CS.

Table 1. Some possible behavioral designs for studying predictive fear learning

Stage 1 Stage 2 Test

Blocking
Between-subjects Experimental A+ AB+ B

Control C+ AB+ B
Within-subjects A+ AB+, CD+ B vs. C or D

Unblocking up-shift
Between-subjects Experimental A+ AB++ B

Control C+ AB++ B
Within-subjects A+ AB++, CD++ B vs. C or D

Unblocking down-shift
Between-subjects Experimental A++ AB+ B

Control C++ AB+ B
Within-subjects A++ AB+, CD+ B vs. C or D

Overexpectation
Between-subjects Experimental A+, B+ AB+ B

Control A+, B+ A+ B
Within-subjects A+, B+, C+ AB+ B vs. C

Protection from extinction
Between-subjects Experimental A+, AX�, B+ XB- B

Control A+, X�, B+ XB- B
Within-subjects A+, AX�, AY+, B+, C+ BX�, CY� B vs. C

Facilitation of extinction
Between-subjects Experimental A+, X+, B� AX� X

Control A+, X+, B� BX- X
Within-subjects A+, B+, C+ AB�, C� A or B vs. C

Predicting danger
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Expressed casually, the subjects could be said to sum the predic-
tions of CSA and CSB in stage 2 and thus expect two shocks.
However they receive only a single shock.

According to the Rescorla-Wagner model, during stage 1 the
V values of CSA and CSB increase toward �. In stage 2 the sum of
these V values, ∑V, exceeds �. The discrepancy (� � ∑V) is there-
fore negative and CSA and CSB undergo commensurate reduc-
tions in the associative strengths until (� = ∑V). Consistent with
this interpretation, increases in the shock intensity in stage 2, so
that (� = ∑V), prevents overexpectation (Kamin and Gaioni
1974). Similar to blocking, overexpectation is a robust finding. It
has been observed in a number of species and conditioning
preparations (e.g., Rescorla 1970, 1999; Kamin and Gaioni 1974;
Kremer 1978; Khallad and Moore 1996; Lattal and Nakajima
1998; Kehoe and White 2004; McNally et al. 2004a).

Overexpectation permits selection between different ac-
counts of predictive learning. Overexpectation selectively reveals
the operation of predictive learning based on the summed, or
pooled, associative strengths of all CSs present during stage 2.
This is necessarily so because it is the summation of the associa-
tive strengths of the two CSs that cause the discrepancy (� < ∑V)
and so cause overexpectation. Whereas some models of predic-
tive learning rely on pooled associative strengths to control
learning, others do not. For example, the Mackintosh model of
indirect predictive learning (Mackintosh, 1975) computes asso-
ciative strengths of CSA and B separately, so that what is learned
about CSA, |� � VA|, and what is learned about CSB, |� � VB|, on
an AB+ trial can be different. Because indirect predictive learning
in this model does not pool the predictive strengths of CSA and
CSB, it cannot generate the discrepancy (� < ∑V) and so cannot
explain overexpectation. Therefore, overexpectation can be used
to select between the neural mechanisms for these different kinds
of predictive learning (McNally et al. 2004a).

Fear extinction can also be used to study the role of predic-
tive error. Fear extinction may be caused procedurally by re-
peated presentations of a fear CS in the absence of the aversive
US, but extinction learning, similar to overexpectation, is caused
by a negative prediction error (Rescorla 2002; Delamater 2004).
Extinction occurs when the expected outcome (V) exceeds the
actual outcome (�) so that the discrepancy (� � ∑V) is negative.
Simple contiguity based learning rules, such as Hebb’s learning
rule, cannot explain extinction learning. Extinction learning,
similar to fear learning, can be blocked (e.g., Lovibond et al.
2000; Rescorla 2003). In a typical “protection from extinction”
design, a subject is trained with CSA–US pairings and also trained
that CSX is a conditioned inhibitor. If the CSA is extinguished in
the presence of CSX, the presence of X blocks extinction learning
to A. Protection from extinction occurs because the associative
strengths of CSA and the inhibitor CSX nullify each other, so that
predictive error, (� � ∑V), is small and no extinction occurs.
Conversely, extinction to CSA can be facilitated if CSX is also
trained as a signal for shock and the AX compound then extin-
guished (Wagner 1969; Rescorla 2000). Facilitation of extinction
occurs because the summed associative strengths of CSA and CSX
mean that predictive error, (� � ∑V), is large and extinction
learning facilitated.

Recent data confirm a key claim of real-time models of pre-
dictive learning during extinction. Recall that these theories sup-
pose that each temporal element of a CS is itself subject to pre-
dictive learning and so subjects could learn different things about
different temporal elements of the CS. Kehoe and Joscelyne
(2005) trained rabbits with CS–US pairings with US delivery at
both 200 msec and 1200 msec after the onset of the CS (or stimu-
lus intervals [ISIs]. One eyeblink CR emerged at each ISI. Kehoe
and Joscelyne (2005) then omitted the first US but retained the
second US. Under these conditions the short latency CR was

extinguished, whereas the longer latency CR was completely pre-
served. Moreover, the short latency CR spontaneously recovered
between sessions and was rapidly reacquired when the short la-
tency ISI was reintroduced.

Summary
Fear conditioning, blocking, and overexpectation highlight the
different consequences for learning of the contiguous and pre-
dictive relationship between a CS and a shock US. In each case
the contiguous relationship between a CS and a shock US is in-
tact. However, in each case, the outcome of these pairings is quite
different. In fear conditioning, a CS–US pairing gives rise to fear
of the CS. In blocking, this pairing gives rise to no fear of the CS.
In overexpectation, this pairing actually reduces fear of the CS. A
similar reduction of a CR, despite adequate CS–US contiguity, has
been observed during conditioning with serial compounds. Pro-
tection from extinction and facilitation of extinction similarly
highlight the operation of predictive error underlying the pro-
cesses by which organisms learn that a once dangerous cue is
harmless. In both cases a fear CS is repeatedly presented in the
absence of shock; however, when combined with an inhibitor
extinction, learning does not occur, whereas when combined
with another excitor, extinction learning is facilitated. These de-
signs reveal the important place of predictive learning in fear
conditioning. They can be used as powerful behavioral tools to
probe the neural mechanisms for predictive learning and to dis-
tinguish between subtle variations in the nature and conse-
quences of predictive learning.

Brain mechanisms for direct predictive learning
The amygdala is important for the encoding, storage, and re-
trieval of fear memories (Davis 1992; Maren 2005). The cellular
and molecular mechanisms underlying these processes are re-
markably well understood. Activation of NMDA receptors in the
amygdala, and recruitment of the signal transduction cascades
subsequent to NMDA receptor activation (e.g., Ca2+ and cyclic
AMP-dependent signaling) are essential for fear memory forma-
tion (Schafe et al. 2001). Evidence from single unit recordings,
lesions, or localized pharmacological and molecular manipula-
tions supports this role (Maren and Quirk 2004). This evidence
suggests that the multimodal CS and US sensory inputs converge
on individual amygdala neurons to induce long-term synaptic
plasticity and formation of fear memories (for reviews, see
Fanselow and LeDoux 1999; Maren 2001; Schafe et al. 2001;
Maren and Quirk 2004; Kim and Jung 2006). Recent empirical
work has begun to shed light on the brain mechanisms for direct
predictive learning. Interestingly, these depend, at least on part,
on structures other than the amygdala.

Rescorla (1968) originally suggested that direct predictive
learning could be mediated by the discrepancy between the ac-
tual conditioned response (CR) produced by the CS and the
maximum CR that the US can support. Excitatory fear learning
occurs when the current CR is less than the maximal CR support-
able by the US (a positive prediction error). Inhibitory fear learn-
ing occurs when the current CR exceeds the maximal CR sup-
ported by the CS (a negative prediction error). No fear learning
occurs when the current CR equals the maximal CR supported by
the US (no prediction error). According to this suggestion, there
should be overlap in the neuroanatomical substrates for predic-
tive learning and for defensive CR production. The midbrain
periaqueductal gray (PAG) is an important structure for integrat-
ing defensive behavioral and autonomic responses to threats
(Carrive 1993; Keay and Bandler 2001, 2004). The PAG receives
extensive projections from the CeA and other forebrain struc-
tures important for learning, and it controls expression of defen-
sive behaviors as fear CRs. The PAG is organized as a series of four
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longitudinal columns located dorsomedial (dm), dorsolateral
(dl), lateral (l), and ventrolateral (vl) to the cerebral aqueduct that
exert differential control over defensive behaviors. Both the
dPAG and vlPAG have been implicated in defensive responses.
The dPAG is important for controlling unconditioned defensive
responses, whereas the vlPAG is important for controlling con-
ditioned defensive responses (Carrive 1993). Recent studies have
shown that the vlPAG is also an important site for fear predictive
learning.

Opioid receptors in the vlPAG contribute to predictive fear
learning. Molecular cloning and pharmacological studies have
identified four opioid receptor subtypes, µ, �, �, and nociceptin
opioid receptors (for reviews, see Williams et al. 2001; McNally
and Akil 2002), and all of these receptors are expressed in the
PAG. These receptors belong to the superfamily of seven trans-
membrane spanning G-protein–coupled receptors, and the four
receptors share a large degree of structural homology. vlPAG
µ-opioid receptors mediate predictive fear learning. For example,
by using a within-subject design to study blocking, McNally and
Cole (2006) trained rats to fear CSA via pairings with shock. In
stage 2, they then arranged that an AB compound and a CD
compound were each paired with shock. Tests showed that rats
were more afraid of D than B, indicating that the presence of the
frightening A had blocked conditioning to B. This blocking was
prevented (i.e., fear accrued normally to B), if stage 2 training was
preceded by either systemic injection of the opioid receptor an-
tagonist naloxone or intra-vlPAG infusions of the µ-opioid re-
ceptor antagonist CTAP (Fig. 1). Identical effects of both manipu-
lations have been reported for extinction. Thus, fear extinction
learning is prevented by systemic or intra-vlPAG infusions of a
nonselective opioid receptor antagonist as well as by vlPAG in-
fusions of a µ-opioid receptor–specific antagonist (McNally and
Westbrook 2003; McNally et al. 2004b, 2005). Moreover, fear
extinction learning is facilitated by manipulations than enhance
vlPAG opioid neuromodulation (McNally 2005). In all cases, the
effects of opioid receptor antagonism were dose dependent and
neuroanatomically specific to vlPAG. Finally, overexpectation is
also prevented by these manipulations (McNally et al. 2004a).

The common sensitivity of overexpectation, extinction, and
blocking to opioid receptor antagonism is important for several
reasons. For instance, it underscores the point that predictive
error contributes to learning in each of these three behavioral
designs. It also identifies the associative mechanism for midbrain
contributions to predictive fear learning. It indicates a role for
µ-opioid receptors in predictive learning based on pooled asso-
ciative strengths, (� � ∑V), rather than learning based on sepa-
rate computations for CSA, |� � VA|, and CSB, |� � VB|. Recall
that overexpectation can only be explained by theories of pre-
dictive learning that employ a pooled, or summed, error term. A

role for opioids in direct as opposed to indirect predictive fear
learning under these conditions was confirmed by the use of an
unblocking design that manipulated opioid receptor antagonism
with increases and decreases in US intensity during stage 2 (Mc-
Nally et al. 2004a).

The data reviewed thus far have been derived exclusively
from studies of fear conditioning in rodents. Recent work using
people has also identified prediction-related activity in the mid-
brain during aversive conditioning (Seymour et al. 2004). The
behavioral design used did not permit examination of whether
this prediction-related activity had a direct action on associative
formation, as would be expected from the rodent studies re-
viewed above, or whether this action on associative formation
was indirect via changes in attention. The region of activity was
ventral to the aqueduct and consistent with dorsal raphe nucleus
(DRN) rather than the immediately adjacent vlPAG. However,
there are important intra-midbrain circuits involving DRN and
PAG (Lovick 1994; Stezhka and Lovick 1994) that may mediate
this midbrain contribution to predictive fear learning.

The intracellular mechanisms for direct predictive learning
in the midbrain have also begun to be elucidated. The opioid
receptors couple to G proteins inhibiting adenylyl cyclase, acti-
vating inwardly rectifying K+ channels, and decreasing the con-
ductance of voltage-gated Ca2+ channels (Williams et al. 2001).
They also couple to an array of other second messenger systems,
which include the MAP kinases. Reductions in vlPAG adenylyl
cyclase and cAMP are important signal transduction events for
direct predictive learning because this learning is prevented by
increasing vlPAG cAMP (McNally et al. 2005). Interestingly, nei-
ther vlPAG protein kinase A nor MAP kinases appear to contrib-
ute to direct predictive learning (McNally et al. 2005). This stands
in contrast to the roles of these kinases in learning about con-
tiguous relations in the amygdala and illustrates that different
mechanisms can mediate learning about predictive versus con-
tiguous relations.

These findings support earlier suggestions for a role of opi-
oids and their receptors in predictive learning (Schull 1979;
Bolles and Fanselow 1980; Fanselow 1998). The neuroanatomical
overlap revealed in these experiments between the midbrain
mechanisms for direct predictive learning and CR production
may also be a general principle for organization of Pavlovian
learning because it has been reported in other conditioning
preparations (Kim et al. 1998; Medina et al. 2002). This overlap
explains why predictive learning within one response system
(e.g., fear) blocks learning within that system but not in another
response system (e.g., eyeblink). The within-subject response
specificity of blocking would be otherwise impossible.

Brain mechanisms for indirect predictive learning
The indirect actions of predictive learning on Pavlovian fear con-
ditioning are achieved by selective attention. Predictive learning
occurs by directing attention toward better predictors of danger
and away from poorer predictors. Recent evidence suggests that,
during fear learning, this indirect action is achieved in the ven-
tral striatum.

Studies of reward-responsive midbrain dopamine neurons
in monkeys indicate that the firing of these cells is closely linked
to predictive learning (Schultz 2006). These cells display high
levels of firing to unexpected rewards and low levels of firing to
expected rewards (Waelti et al. 2001). Conversely, these cells
show high levels of firing to CSs that reliably predict rewards and
low levels of firing to CSs that are not predictive of rewards
(Waelti et al. 2001). Neuroimaging studies in human participants
reveal similar changes in activity in target regions of midbrain
dopamine cells, the ventral putamen/striatum, as a function of

Figure 1. Prevention of blocking by infusions of the µ-opioid receptor
antagonist CTAP into the vlPAG prior to stage 2 training. (Reprinted with
permission from the American Psychological Association, © 2006, Mc-
Nally and Cole [2006]).
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whether a reward is expected or not (Pagnoni et al. 2002; McLure
et al. 2003; O’Doherty et al. 2003). These changes also occur
during blocking. For example, reward-responsive cells in monkey
midbrain acquire stronger responses to a reward-predicting
stimulus than a blocked stimulus (Waelti et al. 2001). In human
participants, the ventral putamen/striatum also shows larger re-
sponses to a reward-predicting stimulus than a blocked stimulus
(Tobler et al. 2006). Together, these findings strongly implicate
dopamine neurotransmission and the ventral putamen/striatum
in predicting rewards.

Do these same mechanisms also contribute to predicting
danger? There is evidence from human participants that ventral
putamen/striatum activity correlates with predictive error during
category learning (Rodriguez et al. 2005). In this experiment par-
ticipants were required to predict an outcome based on visual
features of a stimulus. Feedback (correct or incorrect) for these
predictions was provided on a trial by trial basis. Activity in the
ventral putamen/striatum was positively correlated with incor-
rect predictions (i.e., when the outcome of the trial was surpris-
ing). This suggests that the role of this structure may not be
limited to learning about rewards. However, there is conflicting
evidence from human and rodent studies regarding the existence
and interpretation of dopamine release and/or activity in the
ventral putamen/striatum during aversive conditioning (for re-
views, see Salamone 1994; Horvitz 2000; Pezze and Feldon 2004).
Moreover, although there is evidence that dopamine and the
ventral striatum make important contributions to fear learning,
the nature of this contribution is only poorly understood (Red-
grave et al. 1999; Horvitz 2000; Pezze and Feldon 2004). Recent
data from both human and rodent studies suggest a specific role
for the ventral striatum/putamen in predictive fear learning.

Studies of human conditioning have revealed activity in the
ventral striatum during presentations of a CS previously paired
with aversive stimulation (Jensen et al. 2003). This can occur
during presentations of a trained CS but prior to delivery of the
US and thus, under some circumstances, does not appear directly
attributable to any relief that might be occasioned by the termi-
nation of the US. Moreover, this activity can be related to pre-
dictive error. For example, consider a recent experiment that
studied predictive error during serial compound conditioning in
humans participants (Seymour et al. 2004). One pair of CSs was
followed by a high (i.e., CS1→CS2→high US) and the other by a
low (i.e., CS3→CS4→low US) intensity aversive US. Occasionally
a CS from one pair would be presented sequentially with a CS
from the other pair and followed by the US associated with the
second CS (e.g., CS1→CS4→low US). There are a number of
sources of predictive error, derived by TD learning rules, under
these conditions. The change from the intertrial interval to the
unexpected CS1 is a source of large predictive error (positive pre-
diction error) as is the change from CS1 to CS4 on CS1→CS4
trials (negative prediction error). Activity in the ventral puta-
men/striatum was significantly positively correlated with these
TD prediction errors.

Studies of blocking in rodent fear conditioning have pro-
vided evidence that the ventral striatum is critical for predictive
fear learning. These studies have also identified some of the im-
portant neurotransmitters and neuromodulators underpinning
this learning. Blocking of Pavlovian fear conditioning in rodents
depends on dopamine neurotransmission in the nucleus accum-
bens (Acb) (Iordanova et al. 2006a). Blocking is enhanced by
manipulations that increase, and is prevented by manipulations
that decrease Acb dopamine neurotransmission. Interestingly,
blocking of fear conditioning depends upon the combined activ-
ity of D1 and D2 dopamine receptors because only combined
microinjections of D1 and D2 selective antagonists, not micro-
injections of either D1 or D2 antagonists, prevented blocking

(Iordanova et al. 2006a). Blocking and unblocking also depend
on accumbal opioid receptors (Iordanova et al. 2006b). Acb mi-
croinjections of µ-opioid receptor agonists prevent blocking,
whereas microinjections of µ-opioid receptor antagonists prevent
unblocking (Fig. 2).

Both human fMRI and rodent fear conditioning therefore
identify a role for the ventral putamen/striatum in predictive fear
learning. Recent data suggest this role is in indirect predictive
learning and that the ventral putamen/striatum controls alloca-
tion of attention to predictors of danger. Examination of the
associative mechanism for blocking and unblocking during ro-
dent fear conditioning revealed that the ventral striatum deter-
mines the attention allocated to a CS and, hence, its subsequent
association with shock. A key component of theories of indirect
predictive learning is that predictive learning is delayed. Predic-
tive error on trial N acts to regulate what is learned about that CS
on trial N + 1 by controlling how much attention is allocated to
that CS on the latter trial. For example, Mackintosh et al. (1977)
used an unblocking design to show that an increase in shock
intensity on the first trial of stage 2 training did not alter how
much was learned about the added CS on that trial (as would be
predicted by a direct action of predictive error), but rather influ-
enced learning about the added CS on the next trial (as would be
predicted by an indirect action of predictive error). Iordanova et
al. (2006b) recently used an analogous design to study the role of
ventral striatal opioid receptors in predictive learning (Fig. 2).
Iordanova et al. first trained rats to fear CSA. In stage 2, they
subjected rats to two pairings of CSA and CSB with shock. They
compared the effects on blocking of infusions of a µ-opioid re-
ceptor agonist into the Acb either before the first or the second of
the two stage 2 conditioning trials. According to theories of di-
rect predictive learning, infusions prior to either the first or sec-

Figure 2. (A) Prevention of blocking by infusions of the µ-opioid re-
ceptor agonist DAMGO, and prevention of unblocking by the µ-opioid
receptor antagonist CTAP, upon infusion into the Acb prior to stage 2
training. Infusions of a �-opioid receptor agonist (DPDPE) or antagonist
(Nalt [Naltrindole]) were without effect. (B) µ-opioid receptors in the Acb
regulate indirect predictive fear learning. Infusions of a µ-opioid receptor
agonist prior to the first (morphine–saline) stage 2 trial prevents blocking,
whereas infusion prior to the second trial (saline–saline) does not. (Re-
printed with permission from The Society for Neuroscience © 2006, Ior-
danova et al. [2006b]).
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ond stage 2 trial should prevent blocking, whereas according to
attentional theories, only infusions prior to the first trial should
prevent blocking. Attentional models of predictive learning state
that during the first AB+ trial in stage 2, the subject learns that
CSA signals shock and that CSB signals shock. The subject also
learns that CSA is a superior predictor of shock than CSB because
the associative strength of CSA is higher due to it being paired
with shock in stage 1 (i.e., |� � VA| > |� � VB|). Consequently,
the subject attends to CSA and ignores CSB on the second
AB + trial, and learning about CSB on this second trial suffers
accordingly. The data showed that only infusions prior to the
first trial prevented blocking. So, Acb µ-opioid agonists prevent
the decline in attention suffered by B and allow it to associate
with shock on the second trial.

These findings provide compelling evidence that an impor-
tant role of the ventral striatum during fear learning is the atten-
tional selection between competing predictors of danger. This
selection results in the allocation of attention to, and therefore
learning about, the best predictor of danger events at the expense
of worse predictors. Understanding these brain mechanisms for
attentional regulation during fear may have important clinical
implications. Many instances of pathological fear and anxiety,
including generalized anxiety (Mathews and MacLeod 1985;
Mogg et al. 1989), panic disorder (McNally et al. 1990b), post-
traumatic stress disorder (McNally et al. 1990a), simple phobia
(Watts et al. 1986), and social phobia (Hope et al. 1990), are
characterized by attentional bias. Anxiety patients selectively at-
tend to danger and threat-related cues at the expense of other
stimuli. This attentional bias may emerge from alterations in
ventral striatal mechanisms for predicting danger.

Conclusions
The ability to predict sources of danger in the environment is
essential for adaptive behavior and survival. Pavlovian fear con-
ditioning allows anticipation of sources of danger in the envi-
ronment. It guides attention away from poorer predictors toward
better predictors of danger, and it elicits defensive behavior ap-
propriate to these threats. Learning about predictive relations is
distinct, at both the behavioral and neural levels, from learning
about contiguous relations. Learning about contiguous relations
requires activation of amygdala NMDA
receptors and recruitment of the signal
transduction cascades subsequent to this
activation. Direct learning about predic-
tive relations requires µ-opioid receptors
in the vlPAG and reductions in vlPAG
cAMP. Indirect learning about predictive
relations requires D1 and D2 dopamine
receptors and µ-opioid receptors in the
Acb which select cues for attentional
processing and, hence, learning.

Despite their distinct neural and be-
havioral bases, learning about predictive
relations and learning about contiguous
relations cannot occur independently.
The mechanisms for predicting danger
are complementary to the mechanisms
for fear memory formation. Predicting
danger depends upon retrieving a fear
memory, but it also regulates new fear
memory formation by regulating atten-
tion to the CS and by regulating what is
learned about the shock US. Wagner’s
Sometime Opponent Process of Learning
(SOP) and its more recent affective and
real-time extensions are important ex-

amples of approaches that coherently incorporate both contigu-
ity and predictive mechanisms into a general theory of associa-
tive learning (Wagner 1981; Wagner and Brandon 1989, 2001).
Within these models, learning depends critically upon the acti-
vation of simultaneous mental representations of the CS and the
US into the focus working memory. Contiguous relations are
important because only closely spaced presentations of the CS
and US allow for their mental representations to be simulta-
neously active in the focus of working memory and learned
about. If a long trace interval is introduced, then the CS repre-
sentation will have decayed from the focus working memory by
the time the US is presented and thus the CS will not be learned
about. Predictive relationships are important because knowledge
of the CS–US causal relationship gates the ability of the CS and
US representations to be activated to the focus of working
memory. Expected CSs and USs are processed differently in
memory to unexpected CSs and USs. The amygdala synaptic
mechanisms for fear memory formation are sensitive to predic-
tive relations (Bauer et al. 2001). The question is how this sensi-
tivity is achieved. Following the general architecture of SOP, the
mechanisms of indirect and direct predictive fear learning re-
viewed here might be understood as regulating the access of the
CS and shock US, respectively, to amygdala-based mechanisms
for fear memory formation (Fig. 3).

Studies of the neural mechanisms that allow organisms to
predict sources of danger in their environment are beginning to
reveal greater complexity and subtlety in the brain mechanisms
for fear learning than was previously realized. These studies show
that structures not typically viewed as important for fear learning
are important for predictive learning. This complexity is perhaps
somewhat unsurprising given the key role that predictive learn-
ing plays in enabling adaptive responses to threat. What is sur-
prising is that understanding of the brain mechanisms for pre-
dicting danger, as opposed to those important for storage of fear
memories, is so incomplete. Likewise, knowledge of the brain
mechanisms for predicting danger is remarkably limited when
compared to knowledge of the brain mechanisms for predicting
rewards (Schultz and Dickinson 2000; Schultz 2006). A more
complete understanding of these mechanisms is needed. The be-
havioral approaches reviewed in the first part of this article can

Figure 3. Roles of the ventral striatum and midbrain in predicting danger.
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be used to dissociate learning about contiguous versus predictive
relations during fear conditioning. The empirical studies, de-
scribed in the latter parts of this article, which have adopted
these approaches, provide important insights into the neural
substrates for predicting danger. However these studies also leave
unanswered many important questions, for example, about the
circuit level and molecular mechanisms that allow the ventral
striatum and midbrain to regulate fear learning. The exact rela-
tionship between the neural mechanisms for predicting danger
and predicting rewards is also unclear. Certain theoretical tradi-
tions place emphasis on opponent interactions between aversive
(fear) and appetitive (reward) motivational systems in regulating
associative learning (Konorski 1967; Dickinson and Dearing
1979). Other theoretical approaches suppose commonalities be-
tween the brain mechanisms for predictive danger and for pre-
dicting rewards (Redgrave et al. 1999). The data reviewed here
indicate some overlap between these processes, at least at the
level of the ventral striatum. Finally, an increased understanding
of the neural mechanisms for predicting danger should shed
light on the brain mechanisms for pathological anxiety because
many instances of pathological anxiety are characterized by ex-
cessive and biased attention toward danger.
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