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• Background The molecular evolution of organellar genomes in angiosperms has been studied extensively, with 
some lineages, such as parasitic ones, displaying unique characteristics. Parasitism has emerged 12 times inde-
pendently in angiosperm evolution. Holoparasitism is the most severe form of parasitism, and is found in ~10 % 
of parasitic angiosperms. Although a few holoparasitic species have been examined at the molecular level, most 
reports involve plastomes instead of mitogenomes. Parasitic plants establish vascular connections with their hosts 
through haustoria to obtain water and nutrients, which facilitates the exchange of genetic information, making 
them more susceptible to horizontal gene transfer (HGT). HGT is more prevalent in the mitochondria than in the 
chloroplast or nuclear compartments.
• Scope This review summarizes current knowledge on the plastid and mitochondrial genomes of holoparasitic 
angiosperms, compares the genomic features across the different lineages, and discusses their convergent evolu-
tionary trajectories and distinctive features. We focused on Balanophoraceae (Santalales), which exhibits extraor-
dinary traits in both their organelles.
• Conclusions Apart from morphological similarities, plastid genomes of holoparasitic plants also display other 
convergent features, such as rampant gene loss, biased nucleotide composition and accelerated evolutionary rates. 
In addition, the plastomes of Balanophoraceae have extremely low GC and gene content, and two unexpected 
changes in the genetic code. Limited data on the mitochondrial genomes of holoparasitic plants preclude thorough 
comparisons. Nonetheless, no obvious genomic features distinguish them from the mitochondria of free-living 
angiosperms, except for a higher incidence of HGT. HGT appears to be predominant in holoparasitic angiosperms 
with a long-lasting endophytic stage. Among the Balanophoraceae, mitochondrial genomes exhibit disparate 
evolutionary paths with notable levels of heteroplasmy in Rhopalocnemis and unprecedented levels of HGT in 
Lophophytum. Despite their differences, these Balanophoraceae share a multichromosomal mitogenome, a feature 
also found in a few free-living angiosperms.

Key words: Balanophoraceae, Cuscuta, horizontal gene transfer, Lophophytum mirabile, mitochondria, non-
photosynthetic plastid, Ombrophytum subterraneum, Rafflesiaceae, Rhopalocnemis phalloides, Santalales.

INTRODUCTION

The genetic material within plant organelles contains genes neces-
sary for photosynthesis and respiration, which are essential pro-
cesses for plant survival. Examining the evolution of the plastid 
and mitochondrial genomes in parasitic plants helps to address 
key evolutionary questions, such as how parasitism developed 
independently many times in angiosperms and how holoparasitic 
plants have evolved to rely entirely on their host plants for sur-
vival. Furthermore, these studies improve our understanding of 
the cascading effects provoked by photosynthesis loss and the re-
laxation of plastid metabolism (Wicke and Naumann, 2018; Cai, 
2023). Genomic and transcriptomic investigations provide infor-
mation about the molecular and genomic changes that occurred 

during the shift from free-living to parasitic plants, such as those 
involving haustorium formation (Yoshida et al., 2016; Teixeira-
Costa, 2021), cytonuclear interactions (Ceriotti et al., 2022), 
co-evolutionary dynamics between host and parasites, and the 
potential role of horizontal gene transfer (HGT) in driving mo-
lecular changes in both the nucleus and the organelles (Davis and 
Xi, 2015; Yang et al., 2019; Wickell and Li, 2020).

EXPLORING THE DIVERSITY OF HETEROTROPHIC 
PLANTS: MYCOHETEROTROPHS AND PARASITES

Heterotrophy has originated multiple times throughout the evo-
lution of the Archaeplastida, including green algae, red algae 
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and land plants. In streptophytes, the greatest diversity of het-
erotrophy occurs among angiosperms (Hadariová et al., 2018), 
where it exists in two different modes: mycoheterotrophy and 
parasitism. Mycoheterotrophs acquire nutrients directly from 
fungi or indirectly from another plant through a fungus (Graham 
et al., 2017). Fully mycoheterotrophic plants lost their ability 
to photosynthesize and associate with mycorrhizal fungi, which 
act as a bridge between the mycoheterotroph and an autotrophic 
plant (Merckx, 2013). Mycoheterotrophic species evolved inde-
pendently in ten angiosperm families, namely Burmanniaceae, 
Corsiaceae, Ericaceae, Gentianaceae, Iridaceae, Petrosaviaceae, 
Polygalaceae, Thismiaceae, Triuridaceae and Orchidaceae, 
which have undergone at least 30 independent transitions to 
mycoheterotrophy (Merckx and Freudenstein, 2010; Nickrent, 
2020). Parasitic plants, on the other hand, obtain part or all 
of their nutrients from the host plant through a modified root 
known as haustorium, which connects the parasite with the 
host’s vascular tissues (Kuijt, 1969; Nickrent, 2020). There 
are nearly 4750 species of parasitic angiosperms that feed on 
other plants, invading the roots or stems of their hosts (Heide-
Jorgensen, 2008; Westwood et al., 2010; Nickrent, 2020). 
Parasites are distributed across 12 angiosperm lineages, namely 
Cassytha, Cynomoriaceae, Cytinaceae, Cuscuta, Hydnoraceae, 
Krameriaceae, Lennoaceae, Mitrastemonaceae, Orobanchaceae, 
Santalales, Apodanthaceae and Rafflesiaceae (Fig. 1). While 
parasitic angiosperms can have a positive role in ecosystems, 
some of them, such as the Orobanchaceae Striga and Orobanche 
or the dodder Cuscuta, can cause crop damage and have been 
studied more intensively (Press and Phoenix, 2005; Nickrent, 
2020; Zagorchev et al., 2021; Albanova et al., 2023).

The transition to a heterotrophic lifestyle is accompanied 
by numerous morphological and physiological changes that 
have occurred independently in distant angiosperm lineages, 
indicating the existence of highly convergent evolutionary tra-
jectories. These changes include reductions in vegetative body, 
photosynthetic tissue and chlorophyll content. At the genetic 
level, convergent traits are also observed, particularly in the 
plastid genome. These convergent features are known as the 
parasitic reduction syndrome, and are shared by all hetero-
trophic plants, regardless of the feeding type (Wicke et al., 
2013; Graham et al., 2017; Wicke and Naumann, 2018).

The phylogenetic affiliations of parasitic lineages have been a 
subject of conflict, but it is now widely accepted that the parasitic 
lifestyle originated 12 times independently in the evolution of 
angiosperms (Fig. 1). Parasitic lineages exhibit notable variability 
in terms of the number of species and range of nutritional modes, 
including hemiparasites (i.e. parasites able to photosynthesize) 
and holoparasites (i.e. completely non-photosynthetic parasites). 
For example, Orobanchaceae and Santalales have experienced 
remarkable expansion with more than 2000 described species, 
whereas others, such as Cynomoriaceae and Mitrastemonaceae, 
have only one or two described species (Nickrent, 2020). Among 
the 12 taxonomic lineages of parasitic plants, seven include 
exclusively holoparasites and two only contain hemiparasites 
(Krameriaceae and the genus Cassytha). The remaining three 
lineages (Santalales, Orobanchaceae and the genus Cuscuta) en-
compass both hemi- and holoparasites (Fig. 1).

The transition to a parasitic life form occurred at different 
times during the evolution of angiosperms, leading to the 
emergence of both older and more recent parasitic lineages. 

Santalales are the oldest (~109 Mya), along with Hydnoraceae 
(~101 Mya) and Cynomoriaceae (~100 Mya). These are fol-
lowed by Rafflesiaceae (65–95 Mya), Cytinaceae (~72 Mya), 
Mitrastemonaceae (~78 Mya), Apodanthaceae (65-81 Mya), 
Krameriaceae (61.8 Mya), Cassytha (77 Mya) and Lennoaceae 
(40-67 Mya) (Naumann et al., 2013; Xi et al., 2013; Magallón 
et al., 2015; Bellot and Renner, 2016; Rose et al., 2018). The 
youngest parasitic lineages include Cuscuta and Orobanchaceae 
that originated independently 35–38 Mya (Naumann et al., 
2013; Magallón et al., 2015; Xu et al., 2022).

HOLOPARASITIC ANGIOSPERMS

Holoparasitism is the most extreme form of parasitism in plants, 
whereby parasitic plants lack photosynthetic activity and are 
completely reliant on their host for their nutritional needs. Even 
though ten of the 12 parasitic angiosperm lineages include 
holoparasitic taxa (Fig. 1), holoparasites represent ~10 % of the 
parasitic species, and invade either the stem or the roots of the 
host plants. Some holoparasites have an endophytic stage that 
dominates their life cycle, and four parasitic families are exclu-
sively endoparasitic, i.e. they only grow within their host for 
the majority of their lifespan (Teixeira-Costa and Davis, 2021). 
Holoparasitism has arisen about 15 times during the evolu-
tion of angiosperms, once in Apodanthaceae, Cynomoriaceae, 
Cytinaceae, Hydnoraceae, Lennoaceae, Mitrastemonaceae 
and Rafflesiaceae, twice in Cuscuta, three to five times within 
the Orobanchaceae, and twice within the Santalales leading 
to Balanophoraceae s.s. and Mystropetalaceae (Banerjee 
and Stefanović, 2019; Nickrent, 2020; Xu et al., 2022). 
Other Santalales approaching holoparasitism have also 
been described, such as the endoparasites Tristerix aphyllus 
(Loranthaceae) (Mauseth et al., 1984), Arceuthobium spp. 
(Viscaceae) (Nickrent and García, 2009) and Viscum minimum 
(Viscaceae) (Mauseth and Rezaei, 2013). The genus Cuscuta 
encompasses ~200 species, a number of which are considered 
functionally holoparasitic (van der Kooij et al., 2000; Banerjee 
and Stefanović, 2019).

Among the holoparasitic angiosperms, those in 
Balanophoraceae stand out for several reasons. First, it is one 
of the best studied holoparasitic lineages in terms of the number 
of characterized organellar genomes. Second, their plastomes 
exhibit unique features, even when considering all other living 
organisms: the highest AT content, the most biased codon usage 
and a novel genetic code change. Third, the mitochondrial 
genome of Lophophytum mirabile leads the ranking of func-
tional horizontal transfers among those reported in the three 
domains of life.

The taxonomic complexity of the family Balanophoraceae: 
its position within the order Santalales and the phylogenetic 
relationships among its genera

The order Santalales is the largest lineage of parasitic plants 
comprising ~50 % of all parasitic angiosperms with 2428 spe-
cies (Barkman et al., 2007; Su et al., 2015; Nickrent, 2020). 
It is the only order with more than one family of parasitic 
plants, consisting of ~15 families with worldwide distribution 
(Nickrent, 2020). The morphological losses and reductions that 
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Fig. 1. Phylogeny of angiosperms depicting parasitic lineages. Red branches depict lineages including parasitic plants. Families that contain holoparasitic plants 
are in boldface. The availability of organellar genomic resources of holoparasites is indicated by a schematic plastid or mitochondrion. A pie chart next to the 
parasitic lineages shows the proportion of hemi- and holoparasitic taxa. The phylogeny follows Angiosperm Phylogeny Group IV (2016) classification and the 

phylogeny of Santalales is based on Nickrent (2020).
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are characteristic of parasitic plants, especially in those that lost 
the ability to perform photosynthesis, led to remarkable con-
vergent traits hindering an accurate phylogenetic classification. 
Therefore, despite strong support for the monophyly of the 
order (Soltis et al., 1999, 2003), the placement of Santalales 
within the overall angiosperm phylogeny has been uncertain 
(Leebens-Mack et al., 2019; Li et al., 2019), and several re-
views of their complex taxonomic history have been pub-
lished (Kuijt, 1969; Nickrent et al., 2010; Kuijt and Hansen, 
2015; among others). The association of Balanophoraceae with 
Santalales dates back to the 19th century (Eichler, 1867; Van 
Tieghem, 1896), but it was not until the advent of molecular 
data that the relationships and position of Balanophoraceae 
began to be clarified (Nickrent and Duff, 1996; Su et al., 2012, 
2015; Ceriotti et al., 2021). The analysis of several molecular 
markers from the nucleus, plastid and mitochondrial compart-
ments supported the position of the family within Santalales, 
and the separation of Balanophoraceae s.l. into two clades, 
Balanophoraceae s.s. and Mystropetalaceae (Su et al., 2015). 
The split of Balanophoraceae s.l. indicates that holoparasitism 
evolved independently in these two clades within Santalales, 
although their exact phylogenetic positions within the order re-
main to be elucidated.

The family Balanophoraceae s.s. consists entirely of root 
holoparasites with 13 genera (Exorhopala has been placed 
within Helosis; Eberwein and Weber, 2004) and 53 spe-
cies distributed in tropical and subtropical regions. Unlike 
cormophytes, species of this family lack typical structures such 
as roots, stems and leaves. Instead, they develop an under-
ground vegetative body called tuber (Gonzalez and Mauseth, 
2010; Sato and Gonzalez, 2016). During reproduction, the 

endotrophic tissue develops a fleshy inflorescence, often cy-
lindrical, elongated, with unisexual and tiny flowers, observed 
in both monoecious and dioecious species (Kuijt and Hansen, 
2015; Gonzalez and Sato, 2016; Sato and Gonzalez, 2016). 
Balanophora is the most species-rich genus within the family, 
whereas most other genera are monotypic or encompass a low 
number of species (Fig. 2).

Relationships among the genera of Balanophoraceae based on 
molecular data (Su et al., 2012, 2015; Ceriotti et al., 2021; Kim 
et al., 2023) are generally concordant with groups recognized 
in morphology-based classifications (Hansen, 1980; Takhtajan, 
2009; Kuijt and Hansen, 2015), although a thorough analysis 
including all genera is still lacking. We performed a maximum-
likelihood phylogenetic analysis (Fig. 2 and Supplementary 
Data Fig. S1) using a concatenated data set of nuclear (rDNA 
operon) and mitochondrial (matR) sequences, which represent 
all markers available in public databases encompassing most 
Balanophoraceae (Supplementary Data Table S1). The tree in-
cludes all genera except for Chlamydophytum, Ditepalanthus 
and Lathrophytum, for which no molecular data are available. 
The topology shown in Fig. 2 agrees with previous studies 
that included a smaller number of species or were based on 
smaller data sets (Su et al., 2012, 2015; Schelkunov et al., 
2019; Ceriotti et al., 2021; Kim et al., 2023). The relation-
ships among eight of the ten genera are well resolved, except 
for Sarcophyte and Scybalium, which show poorly supported 
affiliations. Overall, the tree shows that Lophophytum and 
Ombrophytum [and probably Lathrophytum based on morpho-
logical data (Hansen, 1980; Kuijt and Hansen, 2015)] represent 
a monophyletic group (named subfamily Lophophytoideae) 
sister to a clade formed by the subfamily Helosidoideae. On the 
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Fig. 2. Phylogeny and features of Balanophoraceae. Maximum-likelihood phylogenetic tree based on a concatenated alignment of nuclear (rDNA operon) 
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(in orange). The geographical distribution and number of species was taken from https://powo.science.kew.org/.

http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcad108#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcad108#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcad108#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcad108#supplementary-data
https://powo.science.kew.org/


Sanchez-Puerta et al. — Organellar genomes of holoparasitic plants 913

other hand, Balanophora, Langsdorffia and Thonningia form 
a separate monophyletic group, recognized as the subfamily 
Balanophoroideae. Balanophora and Langsdorffia form a well-
supported clade in the tree in contrast to previous classifica-
tions based on flower morphology that placed Langsdorffia as 
sister to Thonningia (Harms, 1935; Takhtajan, 2009). However, 
similarities in embryo sac development and the morphology of 
the pollen between Balanophora and Langsdorffia were recog-
nized (Kuijt and Hansen, 2015) and agree with the molecular 
phylogeny.

Morphological analyses place Sarcophyte and 
Chlamydophytum as monophyletic due to their conspicuously 
branched inflorescences and sessile stigma (Hansen, 1980; 
Kuijt and Hansen, 2015). The phylogenetic tree shows the sub-
family Sarcophytoideae as the earliest diverging branch, al-
though with low bootstrap support. A recent phylogeny based 
on a large plastid gene data set also found Sarcophyte as sister 
to all other Balanophoraceae plastomes with strong support 
(Kim et al., 2023). The affiliation of Scybalium as sister to the 
subfamilies Helosidoideae and Lophophytoideae recovered in 
the phylogenetic analysis with strong support agrees with the 
presence of shared morphological characters, such as the un-
branched inflorescences and the presence of flowers with two 
stylodia and starch in tubers (Hansen, 1980; Kuijt and Hansen, 
2015). The advent of DNA sequences, especially from plastids, 
from all the described genera in the family will help to fully 
resolve the speciation events in the family Balanophoraceae.

ORGANELLE GENOMES OF HOLOPARASITES

Over 50 holoparasitic genera have been identified (Nickrent, 
2020), but only a few of them have been studied at the genomic 
level (Table 1 and Supplementary Data Note S1). Complete 
mitochondrial genomes (mtDNAs) have been sequenced from 
representatives of nine holoparasitic genera from four different 
lineages, whereas plastid genomes (cpDNAs) have been re-
ported from representatives of 28 genera from nine lineages 
(Table 1).

Convergent traits in the plastomes of holoparasitic plants

The transition from an autotrophic to a heterotrophic lifestyle 
had a profound impact on plastid genomes, resulting in gen-
omic features that differ significantly from those of free-living 
plants. This is particularly evident in holoparasitic plants, as the 
loss of photosynthetic capacity is associated with a relaxation of 
the evolutionary pressures on the plastome. These changes are 
essentially convergent and characterized by rampant gene loss, 
accelerations of molecular evolutionary rates and biased nu-
cleotide compositions, in sharp contrast to the highly conserved 
plastid genomes of free-living plants (Wicke and Naumann, 
2018). The reported plastomes from 28 holoparasitic genera 
share a reduction in gene content and genome size, primarily due 
to photosynthesis-related gene losses, and a decrease in overall 
GC content ranging between 11.56 % in Balanophoraceae 
and 38 % in Lennoaceae, Cuscuta and Orobanchaceae (Table 
1). This contrasts with photosynthetic plants, which exhibit a 
genome size of 120–170 kb carrying 120–130 genes, and a GC 
content of 35–40 % (Ruhlman and Jansen, 2014). While the 

conserved large inverted repeats are believed to stabilize the 
plastome (Palmer and Thompson, 1982; Maréchal and Brisson, 
2010), the typical quadripartite structure has been perturbed in 
species from seven holoparasitic lineages through the loss of 
the inverted repeats (Table 1). These changes often lead to gen-
omic rearrangements (Wicke et al., 2013; Bellot and Renner, 
2016; Roquet et al., 2016; Chen et al., 2019; Schelkunov et al., 
2019; Su et al., 2019; Ceriotti et al., 2021; Jost et al., 2022). 
In addition, the complete loss of the plastid genome has been 
described in the Rafflesiaceae (Molina et al., 2014; Cai et al., 
2021) and recently suggested for species in section Subulatae 
within the genus Cuscuta subgenus Grammica (Banerjee and 
Stefanović, 2023).

Plastid evolution in Balanophoraceae: extreme nucleo-
tide composition, strong gene content reduction, and genetic 
code changes. The complete loss of photosynthetic ability in 
Balanophoraceae led to the most extreme plastomes known to 
date. Initially, it was believed that Balanophoraceae had lost 
their plastids completely (Gedalovich-Shedletzky and Kuijt, 
1990; Nickrent et al., 1997). However, recent reports of the 
plastid genome in Balanophora and ultrastructural observa-
tions of these organelles (Chen et al., 2019; Su et al., 2019), 
followed by the sequencing of plastomes from Rhopalocnemis 
(Schelkunov et al., 2019), Lophophytum and Ombrophytum 
(Ceriotti et al., 2021), and Sarcophyte and Thonningia (Kim 
et al., 2023), provide ample evidence to support the presence 
of reduced and aberrant plastids with even more odd plastomes 
(Fig. 3). Transmission electron micrographs of ovarian cells 
of Lophophytum pyramidale show the presence of non-
photosynthetic plastids that accumulate starch (Fig. 3C), which 
are also observed with light microscopy of cells stained with 
iodine (Fig. 3D) (Sato and Gonzalez, 2016; Torres et al., 2021). 
Starch-containing plastids in Lophophytum contrast with the de-
scription of Balanophora plastids that exhibit only oil droplets 
(Su et al., 2019). Additionally, in the tissues of Balanophora 
and Lophophytum, large quantities of tannins were observed 
(Hsiao et al., 1995; Torres et al., 2021), which seem to have ori-
ginated from plastids called tannosomes (Brillouet et al., 2013).

To date, six genera of the Balanophoraceae have their 
plastomes sequenced (Table 2). These plastomes have under-
gone significant reductions in size and gene content, and 
their nucleotide compositions are highly biased (Chen et al., 
2019; Schelkunov et al., 2019; Su et al., 2019; Ceriotti et al., 
2021; Kim et al., 2023). In fact, compared to hemiparasitic 
Santalales and free-living plants, more than 80 and 90 genes 
are missing, respectively. This severe gene loss probably took 
place in the common ancestor of Balanophoraceae, although 
additional gene losses occurred during species diversification 
(Ceriotti et al., 2021; Kim et al., 2023). It is worth noting that 
Sarcophyte, which diverged early in the evolution of the family 
(Kim et al., 2023), presents the largest gene content among the 
examined Balanophoraceae plastomes (Table 2). Interestingly, 
Balanophora spp. achieved an exceptional level of genome 
compaction, resulting from shrunken intergenic regions, genes 
that overlap and the outright loss of cis-introns in the retained 
genes (Chen et al., 2019; Su et al., 2019).

A major feature shared by all plastomes of the family is 
the low GC content (Schelkunov et al., 2019; Su et al., 2019; 
Ceriotti et al., 2021). The dramatic nucleotide bias probably 

http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcad108#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcad108#supplementary-data
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occurred in the ancestor of the Balanophoraceae and be-
came stronger after the divergence of Sarcophyte, as all other 
genera, except for Thonningia, exhibit GC contents < 14.05 
% (Table  2) compared to the 36–38 % observed in other 
Santalales. This reduction in GC content has resulted in pro-
tein genes and proteins that are barely recognizable by com-
parative tools, and some Balanophoraceae exhibit the most 
biased codon usage and nucleotide compositions across the tree 
of life (Su et al., 2019). Only the plastomes of Apicomplexa 
(apicoplasts) and some Proteobacteria show comparable levels 
of nucleotide bias (Wilson et al., 1996; Su et al., 2019). The 
bias in the Balanophoraceae plastomes is likely to be the result 
of mutational forces, probably due to a relaxation and subse-
quent erosion of the maintenance machinery (Schelkunov et al., 
2021; Ceriotti et al., 2022) and to genetic drift (Su et al., 2019; 
Ceriotti et al., 2021).

Another outstanding finding is that the only two genetic code 
changes found in plants occur in Balanophoraceae. Specifically, 
TAG and TGA, which are typically stop codons, code for tryp-
tophan in the plastomes of Balanophora–Thonningia and 
Lophophytum–Ombrophytum, respectively. The reassignment 
of the stop codon UGA to a tryptophan coding codon is the 
most common genetic code change in eukaryotes, and is mainly 
found in mitochondrial genomes (Yokobori et al., 2010). 
In contrast, the Balanophora–Thonningia change has never 
been described before. The codon capture theory (Osawa and 
Jukes, 1989) has been favoured as the most plausible explan-
ation for both genetic code changes (Su et al., 2019; Ceriotti 
et al., 2021). This hypothesis consists mainly of three steps: 
codon disappearance from the genome (probably due to gene 
loss and nucleotide bias), the stop codon is no longer recog-
nized (which is supported by the loss of specific release factors 

A B

C D

2 µm 20 µm

Fig. 3. Lophophytum pyramidale. (A) Map of the plastome with the main features shown in the centre. (B) Inflorescences of L. pyramidale growing in the province 
of Misiones (Argentina). Yellow and whitish flowers are male and female, respectively. (C) Transmission electron micrograph of an ovarian cell. The arrow points 

to the non-photosynthetic plastid. (D) Light micrograph of a cell from the female flower stained with iodine. Arrowheads depict starch granules.
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in Lophophytum and Balanophora; Ceriotti, et al. 2021) and, 
finally, reassignment of the codons. For this last step, several 
unexplored complex scenarios involving tRNAs and related 
enzymes are possible, especially for Balanophora spp. and 
Thonningia (Su et al., 2019; Ceriotti et al., 2021). The family 
Balanophoraceae displays exceptional variation regarding 
plastid tRNA biology, which makes it a promising lineage to 
explore unknown aspects of tRNA metabolism in plastids and 
to capture the transitional steps that result in the functional re-
placement of plastid trnE and eventually lead to the loss of the 
entire cpDNA.

The minimal plastome for survival. The characteristics of the 
minimum plastome needed for survival (if they exist) remain 
a matter of debate (Barbrook et al., 2006; Molina et al., 2014; 
Su et al., 2019). To date, the complete loss of the cpDNA has 
been described in only a few non-photosynthetic eukaryotes, 
namely the Rafflesiaceae and Cuscuta subgenus Grammica 
section Subulatae among angiosperms (Molina et al., 2014; Cai 
et al., 2021; Banerjee and Stefanović, 2023), and four distantly 
related protists and algae: Polytomella (Chlorophyta; Smith 
and Lee, 2014), Paraphysomonas (Chrysophyta; Dorrell et al., 
2019), Perkinsus (Alveolata; Fernández Robledo et al., 2011) 
and Rhodelphis (sister to Rhodophyta; Gawryluk et al., 2019).

The plastid trnE gene is believed to be the raison d’être of 
maintaining a non-photosynthetic plastome due to its dual role in 
tetrapyrrole biosynthesis and translation (Barbrook et al., 2006). 
However, trnE is missing from the plastomes of Lophophytum, 
Ombrophytum and Rhopalocnemis (Schelkunov et al., 2019; 
Ceriotti et al., 2021), marking the second independent loss of 
this gene in angiosperms along with the holoparasitic Pilostyles 
spp. (Bellot and Renner, 2016). A functional substitution of 
the plastid trnE by the nuclear homologue has been proposed 
for these Balanophoraceae (Ceriotti et al., 2021), Polytomella 
(Smith and Lee, 2014) and Paraphysomonas (Dorrell et al., 
2019). In Balanophora spp., however, a divergent anticodon-
less trnE is present in all plastomes (Chen et al., 2019; Su et 
al., 2019), a feature only reported in the non-photosynthetic 
orchid Pogoniopsis schenckii (Klimpert et al., 2022). It has 
been suggested that the plastid trnE gene in Balanophora and 
Pogoniopsis functions in tetrapyrrole biosynthesis but not in 
translation (Su et al., 2019; Ceriotti et al., 2021; Klimpert et al., 
2022), as evidenced by the loss of the anticodon and the conser-
vation of most sequence determinants necessary for its recog-
nition by tetrapyrrole synthesis enzymes (Ceriotti et al., 2021).

Evolutionary trends in the mitochondrial genomes of 
holoparasitic plants

The mitochondrial genome of holoparasitic plants is expected 
to be impacted to a lesser extent than plastomes by the loss of 
photosynthesis and a parasitic lifestyle. Angiosperm mitochon-
drial genomes are widely conserved in terms of gene content 
(Richardson et al., 2013), but their size and structure are dy-
namic, with genomes consisting of linear, circular or branched 
subgenomic molecules (Oldenburg and Bendich, 1996; Sloan, 
2013; Kozik et al., 2019) varying in size up to 11.3 Mb (Sloan 
et al., 2012). Mitogenomes of parasitic plants have not been 
studied as extensively as plastomes. Complete mitogenomes 
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are available from only nine genera that belong to four lin-
eages of holoparasitic angiosperms, namely Cynomoriaceae, 
Balanophoraceae, Orobanchaceae and Cuscuta (Table 1). In 
addition, several partial mitochondrial assemblies have been 
reported (Table 1).

Comparisons of these mitogenomes show no evolutionary 
convergence in the structure, gene content, nucleotide compos-
ition, substitution rate or genome size as a result of their extreme 
lifestyle (Zervas et al., 2019; Petersen et al., 2020). Although ini-
tially, parasitic lineages were thought to exhibit accelerated sub-
stitution rates in all cell compartments (Bromham et al., 2013), 
recent analyses revealed that most parasites have ordinary or only 
slightly elevated rates in their mitochondrial genes, with a few 
exceptions (Skippington et al., 2015, 2017; Zervas et al., 2019; 
Ceriotti et al., 2022). Members of three holoparasitic lineages 
[Balanophoraceae, Boschniakia himalaica (Orobanchaceae) 
and Cynomorium coccineum (Cynomoriaceae)] exhibit a 
mitogenome assembled as multiple circular molecules (Bellot 
et al., 2016; Sanchez-Puerta et al., 2017; Roulet et al., 2020; Yu 
et al., 2022; Zhang et al., 2023), which has also been observed 
in some free-living angiosperms (Alverson et al., 2011; Sloan et 
al., 2012; Rice et al., 2013; Wu et al., 2015).

One aspect shared by the mitochondria of holoparasites is the 
presence of foreign DNA (Barkman et al., 2007; Xi et al., 2013; 
Davis and Xi, 2015; Bellot et al., 2016; Sanchez-Puerta et al., 
2017; Petersen et al., 2020; Roulet et al., 2020). While many 
free-living angiosperms have occasionally acquired mtDNA 
from other plants (Richardson and Palmer, 2007; Bock, 2010; 
Wickell and Li, 2020), the impact of HGT is higher in parasitic 
plant mitochondria (Petersen et al., 2020). In particular, the 
Balanophoraceae Lophophytum mirabile takes foreign DNA 
content to new levels (see below).

Mitochondrial evolution in Balanophoraceae

Three mitogenomes of Balanophoraceae have been re-
ported, revealing striking intrafamily differences (Table 3). In 
contrast to the radical features of their plastomes shared by all 
the Balanophoraceae analysed, the three mitogenomes investi-
gated lack a nucleotide composition bias, have a similar gene 
content to that of free-living angiosperms and use the standard 
genetic code. Nevertheless, the mtDNAs exhibit other odd fea-
tures that are either shared or variable within the family.

The three genera share a particular genomic structure, i.e. a 
multichromosomal arrangement of their mitochondrial genome 
(Sanchez-Puerta et al., 2017; Roulet et al., 2020; Yu et al., 2022). 
The mitogenomes consist of 21–60 putatively autonomous cir-
cular chromosomes that range in size from 4.9 to 58 kb (Table 
3). Similar to free-living species of Silene (Caryophyllaceae) 
(Wu et al., 2015), the mitogenomes of Balanophoraceae pre-
sent 2–36 chromosomes that lack known mitochondrial genes 
(Table 3). These chromosomes may carry unidentified func-
tional elements that are relevant for mitochondrial functions 
(Rice et al., 2013; Wu et al., 2015; Sanchez-Puerta et al., 2017). 
However, the variable presence of non-coding chromosomes 
across populations of Silene noctiflora (Caryophyllaceae) sug-
gests that they are evolving by genetic drift (Wu et al., 2015). 
Comparable studies are necessary to test these hypotheses in 
Balanophoraceae.

Mitochondrial chromosomes in Rhopalocnemis are fewer and 
smaller (<8 kb) than those in Lophophytum and Ombrophytum 
(Table 3), with a much smaller mitogenome (131 kb vs. 714–
822 kb). The difference in genome sizes is easily explained by 
the remarkable horizontal acquisition of mtDNA in both ances-
tral and independent events in Lophophytum and Ombrophytum 
(Sanchez-Puerta et al., 2017; Roulet et al., 2020). In addition, 
chromosomes in Rhopalocnemis mitochondria display a con-
served arrangement (Fig. 4). The 21 minicircular chromosomes 
share an identical non-coding region, which carries a sequence 
capable of forming a stem loop and is believed to be the repli-
cation origin for the rolling circle replication mechanism (Yu 
et al., 2022). Minicircular organellar genomes with a similar 
structure, in which a replication origin is shared among chromo-
somes, were described in other eukaryotic lineages, such as the 
plastid of dinoflagellates (Zhang et al., 1999) or the mitochon-
dria of lice (Shao et al., 2009) and nematodes (Gibson et al., 
2007), among others. Such a particular structure is the result of 
convergent evolution in widely disparate eukaryotic lineages. 
In contrast, the mitochondrial chromosomes in Lophophytum 
and Ombrophytum do not have conserved repeats and the rep-
lication mechanism remains unknown. Another outstanding 
feature exclusive to Rhopalocnemis is the extreme level of 
heteroplasmy, mainly due to short indels, which are observed 
across the mitogenome, including frameshift mutations in the 
coding regions. This heteroplasmy is registered in the ma-
jority of the DNA sequence reads and in the RNA transcripts, 
indicating that the functional protein coding transcripts are the 
minority (Yu et al., 2022).

HGT IN HOLOPARASITIC PLANTS: A FREQUENT 
PROCESS IN MITOCHONDRIAL GENOMES

A hallmark of parasitic plants is the vascular connections es-
tablished by haustoria, which allow for the transfer of water, 
nutrients and even nucleic acids, such as RNA and DNA, be-
tween parasitic plants and their hosts (Mower et al., 2010; 
Xi et al., 2013; Sanchez-Puerta, 2014; Davis and Xi, 2015; 
Góralski et al., 2021). Holoparasites, in particular, typically 
exhibit both xylem and phloem connections with their hosts 
(Gonzalez and Sato, 2016; Těšitel, 2016), establishing an 
intimate contact that facilitates the exchange of genetic in-
formation making them more susceptible to HGT (Mower 
et al., 2004, 2010; Davis et al., 2005; Barkman et al., 2007; 
Cusimano and Wicke, 2016; Yang et al., 2016). In addition 
to rare parasite-to-host transfer events (Mower et al., 2004, 
2010; Davis et al., 2005), several reports of host-to-parasite 
HGT have accumulated over the years (Mower et al., 2004, 
2010; Davis et al., 2005; Barkman et al., 2007; Xi et al., 2013; 
Cusimano and Wicke, 2016; Yang et al., 2016). The reasons 
for the larger impact of HGT on parasitic plants than on their 
hosts reside in the fact that parasites establish a connection 
with the host at an early stage of development and the ac-
quired DNA may spread to germ cells and be transmitted to 
the mitochondria of offspring (Huang, 2012; Petersen et al., 
2020). Petersen et al. (2020) compiled a comprehensive list of 
HGT events involving parasitic angiosperms.

Among the three DNA-containing compartments in 
plant cells, plant-to-plant HGT is far more common in the 
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mitochondrial than in the chloroplast or nuclear genomes (Xi 
et al., 2013; Sanchez-Puerta, 2014; Davis and Xi, 2015). The 
lower frequency of HGT identified in the nuclear genome may 
be related to the limited availability of nuclear data. In fact, 
reports of HGT affecting nuclear genomes have increased in 
recent years (Dunning and Christin, 2020; Wickell and Li, 
2020), while HGT in plastid genomes remains exceptional (Ma 
et al., 2015; Gandini and Sanchez-Puerta, 2017; Burke et al., 
2018). Mitochondria from two free-living species, Amborella 
trichopoda (Rice et al., 2013) and Geranium brycei (Park et 
al., 2015), are particularly rich in HGT. Amborella, a flowering 
plant endemic to New Caledonia, stands out for having a 3900-
kb mtDNA that carries foreign DNA equivalent to six mito-
chondrial genomes donated by green algae, mosses and other 
angiosperms, including parasitic Santalales (Rice et al., 2013).

The mobile cox1 intron

The most pervasive case of horizontal transfer among plant 
mitochondria involves an intron found in the mitochondrial 

cox1 gene (cytochrome c oxidase subunit 1) of many diverse 
and disparately related angiosperms (Cho et al., 1998). This 
group I intron was originally transferred to angiosperms from 
a fungal donor and subsequently spread among many diverse 
angiosperm lineages via hundreds (if not thousands) of plant-
to-plant transfer events (Cho et al., 1998; Sanchez-Puerta 
et al., 2008, 2011). The cox1 intron is commonly found in 
parasitic plants (Barkman et al., 2007), including almost all 
holoparasites examined to date, with one exception in which 
an individual of Cynomorium songaricum has secondarily lost 
the intron (Sanchez-Puerta et al., 2011). However, it is uncer-
tain whether these plants acquired the intron horizontally from 
their hosts or inherited it vertically from free-living ances-
tors (Barkman et al., 2007; Fan et al., 2016). Studies of the 
Orobanchaceae have shown that the cox1 intron was acquired 
by free-living ancestors (Fan et al., 2016), while family-wide 
analyses of the Hydnoraceae revealed independent acquisitions 
in the two holoparasitic genera Hydnora and Prosopanche, but 
the donor lineages remain unknown (Yu et al., 2023). Wider 
taxon sampling of free-living relatives is necessary to test these 
hypotheses across all plant parasitic lineages (Barkman et al., 
2007; Fan et al., 2016).

Mitochondrial HGT in holoparasitic plants

Horizontal acquisition of mitochondrial genes from other 
plant mitochondria initially results in gene duplication in the 
recipient mtDNA. Foreign genes commonly coexist with native 
homologues leading to duplicative HGT, and the foreign copies 
generally become pseudogenes (Mower et al., 2010; Rice et 
al., 2013; Sanchez-Puerta, 2014). Occasionally, the foreign 
and native copies may undergo continuous or discontinuous 
gene conversion, generating chimeric gene copies, also known 
as chimeric or partial replacement HGT, which has been in-
creasingly reported (Barkman et al., 2007; Hao et al., 2010; 
Mower et al., 2010; Sanchez-Puerta et al., 2019; Yu et al., 2021, 
2023; Darshetkar et al., 2023). In rare cases, the native copy is 
lost and only the xenologue (foreign copy) remains, known as 
full replacement HGT. Despite the long list of horizontally ac-
quired genes reported in angiosperm mitochondria, evidence of 
a functional role of these foreign genes is scarce (Bergthorsson 
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Fig. 4. Rhopalocnemis phalloides. (A) Photo of an inflorescence of R. 
phalloides, courtesy of Runxian Yu. (B) Map of a mitochondrial chromosome 
of R. phalloides, depicting the conserved region (in orange) shared across 
chromosomes, which includes a region that can fold into a stem loop and is 

considered the origin of replication. Genes are shown in blue.

Table 3. Mitochondrial genomes of Balanophoraceae.

Species Lophophytum mirabile Ombrophytum subterraneum Rhopalocnemis phalloides 

mtDNA size 821,906 bp 713,777 bp 130,713 bp

Protein-coding genes (including 
duplicates)

35 (44) 36 (51) 36

Mitogenome structure 60 circular chromosomes 54 circular chromosomes 21 circular chromosomes

Non-coding chromosomes 36 20 2

GC (%) 44.5 44.22 45.0

Host-derived DNA (%) from Fabaceae (59.1%), 29 foreign and 
3 chimeric genes

from Fabaceae (15.4%); from Asteraceae 
(13.7%), 12 foreign genes

none reported

Heteroplasmy no no yes

Accession numbers KU992322-KU992380, KX792461 MT076267-MT076320 MZ269392-MZ269412

References Sanchez Puerta et al. 2017; 2019; 
Roulet et al. 2020

Roulet et al. 2020 Yu et al. 2022
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et al., 2003; Hao et al., 2010; Garcia et al., 2021). Again, 
Lophophytum stands out as the angiosperm with the highest 
number of functional foreign mitochondrial genes (see below).

The impact of HGT across complete or draft mitogenomes 
of holoparasites has mainly been assessed in coding regions 
or in plastid-derived sequences (MTPTs) or not evaluated at 
all (Table 1). These mitogenomes exhibit a wide range of for-
eign DNA content, including coding and non-coding DNA, al-
though intergenic DNA has rarely been examined (Bellot et al., 
2016; Sanchez-Puerta et al., 2019; Roulet et al., 2020; Choi and 
Park, 2021; Lin et al., 2022a, b; Zhong et al., 2022). Among the 
holoparasites, the most striking examples are found within the 
Cynomoriaceae, the Rafflesiaceae and the Balanophoraceae ex-
hibiting increasing levels of mitochondrial HGT. Foreign DNA 
might serve as a diagnostic of former host associations, as pre-
viously recognized in Boschniakia spp. (Zhang et al., 2023), 
Cynomorium coccineum (Cusimano and Renner, 2019) and 
Sapria himalayana (Cai et al., 2021).

Extent of mitochondrial HGT in holoparasitic lineages

The family Balanophoraceae exhibits divergent pat-
terns of mitochondrial HGT, with no reported instances in 
Rhopalocnemis, and exceptional levels in the mitogenomes of 
Lophophytum and Ombrophytum (Sanchez-Puerta et al., 2017; 
Roulet et al., 2020). Extensive analyses of HGT across the en-
tire mitogenomes of Lophophytum and Ombrophytum revealed 
that ~60 and 30 % of their mtDNA (including 29 and 12 for-
eign mitochondrial genes), respectively, was acquired from 
their hosts (Sanchez-Puerta et al., 2019; Roulet et al., 2020). 
However, these two species demonstrate disparate patterns in 
terms of the functional impact of HGT. While all foreign genes 
in Ombrophytum coexist with native homologues that presum-
ably remain functional (Roulet et al., 2020), Lophophytum 
lost 20 native genes, which were functionally replaced by for-
eign homologues (Roulet et al., 2020; Garcia et al., 2021). In 
addition, Ombrophytum exhibits foreign DNA from Fabaceae 
and Asteraceae donors, both of which are known hosts of this 
holoparasite. Legume-derived DNA tracts are fragmented 
across the genome and seem to result from older horizontal 
transfer events. In contrast, more recently acquired DNA from 
Asteraceae is concentrated in nine mitochondrial chromosomes 
(Roulet et al., 2020).

Despite having only draft assemblies of their mitogenomes 
available, three species of Rafflesiaceae have been extensively 
studied. Foreign DNA in this lineage involves multiple mito-
chondrial genes, including five, five and 11 genes (28–41 %) 
acquired from their hosts by Rafflesia cantleyi, R. tuan-mudae 
and Sapria himalayana, respectively (Xi et al., 2013). Many 
of these foreign genes are transcribed and appear to have re-
placed the native homologues, but further analyses are needed 
to evaluate their functionality in these parasites (Garcia et al., 
2021).

The mitogenome of the endophytic plant Cynomorium 
coccineum contains five foreign mitochondrial genes, as well 
as foreign plastid and nuclear-derived sequences obtained from 
two different plant host lineages (Bellot et al., 2016). While 
three foreign genes coexist with native homologues, atp1 and 
atp8 may have replaced the native copies (Bellot et al., 2016). 

However, the functionality of these genes was not analysed 
in depth. Evolutionary analyses of coding regions in the draft 
mitochondrial assemblies of the root holoparasites Hydnora 
and Prosopanche revealed a small incidence of HGT, with only 
short regions of the mitochondrial genes cox1 and atp8 replaced 
by foreign DNA (Yu et al., 2023).

The impact of mitochondrial HGT on holoparasites of the 
family Orobanchaceae is very small and limited to non-coding 
regions with no foreign mitochondrial genes reported (Choi 
and Park, 2021; Zhang et al., 2022, 2023; Zhong et al., 2022). 
Finally, the complete mitogenomes of five species of Cuscuta, 
C. australis, C. campestris (Anderson et al., 2021), C. apilinum, 
C. europea and C. japonica (Lin et al., 2022b), and several 
draft mitochondrial assemblies (Lin et al., 2022b) did not re-
veal any foreign genes. Nevertheless, mitochondrial intergenic 
regions of C. japonica were inferred as foreign based on simi-
larity searches (Lin et al., 2022b). In a wide gene survey of the 
genus Cuscuta, atp1 was found to be chimeric in one of the 27 
Cuscuta species examined (Lin et al., 2022a).

All these findings provide further evidence of the poten-
tial functional impact of mitochondrial HGT on holoparasitic 
plants and highlight the importance of further research to better 
understand the mechanisms and implications of HGT in para-
sitic plant evolution. To date, the numerous cases of horizon-
tally transferred intergenic or non-functional genes reported 
in holoparasitic mitochondria indicate that functional HGT is 
extremely rare. However, elevated rates of mitochondrial hori-
zontal transfer may occasionally result in exceptional cases of 
functional foreign genes, as observed in Lophophytum (Garcia 
et al., 2021).

Is mitochondrial HGT paralleled by nuclear HGT?

The large-scale horizontal transfer of mtDNA mainly from 
host plants to both Lophophytum and Ombrophytum (Sanchez-
Puerta et al., 2017; Roulet et al., 2020) raises new questions 
that can be better addressed with the sequencing of nuclear 
genomes. Is the scale of nuclear HGT equivalent to that of 
mitochondrial HGT? Unfortunately, the nuclear genomes of 
species of Balanophoraceae have not been explored, and it 
does not seem to be an easy task since genome size estima-
tions (e.g. 30 000 Mbp for Rhopalocnemis phalloides) indicate 
that their nuclear genomes are large (Schelkunov et al., 2019). 
Alternatively, the impact of HGT in the nuclear compartment 
can be evaluated based on transcriptomic data. Next, the role, if 
any, of the foreign nuclear genes in the holoparasites could be 
determined. Given the extent of mitochondrial HGT, we expect 
large-scale nuclear HGT in Lophophytum or Ombrophytum, but 
this aspect has not yet been analysed in depth. Likewise, the 
impact of HGT in the nuclear genomes of Cynomoriaceae or 
Hydnoraceae remains unknown.

Evolutionary analyses of nuclear HGT in parasitic plants of 
the Orobanchaceae, Rafflesiaceae and Cuscuta uncovered the 
expression of dozens of horizontally transferred nuclear genes 
(Xi et al., 2012; Yang et al., 2016, 2019; Vogel et al., 2018). 
Of those lineages, only Rafflesiaceae also exhibits massive 
mitochondrial HGT (Xi et al., 2013). A transcriptomic assay 
of Rafflesia cantleyi revealed more than 40 foreign nuclear 
genes (Xi et al., 2012), and ~1.2 % of the nuclear genome of 
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S. himalayana was acquired from its hosts (Cai et al., 2021). 
Interestingly, while 84 nuclear genes were identified as for-
eign in the Orobanchaceae Aegenetia indica (Kado and Innan, 
2018), its mitochondrial genome displays very limited evi-
dence of host-to-parasite HGT and no mitochondrial genes are 
affected (Choi and Park, 2021; Zhong et al., 2022). Similarly, 
the mitochondrial genomes of some Cuscuta species were ex-
pected to be highly impacted by HGT, based on the identifi-
cation of dozens of foreign genes in the nuclear genome of 
C. campestris, which were probably acquired from different 
donors (Vogel et al., 2018; Yang et al., 2019). However, the 
reported impact of mitochondrial HGT in Cuscuta spp. is min-
imal, as described above. This unexpected disparity between 
mitochondrial and nuclear HGT levels within a single species 
or lineage is intriguing. Uncommon features of their mitochon-
drial genomes, such as a small genome size or reduced rates 
of DNA incorporation, may contribute to lower levels of mito-
chondrial HGT (Anderson et al., 2021).

It has been proposed that many of the transferred genes in 
the nuclear genome may undergo neo-functionalization, such 
as roles related to invasive processes or to camouflage the in-
vasion. Functional nuclear HGT events may represent an im-
portant evolutionary force, as they allow these organisms to 
expand their genetic tools and develop novel physiological cap-
abilities (Yang et al., 2019). In three members of the family 
Orobanchaceae, six horizontally transferred genes related to 
defence responses against infection or insect toxins were de-
tected (Yang et al., 2016). Cuscuta also has foreign genes that 
are related to enzymes that modify cell walls. These genes are 
expressed mainly in prehaustorial structures, suggesting a role 
in host invasion (Yang et al., 2019). Comparisons between for-
eign nuclear genes in Cuscuta spp. and Orobanchaceae revealed 
functional and transcriptional convergence. Approximately 18 
foreign nuclear genes were independently acquired from their 
hosts by these two parasitic lineages (Yang et al., 2019). The 
extent of evolutionary convergence with other holoparasitic lin-
eages remains to be elucidated.

THE CURIOUS CASE OF LOPHOPHYTUM MIRABILE

The mitogenome of Lophophytum mirabile (Balanophoraceae) 
stands out as being the first case of large-scale replacement 
HGT, in which two-thirds of the protein-coding genes have 
functionally supplanted the native homologues (Sanchez-
Puerta et al., 2017; Garcia et al., 2021). Replacement HGT of 
the scale found in Lophophytum mtDNA is unprecedented for 
any genome or organism, including bacteria. A recipient cell 
faces potential barriers for the expression of foreign genes so 
that only rarely does a horizontally transferred gene become 
functional in a new genome. These barriers include recognizing 
a foreign promoter, accurately splicing foreign introns, and 
identifying and editing novel RNA editing sites. A total of 23 
foreign protein-coding mitochondrial genes in Lophophytum 
have successfully overcome these challenges, leading to the 
functional replacement of native copies (Garcia et al., 2021). 
The use of host-derived genes may have a positive effect on 
the host–parasite relationship, but could also be the result of 
non-adaptive forces that led to neutral replacement despite a 
minor reduction in fitness, or even be deleterious by generating 

cytonuclear incompatibilities (Garcia et al., 2021; Gatica-Soria 
et al., 2022). These replacements raise questions concerning 
the factors that might enable or promote such a remarkably 
high level of foreign gene takeover, despite the low likelihood 
of overcoming the aforementioned expression barriers and the 
expected reluctance due to the risk of disrupting coevolved 
cytonuclear interactions.

Doubly chimeric OXPHOS complexes in Lophophytum

Several of the functional foreign genes in Lophophytum encode 
subunits of mitochondrial complexes, which are also formed by 
other subunits encoded either in the mitochondrial or nuclear 
genomes. For example, the oxidative phosphorylation system 
(OXPHOS) of plants, responsible for cellular respiration, re-
quires the interaction of up to 20 mitochondrial-encoded pro-
teins and 71 nuclear-encoded proteins (Meyer et al., 2019) 
generating multiple opportunities for mitonuclear coevolution. 
Thus, the replacement of coadapted subunits within OXPHOS 
is predicted to lead to cytonuclear incompatibilities. The com-
plexity hypothesis establishes that genes that encode pro-
teins that form part of multisubunit complexes are less likely 
to suffer functional replacement by HGT given the potential 
disruption of coevolved subunits (Jain et al., 1999; Cohen et 
al., 2011). In particular, proteins that have extensive molecular 
interactions are more recalcitrant to functional replacement. In 
contrast, other proteins present incredible tolerance to the func-
tional replacement of native genes by foreign homologues, with 
no apparent negative effects (Woese et al., 2000; Adams and 
Palmer, 2003; Rice and Palmer, 2006; Sloan et al., 2022). That 
is, some systems are able to preserve the interchangeability of 
their components without generating incompatibilities (Sorek 
et al., 2007; Sloan et al., 2022). Four parameters that deter-
mine the incompatibility or interchangeability of systems have 
been proposed: the number of protein–protein interactions, the 
sensitivity to gene dosage, the evolutionary rate of the proteins 
and the relevance of the functional role (Sloan et al., 2022). 
The multisubunit structure, the fundamental functional role of 
OXPHOS and the elevated expression levels contribute to the 
prediction that subunits of these complexes are less likely to be 
interchangeable and thus less likely to suffer functional replace-
ment by foreign homologues (Park and Zhang, 2012; Sloan et 
al., 2022). In fact, it has been shown that in hybridization events 
or in cytoplasmic hybrids (cybrids) produced in the laboratory, 
cytonuclear incompatibilities arise even between closely re-
lated species (Schmitz-Linneweber et al., 2005; Meiklejohn 
et al., 2013). A single nucleotide difference in mitochondrial 
genes could be responsible for strong phenotypic changes due 
to the disruption of OXPHOS complexes (Kim et al., 2009; 
Meiklejohn et al., 2013; Dahan et al., 2014; Qi et al., 2017).

Interestingly, the OXPHOS complexes are doubly chi-
meric in Lophophytum in terms of both the cell compartment 
in which the genes reside and the phylogenetic origin of the 
genes, as shown in Fig. 5B. Eleven OXPHOS subunits encoded 
in the mitochondrial genome of Lophophytum are partially 
or fully foreign, while eight mitochondrial-encoded subunits 
are native (Sanchez-Puerta et al., 2017; Garcia et al., 2021). 
Additionally, all but one (sdh3) of the nuclear-encoded sub-
units have a native origin (Gatica-Soria et al., 2022). Despite 



Sanchez-Puerta et al. — Organellar genomes of holoparasitic plants922

the expected tight coordination between nuclear and mito-
chondrial genes, Lophophytum does not display signs of 
cytonuclear incompatibilities in the OXPHOS that may have 
arisen from the functional replacement of many mitochon-
drial subunits (Ceriotti et al., 2022; Gatica-Soria et al., 2022). 
Physiological studies have revealed that Lophophytum exhibits 
levels of canonical and alternative respiration comparable to 
those of free-living angiosperms (L. M. Gatica-Soria et al., 
unpublished results), in contrast to hemiparasites of the genus 
Viscum (Santalales), which lack OXPHOS complex I and use 
alternative oxidases (Maclean et al., 2018; Senkler et al., 2018; 

Petersen et al., 2022). This unexpected replacement of mito-
chondrial subunits without apparent disruptive consequences 
has been explained by the high similarity of the mitochondrial-
encoded OXPHOS subunits donated by the host and those na-
tive to Balanophoraceae, which minimizes the incompatibilities 
in the assembly and functioning of these multiprotein com-
plexes (Gatica-Soria et al., 2022), as a low substitution rate has 
been proposed to mitigate the potential incompatibilities (Sloan 
et al., 2022).

In contrast, nuclear-encoded subunits of the OXPHOS are 
less conserved and thus less likely to be replaced. Nonetheless, 
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Fig. 5. Lophophytum mirabile. (A) Inflorescence of L. mirabile growing in Jujuy (Argentina). Only the staminate flowers emerged above the soil level; female 
flowers are located below them. (B) Diagram of the internal membrane of the mitochondria with the five OXPHOS complexes of L. mirabile depicting the subunits 
coloured according to their phylogenetic origin and the genome in which the genes are located. Figure modified from Gatica-Soria et al. (2022). (C) Proportion of 
each of the mitochondrial chromosomes of L. mirabile with similarity (>80 %) to the mitogenomes of mimosoids, the actual host plant Anadenanthera colubrina, 

or to the close relatives Ombrophytum subterraneum and Rhopalocnemis phalloides.
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the foreign nuclear-encoded subunit (SDH3) has function-
ally replaced the native subunit in Lophophytum (Garcia 
et al., 2021). Within OXPHOS complex II, SDH3 interacts 
extensively with SDH4, which is mitochondrial-encoded 
(SDH4) and foreign in Lophophytum. The cooccurrence of 
these two foreign genes acquired from mimosoid hosts could 
be the result of gene cooperation (Gatica-Soria et al., 2022), 
as the replacement of coevolved subunits often requires the 
parallel replacement of other interacting subunits to preserve 
compatible interactions (Waller et al., 2006; Monier et al., 
2009).

Foreign DNA in non-coding regions of the Lophophytum 
mitogenome

Deciphering the entire mitochondrial genome of 
Lophophytum also revealed that it acquired over 60 % of the 
non-coding sequences from mimosoid hosts, even with a 
single mimosoid mitogenome available for comparison (Choi 
et al., 2019; Sanchez-Puerta et al., 2019). Today, DNA from 
six mimosoid mitogenomes has been sequenced, including 
the actual host of L. mirabile, Anadenanthera colubrina (M.E. 
Roulet et al., unpublished results). Similarity searches with 
each of the 60 mitochromosomes of Lophophytum against the 
mitogenomes of mimosoids, Anadenanthera, or the close rela-
tives Ombrophytum and Rhopalocnemis uncovered a stunning 
picture (Fig. 5C). The proportion of mtDNA of Lophophytum 
with identity greater than 80 % when compared with their close 
relatives is strikingly low (4–10 % on average) in those chromo-
somes containing known genes and even lower in the non-coding 
chromosomes (0.7–6 % on average). These values are lower 
than expected for intrafamily comparisons of angiosperm mito-
chondrial genomes (Alverson et al., 2010; Choi et al., 2019; 
Gandini et al., 2019). However, what is particularly shocking is 
the large number of chromosomes with most of their sequences 
shared with legume mitochondrial genomes. In fact, there are 
at least 15 mitochondrial chromosomes of Lophophytum com-
posed fully of mimosoid-like mtDNA, which is especially ob-
served among non-coding chromosomes. Although genus-wide 
and population-level studies are still missing in Lophophytum, 
horizontal events may have occurred not only recently, but also 
in the past from ancestral legume hosts. This is supported by the 
relatively low number of chromosomes shared with the actual 
host Anadenanthera in comparison to those shared with the six 
mimosoids combined (Fig. 5C).

A ‘mitochondrial fusion-compatibility’ model has been pro-
posed to explain the horizontal transfer of DNA between plant 
mitochondria from unrelated land plants. This model suggests 
that complete mitochondria enter a foreign plant cell and that 
the mitogenomes recombine with the native ones (Rice et al., 
2013). In host–parasite relationships, entire organelles may 
move through the parasite haustoria, as observed in tissue grafts 
(Gurdon et al., 2016; Hertle et al., 2021). Lophophytum pro-
vides strong evidence for the fusion-compatibility model of 
mitochondrial HGT (Rice et al., 2013). However, the foreign 
DNA in Lophophytum mitochondria may not always or imme-
diately recombine with the resident genome and may be per-
petuated as separate molecules (M. E. Roulet et al., unpubl. 
data).

WHY IS THE EXTENT OF HGT DIFFERENT ACROSS 
HOLOPARASITES?

The intimate relationships of parasites and their hosts associ-
ated via vascular connections and the early establishment of 
this connection upon parasite germination provide ample op-
portunities for DNA transfer leading to expected high levels of 
HGT from host to parasite. Among parasitic plants, the degree 
of dependence on the host has been linked to a greater pro-
pensity for nuclear HGT (Yang et al., 2016; Yoshida and Kee, 
2021; Ashapkin et al., 2023). Holoparasitic plants, which are in 
close contact with their host from an early stage of development 
and possess phloem connections, are more likely to experience 
HGT (Yang et al., 2016). Indeed, the highest levels of nuclear 
HGT were reported for the holoparasite Phelipanche in com-
parison with other Orobanchaceae ranging from free-living to 
obligate parasites (Yang et al., 2016; Kado and Innan, 2018; 
Yoshida and Kee, 2021). However, this correlation is not ob-
served in the mitogenomes of the Orobanchaceae, which show 
very low levels of HGT, regardless of the degree of host de-
pendency (Zhang et al., 2022; Zhong et al., 2022). A limited 
impact of HGT in the mitogenome has also been observed in 
other host–parasite relationships (Fan et al., 2016; Skippington 
et al., 2017; Zhang et al., 2022; Yu et al., 2023), while others 
have been strongly altered by HGT (Xi et al., 2013; Bellot et 
al., 2016; Sanchez-Puerta et al., 2017; Roulet et al., 2020).

Overall, the reported extent of mitochondrial HGT differs 
substantially across and within holoparasitic lineages. One pos-
sible explanation for this phenomenon is the type of parasitism, 
with endoparasites exhibiting higher levels of foreign DNA than 
exoparasites (Bellot et al., 2016). This hypothesis is supported 
by the observation that endoparasites in the Rafflesiaceae and 
Cynomoriaceae carry numerous foreign mitochondrial genes. 
It is expected that high levels of HGT will be discovered in 
unexplored endoparasitic lineages, such as Apodanthaceae and 
Mitrastemonaceae.

Interestingly, Lophophytum mirabile and Ombrophytum 
subterraneum are not endoparasites but contain large amounts 
of mitochondrial foreign DNA (Sanchez-Puerta et al., 2017; 
Roulet et al., 2020). In fact, Lophophytum ranks highest for 
mitochondrial HGT (Sanchez-Puerta et al., 2017, 2019). 
It is unclear why these taxa are particularly prone to HGT. 
Furthermore, the close relative Rhopalocnemis does not ex-
hibit any evidence of foreign mtDNA (Yu et al., 2022). The 
variability in the degree of HGT observed in the mitogenomes 
of root holoparasites within the family Balanophoraceae is 
intriguing.

The unprecedented levels of HGT observed in Lophophytum 
may be explained by its unique reproductive dynamics. 
Specifically, parenchymatous cells of Lophophytum form 
small groups within the cambium area of the host root. This 
nodule generates new tubers over time, representing a form of 
vegetative reproduction. For this, the initial nodule may grow 
through the host phloem and periderm, emerge from the root, 
and produce a tuber outside of the host that will eventually 
flower (Gonzalez and Sato, 2016). This nodule, considered 
the endophytic stage, acts as a reservoir of parasitic cells 
within the host root and exhibits intimate contact with direct 
exchange of substances across intercellular communications 
between parasite and host cells, facilitating the incorporation 
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and inheritance of host DNA, in agreement with the weak-
link model (Huang, 2012). A similar anatomical structure has 
been observed in Ombrophytum growing within the host root 
of Asteraceae (Mauseth et al., 1992). However, the anatomy 
of Rhopalocnemis inside the host root remains unexplored to 
the best of our knowledge, preventing a further evaluation of 
the hypothesis for the differential mitochondrial HGT among 
Balanophoraceae.

We propose that parasitic plants with a stable endophytic 
phase, as described for Lophophytum and observed in those 
considered endophytes, may exhibit high levels of HGT, both 
nuclear and mitochondrial. Other factors that might contribute 
to increased levels of mitochondrial HGT include alteration 
of the DNA repair, replication and recombination processes, 
predisposition to undergo mitochondrial fusion with unrelated 
taxa, tolerance to fluctuations in mitochondrial genome size, 
phylogenetic distance between host and parasite, and occur-
rence of population bottlenecks. Within the mitogenome, for-
eign intergenic regions may be incorporated without negative 
consequences (except for the increase in genome size) and 
evolve neutrally under the whims of genetic drift. Thus, for-
eign non-coding regions are more likely to be found in parasitic 
plant mitochondria, making the examination of intergenic re-
gions highly relevant to assess the degree of HGT.

CONCLUSIONS

In addition to their morphological similarities, plastid genomes 
of holoparasitic plants also display convergent features, such 
as biased nucleotide compositions, increased evolutionary rates 
and gene content reductions related to photosynthesis. In-depth 
comparisons among mitochondrial genomes of holoparasitic 
plants are limited by the amount of genomic data available. 
Based on the data at hand, there are no obvious genomic differ-
ences from mitogenomes of free-living angiosperms, except for 
a higher incidence of HGT, which is widely observed among 
holoparasites but is not universal.

The study of a greater diversity of parasitic lineages will 
increase our understanding of the evolutionary mechanisms 
and genomic changes experienced by parasites with variable 
degrees of dependence on the host. Furthermore, anatomical 
studies and detailed descriptions of the life cycles will be in-
strumental to understanding the evolutionary dynamics of HGT 
in holoparasitic species. Among the diversity of parasitic lin-
eages, Balanophoraceae and endophytes, in particular, offer 
interesting evolutionary traits and intriguing features yet to be 
discovered.
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