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Abstract 
The body condition of dairy cows is a crucial health and welfare indicator that is widely acknowledged. Dairy herds with a well-management 
body condition tend to have more fertile and functional cows. Therefore, routine recording of high-quality body condition phenotypes is required. 
Automated prediction of body condition from 3D images can be a cost-effective approach to current manual recording by technicians. Using 
3D-images, we aimed to build a reliable prediction model of body condition for Jersey cows. The dataset consisted of 808 individual Jersey cows 
with 2,253 phenotypes from three herds in Denmark. Body condition was scored on a 1 to 9 scale and transformed into a 1 to 5 scale with 0.5-
unit differences. The cows’ back images were recorded using a 3D camera (Microsoft Xbox One Kinect v2). We used contour and back height 
features from 3D-images as predictors, together with class predictors (evaluator, herd, evaluation round, parity, lactation week). The performance 
of machine learning algorithms was assessed using H2O AutoML algorithm (h2o.ai). Based on outputs from AutoML, DeepLearning (DL; multi-
layer feedforward artificial neural network) and Gradient Boosting Machine (GBM) algorithms were implemented for classification and regression 
tasks and compared on prediction accuracy. In addition, we compared the Partial Least Square (PLS) method for regression. The training and 
validation data were divided either through a random 7:3 split for 10 replicates or by allocating two herds for training and one herd for validation. 
The accuracy of classification models showed the DL algorithm performed better than the GBM algorithm. The DL model achieved a mean 
accuracy of 48.1% on the exact phenotype and 93.5% accuracy with a 0.5-unit deviation. The performances of PLS and DL regression methods 
were comparable, with mean coefficient of determination of 0.67 and 0.66, respectively. When we used data from two herds for training and the 
third herd as validation, we observed a slightly decreased prediction accuracy compared to the 7:3 split of the dataset. The accuracies for DL and 
PLS in the herd validation scenario were > 38% on the exact phenotype and > 87% accuracy with 0.5-unit deviation. This study demonstrates 
the feasibility of a reliable body condition prediction model in Jersey cows using 3D-images. The approach developed can be used for reliable 
and frequent prediction of cows’ body condition to improve dairy farm management and genetic evaluations.

Lay Summary 
The body condition of dairy cows is a crucial health and welfare indicator that is widely acknowledged in dairy cattle management. Routine 
recording of high-quality body condition phenotypes is required for adaptation in dairy herd management. The use of machine learning to predict 
the body condition of dairy cows from 3D images can offer a cost-effective approach to the current manual recording performed by technicians. 
We aimed to build a reliable prediction, based on data from 808 Jersey cows with 2,253 body condition phenotypes from three commercial 
herds in Denmark. We tested different machine-learning models. All models showed high prediction accuracy, and comparable levels with other 
published studies on Holstein cows. In a validation test across project herds, prediction accuracy ranged between 87% and 96%.
Keywords: Body Condition, Herd Management, High Throughput Phenotyping, Jersey Dairy Cattle, Machine Learning, Precision Livestock Farming.
Abbreviations: AOC, accuracy of classification; AI, artificial intelligence; BCS, body condition score; BW, body weight; CFIT, Cattle Feed InTake; CNN, 
convolutional neural network; DL, DeepLearning; DEV, deviation; DRF, distributed random forest; FN, false negative; FP, false positive; GLM, generalized linear 
model; GBM, gradient boosting machine; ML, machine learning; MSE, mean squared error; PLS, partial least square; POP, precision of prediction; ROP, recall of 
prediction; RMSE, root mean squared error; TN, true negatives; TP, true positives

Introduction
The body condition of a dairy cow is one of the important 
indicators of its welfare and health status (Roche et al., 2009; 
Welfare Quality®consortium, 2009). A good management 
practice on farms of the dairy cow’s body condition is associ-
ated with more functional cows (healthy, fertile, etc.; Roche 
et al., 2009). Continuously (weekly to monthly) scoring indi-
vidual cow’s body condition adds value to dairy farm man-
agement, especially in early lactation, as it provides farmers 

an overview of how body condition changes through lacta-
tion (Bell et al., 2018). Furthermore, body condition pheno-
types are important for genetic evaluations of feed efficiency, 
in order to properly account for the period of mobilization 
and deposition (Stephansen et al., 2021a).

The standard approach of assessing the body condition of 
dairy cows is through a body condition score (BCS) which is 
based on assessing the degree of apparent adiposity of dairy 
cows (Roche et al., 2009). Currently trained staffs (e.g., eval-
uators, veterinarians) visit farms to subjectively score body 
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condition, typically on a 1 to 5 scale with 0.25-point dif-
ferences, but other scales have also been used (Roche et al., 
2009). Several countries use a 1 to 9 scale for scoring of BCS, 
following the ICAR recommendation (ICAR, 2022), which 
can be transformed to the 1 to 5 scale with 0.5-unit differ-
ences following Garnsworthy (2006).

A manual and visual scoring of BCS is time-consuming and 
costly, making it difficult to implement routinely on dairy 
farms. Therefore, frequent BCS scoring is typically limited 
in commercial farms, while mostly scored on research and 
nucleus farms. A low-cost automated system that can pre-
dict body condition traits often during lactation adds value 
to dairy farm management. In a review, Qiao et al. (2021) 
compared several studies on the predictability of BCS using 
2D and 3D camera technologies. The authors concluded that 
automated techniques to predict BCS could improve cost 
efficiency and would play an important role in future dairy 
farm management. A recently developed system, Cattle Feed 
InTake (CFIT; Lassen et al., 2018), combines artificial intelli-
gence (AI) and 3D images to identify cows and to predict their 
feed intake and body weight (BW) (Lassen and Borchersen, 
2022; Gebreyesus et al., 2023; Lassen et al., 2023). Develop-
ment of a model to predict BCS in real time using input data 
from CFIT system can potentially increase the management 
value of such a system. Furthermore, the predicted BCS phe-
notypes can be used to improve genetic selection indices for 
feed efficiency.

Several studies have investigated the possibility of using 
computer-vision techniques to predict phenotypes for 
genetic evaluation and farm management in dairy cattle 
(Qiao et al., 2021; Lassen and Borchersen, 2022). The field 
is rapidly advancing, offering potential for high-throughput 
phenotyping in on-farm settings. Nevertheless, assessing 
predictive capabilities across studies are challenging due to 
variations in modeling approaches (e.g., regression, classi-
fication), sample sizes, disparate employment of validation 
as well as evaluation procedures for predictive performance 
(Qiao et al., 2021). Furthermore, no studies have investi-
gated the proportion of agreement between prediction BCS 
phenotypes from regression and classification models using 
the same algorithm.

Studies using 3D-images for prediction of BCS have typi-
cally been developed in specific time periods and most cases 
in a single research herd, or in few cases two herds (Qiao 
et al., 2021). Validating trained models of their predictabil-
ity of BCS in different environments (herds) and longer time 
periods has not been reported so far. Thus, there is a gap in 
knowledge on the predictive performance of 3D-images for 
BCS in different environments (herds) and time periods, that 
is, of importance for the applicability of such systems in a 
commercial context.

Studies on the predictability of BCS have used depth 
images from 3D-cameras to train convolutional neural 
network (CNN) classification models (Rodríguez Alvarez 
et al., 2019; Yukun et al., 2019), or a similar type of neural 
network (PointNet++) (Shi et al., 2023). These studies had 
achieved high accuracies (>90%) with a human error judge-
ment of 0.5-unit BCS, but these models were not validated 
in different farm environments. The neural network mod-
els are typically more complex models that requires more 
computational time than regression models but are more 
accurate. Fischer et al. (2015); Martins et al. (2020) and 
Zin et al. (2020) showed the feasibility of using regression 

models to predict BCS from 3D-images features, in small 
populations (<82 cows). Gebreyesus et al. (2023) showed 
that multi-breed prediction of BW with contour features as 
predictors, achieved a mean correlation coefficient of 0.94 
between observed and predicted BW. However, there is a gap 
in knowledge on using contours from whole back 3D-images 
as predictors for BCS.

To our knowledge, no study has so far investigated the pre-
dictive ability of BCS of Jersey cows based on 3D-image gen-
erated contours. Therefore, the aim of this project was to set 
up a reliable prediction of BCS using machine learning tech-
niques in Danish Jersey cows under commercial farm envi-
ronments. Compared to previous studies (Qiao et al., 2021), 
we used one of the largest training data sets to develop predic-
tion algorithm for BCS using contours as predictors and com-
pared different machine learning models. In addition, we are 
the first to validate the model’s agreement between regression 
and classification models, as well as their predictive perfor-
mance in different herds, where practical application of these 
models is expected.

Material and Methods
No Animal Care and Ethic Committee approval was required 
as data used in the study came from routine dairy herd man-
agement practice. No treatment or handling of animals was 
performed in this study.

Data collection of body condition phenotypes
Three commercial Jersey cattle farms located on the island 
Fyn, Denmark participated in the project. The herd sizes were 
on average 150, 260, and 280 dairy cows per year and milked 
in either milking parlor (2 farms) or with automatic milk-
ing system (the largest herd). Scoring of BCS was done every 
other month from December 2021 until August 2022 by 
two trained evaluators from SEGES INNOVATION (Skejby, 
Denmark; https://www.seges.dk/), who took rotation to visit 
different herds during this recording period. Body condition 
scores were assessed for all cows in these project herds. Figure 
1 shows the number of cows scored in the different rounds of 
evaluation, meaning most cows had repeated BCS measure-
ments. Most cows had a minimum of two records, but a few 
were scored in all five rounds.

In total 2,253 BCS phenotypes were recorded on 808 
Jersey cows. The cows were scored on a scale from 1 to 9 
according to ICAR (2022). As most studies (Qiao et al., 
2021) and farms use the 1 to 5 scale, the score from the eval-
uators were transformed to the 1 to 5 scale following Garn-
sworthy (2006):

BCS = 0.5× score+ 0.5. (1)

Basic information, such as calving date (December 2020 to 
August 2022) and lactation data (parity range 1-9, average 
parity 2.65 with the first and third quantiles of 1.0 and 4.0; 
days in milk in the range 10-401, average days in milk 142.4 
d with the first and third quantiles of 76.0 and 205), were 
extracted from the Danish Cattle database and provided by 
SEGES Innovation (Skejby, Denmark; https://www.seges.dk/). 
The annual herd yields of the cows ranged between 10,900 
and 11,750 kg energy corrected milk in the Danish test-day 
recording system (RYK, 2022).

https://www.seges.dk/
https://www.seges.dk/
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Method for repeatability analysis of body condition 
score
A model to assess the repeatability of the scores was devel-
oped using the Proc MIXED procedure in SAS using the 
REML method and the following model:

BCSijklm = µ+ INSPkl +
4∑

k=0

Wjmlϕm + RD+ animal+ εijklm.
 (2)

where BCSijklm is the phenotype for body condition score 
for the ith cow on the jth week of lactation; µ is the intercept; 
INSPkl  is the fixed effect of the kth evaluator (2 levels) nested 
within the lth herd (3 levels); Wjml is the mth fixed regression 
on the jth week of lactation and nested within the lth herd; 
ϕm is the term of a 4th-order Legendre polynomial for the jth 
week of lactation; RD is the fixed effect for round of evalua-
tion (5 rounds); animal is the random effect of animal; ɛ is the 
random residual from the model.

The order for Legendre Polynomials was tested by 
increasing the number of orders until the Akaike’s Infor-
mation Criterion started to increase. The repeatability was 
defined as

τ =
σ2
Ani

σ2
T

,

where σ2
Ani is the variance associated within animals and σ2

T is 
the summed variance of the model.

Feature extraction from 3D images and quality 
control
Feature data of the animals within +3 d from the day of BCS 
evaluation were provided by VikingGenetics (Randers, Den-
mark). A brief description of the system setup, data handling 
and feature extraction is described in Figure 2. Further details of 
the system can be found by Lassen and Borchersen (2022), Geb-
reyesus et al. (2023), and Lassen et al. (2023). The reference unit 
consists of a single 3D camera using Time of Flight technology 
(Microsoft Xbox One Kinect v2) to create a 3D image as well as 
a Radio Frequency Identification (RFID) reader (Agrident Sen-
sor ASR550). A DELL T630 128 GB RAM server with 3090 
RTX graphics card is used for the data analysis of the images 
recorded. The camera and ear tag reader were installed in a nar-
row corridor with a time-based trigger system that allocates all 
images taken within 3 s of reading an RFID to the associated ear 
tag. A maximum of 5 pictures are taken every 5 s. With this sys-
tem, it was ensured that one reference image was obtained from 
each cow when they pass through the corridor. The corridor 
was narrower than a normal exit corridor to minimize that two 
cows were exiting together or cows turning around and exiting 
at strange angles. The 3D camera was placed at a height of 3.4 m 
above floor level, directly above the passing cows.

Figure 1. Venn diagram showing the number of Jersey cows scored in the different rounds of evaluation, meaning most cows had repeated 
measurement.
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Before any cows enter the system, the fixed interior in 
the image of an empty corridor is annotated. This is done 
to avoid that anything enters, an image will be noticed as 
a change from the annotated picture and considered a cow. 
The first step in the image process is to estimate features from 
the geometric information in the 3D images, which are useful 
for separating the individuals. The second step is a calibra-
tion procedure that converts the region within the cow cir-
cumference to a point cloud, so each pixel in this region of 
the 3D image is transformed into the corresponding spatial 
3D coordinates. The procedure is primarily done to remove 
distortions due to perspective. Furthermore, the calibration 
allows a combination of the point clouds information from 
two neighboring cameras if a cow is placed on the border 
between the camera’s field of view. In the third step, all images 
were standardized to have the same length and width. In the 
final step, a corrected depth image of the cow region is created 
by interpolating the point cloud back into a 2D depth image.

The feature extraction process started by finding the cir-
cumference and spine of the cow in the raw uncorrected 3D 
images. The circumference was defined as the last pixel before 
the image sees the annotated floor. Across the back of the cow 
the highest point was found and named the spine. This was 
simply the highest point across the whole corridor. The fol-
lowing step included finding the points on the corrected depth 
image lying 3, 5, 10, and 15 cm below the spine level of the 
cow. So how far left or right respectively should you go from 

the spine to drop 3, 5, 10, or 15 cm. This described the con-
tour of the back of each cow. Based on the length standardiza-
tion described above, 100 spots are placed for each of the 3, 5, 
10, and 15 cm features. The features used to predict BCS were 
the spine (back height) and the distance between the 3, 5, 10, 
and 15 cm, respectively from left to right across the spine of 
the cow. In total, there were 900 spots for each image.

Quality control was undertaken on the feature data using 
the SAS software version 9.4, to remove outlier values. Features 
were set missing for values out of the range of mean ± 3SD. This 
outlier detection was done by cow and date of evaluation twice, 
to ensure very extreme outliers are removed in the first round of 
outlier detection. Hereafter features with a missing rate higher 
than 25% were discarded. Cows has on average 32.8 pictures 
(SD of 11.9) per round of evaluation. Animals with fewer than 
five pictures per evaluation round were deleted. This resulted in 
a total of 700 features used as predictors for training the mod-
els. We calculated a mean feature per round of scoring, for all 
700 features, to give the most stable prediction of BCS. A mean 
feature was calculated by cow and evaluation date for the 700 
individual features and weighted by

1
1+ ABS(date of feature − date of evaluation)

.

The weighting was used to put emphasis on features from 
the day of evaluation, assigning more weight to closer days 

Figure 2. Overview of data acquisition and building prediction algorithm. RFID = Radio Frequency Identification, PLS = Partial Least Square, 
DL = DeepLearning, GBM = Gradient Boosting Machine. (c) The highest point on an animal. Then contours 3, 5, 10, and 15 cm were found by how far 
left or right, respectively, should you go from the spine to drop 3, 5, 10, or 15 cm.
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apart between visual evaluation and image data capture. 
The variation among cows, when calculating mean features, 
was calculated as coefficient of variation (CV) by cow and 
date of scoring for five features, on two contours (3 and 
10 cm) and back height. The features were located on the 
same position and equally distributed over both contours 
and back height.

Defining training and validation data
We predicted BCS phenotypes in Jersey cows from contour 
data generated from 3D cameras using both classification and 
regression machine learning (ML) models. Splitting training 
and validation datasets for model development is commonly 
done with a 7:3 random split of the data (Rodríguez Alva-
rez et al., 2019; Yukun et al., 2019). The 7:3 random split 
was performed using Proc Survey procedure in SAS version 
9.4, and clustered by cow ID to ensure individual (cows) 
only appeared in either the training or validation dataset. Ten 
replicates of training and validation datasets were created to 
compare different ML algorithms. The two most extreme BCS 
classes (1.0 and 5.0) were grouped with the immediate next 
class due to very low observations (three in each) in training 
and validation sets. This was done to ensure adequate obser-
vations were available for the learning step and enabled class 
balances between the training and validation datasets across 
replicates.

We also tested the predictability of training the models on 
two herds and validating in the third herd, giving three differ-
ent validation scenarios. When training the model, the class 
effect of herd was left out in this validation setup.

Learning algorithms
A general overview of the steps from image acquisition to 
the prediction model development is given in Figure 2. We 
used the AutoML algorithm from H2O package in R (LeDell 
et al., 2022) for testing best-performing classification and 
regression algorithms. We used the first training dataset from 
the random 7:3 split in the AutoML algorithm to test which 
ML algorithm performs best on that dataset. The non- default 
parameters in the AutoML algorithm were set to test maxi-
mum 2,000 models for classification or regression, and had 
seed set to 1 and nfolds to 10. Common class predictors 
including evaluator, parity number, round of evaluation and 
herd were considered across all the ML methods. Predictors 
were features from 3D images, which were standardized to a 
mean of 0 and SD of 1, and Legendre polynomials fitted on 
weeks of lactation up to 5th order. The Legendre polynomials 
were the same as used in the repeatability analysis (equation 
(2)). We also tested models in three scenarios where 1) only 
features were used as predictors (3D-image-based informa-
tion), 2) only class predictors (cow-specific information) were 
used as predictors and 3) features together with class predic-
tors (evaluator and round of evaluation) were used as pre-
dictors). This was tested to evaluate the predictability of the 
features. Results were reported in Supplementary Material.

Tuning parameters for the various classification and regres-
sion models in the AutoML algorithm were optimized based 
on cross-validation with logloss and mean squared error 
(MSE) as optimizing metrics for the classification and regres-
sion models, respectively.

Following models were implemented in the AutoML tun-
ing fase (H2O.ai, 2023). DeepLearning (DL; classification 

and regression) is a multi-layer feedforward artificial neural 
network algorithm in H2O. XGBoost (classification) is an 
ensemble learning technique of many models that attempts to 
correct the deficiencies in the previous model. Gradient Boost-
ing Machine (GBM; classification and regression) is a for-
ward learning ensemble method and build regression trees on 
all features in the dataset. Distributed Random Forest (DRF; 
classification) is a classification method based on building 
uplift trees. Generalized Linear Model (GLM; regression) is a 
regression model. The non-default parameters from AutoML 
used to train the ML models can be found in Supplementary 
Material.

The implemented classification and regression approaches 
were compared for prediction accuracy amongst each other 
as well as with the Partial Least Square (PLS) model. The rea-
son for testing the PLS algorithm were that the PLS algorithm 
works well on correlated predictors (James et al., 2013). The 
PLS model was tested in SAS with the Proc PLS procedure 
(SAS Institute Inc, 2013) fitting the same features and class 
variables as in all the classification and regression models. 
The first training and validation dataset from the random 
7:3 split was used to fine-tune the PLS model and to define 
the optimum number of factors. The tunning process of PLS 
showed 20 factors were the optimum.

Evaluation of predictive performance
For classification models, four evaluation terms were reported 
for each model within a validation scenario. We grouped 
data into four individual classes based on confusion matrices 
between observed and predicted BCS: True Positives (TP), the 
number of correctly recognized phenotypes, True Negative 
(TN), the correctly predicted value that do not belong to the 
observed phenotype class, False Positives (FP) predicted phe-
notype assigned to the wrong observed class and False Nega-
tives (FN) not recognized observed classes.

Accuracy of classification (AOC) was the effectiveness of a 
model to classify correctly and defined as (Rodríguez Alvarez 
et al., 2019):

AOC, % =
(TP+ TN)

(TP+ FP+ TN + FN)
× 100.

Precision of prediction (POP) was the ability of the model 
not to label the predicted phenotype into the wrong observed 
phenotype and defined as

POP, % =
TP

(TP+ FP)
× 100.

Recall of prediction (ROP), also called sensitivity is the 
ability of the model to assign observed phenotypes into the 
right predicted class, and defined as

ROP, % =
TP

(TP+ FN)
× 100.

F1-score is a measure that combined the trade-offs of pre-
cision and recall and defined as

F1,% =

Å
2 × TP× FP

TP+ FP

ã
× 100.

http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skad376#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skad376#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skad376#supplementary-data
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All the evaluation parameters for classification models were 
evaluated for their ability to predict the exact phenotype, 
but also with a 0.50-unit deviation (DEV) to account for the 
human error judgement.

For regression models, the following terms were used to eval-
uate the predictive performance using an ANOVA analysis: R2 
and root mean squared error (RMSE). These parameters were 
estimated with the Proc ANOVA procedure in SAS, using the 
predicted BCS as predictor of the observed BCS scored by 
trained evaluators. Another evaluation parameter for regression 
analysis methods was to evaluate the percentage of predicted 
BCS phenotypes that were equal to the observed phenotype and 
with a human error of judgment range at 0.5 BCS unit. This 
was implemented in such a way that the predicted BCS pheno-
type from a regression model was rounded to the nearest 0.5 
unit. The percentage of correctly assigned phenotypes were then 
reported for each class of observed BCS, but also a weighted 
average based on frequency was reported.

The rounded BCS phenotypes from regression models were 
compared with predicted BCS phenotypes from classification 
models, within algorithm. The proportion of agreement between 
the predicted phenotypes from regression and classification mod-
els were reported on the exact and 0.5-unit DEV phenotypes.

Results
Body condition scores in Danish Jersey cattle
Figure 3 shows the distribution of BCS in three project herds by 
two evaluators. The density plots (red and blue) show  difference 
between two evaluators. Overall, the evaluator represented by 

blue, scored cows to be leaner compared to the “red” evaluator. 
An ANOVA analysis with evaluator and herd as class predictors 
of BCS showed significant (P < 0.0001) effects of both evaluator 
and herd. The R2 of the ANOVA analysis was 0.097. The distri-
bution of BCS in the training and the validation datasets were 
similar as observed for the whole dataset (Figure 3).

The repeatability (τ) measured from model (equation (2)) 
were 0.60, meaning 60% of the variation in BCS was related 
to the animal effect.

Variability in calculation of mean features
The highest variability for features were observed on con-
tour at 3 cm and lowest variability on the features located 
on the back height. Furthermore, differences in variation 
were observed between rounds of evaluation for contour 
at 3 cm, though the variability in CV among cows were 
not extremely high (Figure 4). One possible reason can be 
that the features are not located on the exact same spot on 
consecutive (same day and across days) 3D-images as the 
cows are passing a narrow corridor when the pictures were 
captured. To show the calculation of mean features were 
minimally affected by location of features from 3D image 
to 3D image, we used heatmaps showing correlation struc-
ture between features.

The adjacent features are highly correlated, as can be seen 
from the correlation heatmap of features (Figure 5). Distinct 
features for the two contours show lower correlations, vary-
ing from moderately high to zero. All features for back height 
show very high correlations, meaning the measure of height 
of the animal is very consistent across features (Figure 5).

Figure 3. Histogram and density plot of BCS in the different project herds (columns, last column combined herds) and evaluators (blue = evaluator 1, 
red = evaluator 2, green = both). BCS = Body Condition Score.
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Predictive performance of various machine 
learning techniques
The two best performing algorithms from the AutoML 
model for classification and regression models, were in both 

cases DL and GBM. We will in the following section present 
the validation results from the DL (classification & regres-
sion), GBM (classification & regression) and PLS (regres-
sion) models.

Figure 4. Box plots for coefficients of variance for individual cows at the different round of evaluation for five features on two contours and back height. 
Contour 1 represents the 3 cm contour and contour 3 represents 10 cm contour. The five features had the same position and were equally distributed at 
both contours and back height.
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Predictive performance of classification models
On the exact and 0.5-unit DEV phenotypes, the DL classifi-
cation model achieved the highest accuracy and the lowest 
range among the replicates (Table 1).

Validation results for sensitivity, precision, and F1-score 
of the DL classification model are presented in Table 2. The 

weighted average of sensitivity, precision and F1-score were 
on similar levels for both, the exact and 0.5-unit DEV. Highest 
sensitivity, precision and F1-score were achieved with a 0.5-
unit DEV. The level of the sensitivity, precision and F1-score 
followed the pattern of the category frequency of BCS  (Figure 
5), meaning highest values were observed for BCS categories 
with highest frequency.

We observed the same patterns using the GBM model for 
classification of BCS as for the DL model (Table 3). However, 
in general the GBM model had lower predictive performance 
on the weighted average, sensitivity, precision and F1-score 
for both exact and 0.5-unit DEV phenotypes.

The DL model showed the highest validation accuracy in 
herd validation scenarios (Table 4). Across herds, both DL 
and GBM models showed variability in accuracy. The high-
est accuracies were seen with Herd 2 (lowest annual average 
number of cows) as the validation herd. The lowest accuracies 
were seen with Herd 3 (highest yield in kg energy corrected 
milk) as the validation herd (Table 4). Comparing the 7:3 ran-
dom split with the herd validation results, DL showed similar 
levels of accuracies for Herd 1 and 2 as the validation herds. 
However, when Herd 3 was validation herd, the accuracies 
were lower compared to the random 7:3 split. The same pat-
tern was seen for GBM on a lower level of accuracies. Tables 
with sensitivity, precision and F1-scores from the herd valida-
tion scenario can be found in Supplementary Material.

Predictive performance of regression models
Validation results from the regression models in a 7:3 random 
split of training and validation data, showed similar R2 and 
RMSE for PLS and DL models (Table 5). The GBM model 
performed poorer on R2 but achieved similar RMSE as PLS 
and DL. The accuracy for the rounded predicted BCS pheno-
type showed highest values from the DL model on the exact 
phenotype, but PLS performed best on the 0.5-unit DEV 
(Table 5).

The validation results for regression models across herd 
validation showed the DL model having the highest weighted 
accuracy across herds on the exact and 0.5-unit DEV pheno-
type (Table 6-8). For R2, the PLS model performed best in 2 
out of 3 herds.

Comparing predicted phenotypes from regression 
and classification models
The proportion of predicted BCS phenotypes from regression 
(predicted phenotypes rounded to closest 0.5 unit) and clas-
sification models, showed an accordance on the exact phe-
notype of 70.5% (range: 66.9 to 75.9) and 62.0% (range: 
57.5 to 66.1) for DL and GBM, respectively. With a 0.5-unit 
DEV the values increased to 99.3% (range: 98.8 to 99.7) and 
98.5% (range: 97.6 to 99.2) for DL and GBM, respectively. In 
the herd validation scenario, the accordance between models 
showed on the exact phenotype a range of 62.3% to 66.3% 
and 56.1% to 62.9% for DL and GBM, respectively. The 
proportion of accordance between models in the herd valida-
tion increased with a 0.5 unit DEV to 97.9% to 99.6% and 
97.8% to 98.9% for DL and GBM, respectively.

Evaluating predictability of features
The test results using different predictors can be found in 
Supplementary Material. Using only features as predictors in 
DL and GBM classification models showed higher  accuracies 
(40.6% to 41.1% for exact phenotype; 85.6% to 87.7% 
for 0.5-unit DEV) than models only using class predictors 

Figure 5. Heatmaps for the correlation structure among features on 
two contours and back height. Contour 1 represents the 3 cm contour 
and contour 3 represents 10 cm contour. On X- and Y-axis, the feature 
position on the contours and back height are indicated. Features are 
depth spots based on 3D images from the top of a cow.

http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skad376#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skad376#supplementary-data
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 (evaluator, herd, etc.) (32.7% to 35.2% for exact phenotype; 
78.5% to 80.1% for 0.5-unit DEV). Combining the class 
predictors evaluator and round of evaluation with features, 
showed similar validation results for accuracy as presented in 
Table 1. Similar patterns in results were obtained on F1-score 
for classification models, but also for metrics of validation 
from regression models (Supplementary Material). This 
shows that features from CFIT add additional information 
next to class predictors; however, models need information 
to correct for the effect of evaluator and round of evaluation.

Discussion
Performance of implemented learning techniques
In this study, we measured BCS on a discrete scale as previous 
studies, where both, classification (Rodríguez Alvarez et al., 
2019; Shi et al., 2023) and regression models (Fischer et al., 
2015; Zin et al., 2020) have been trained for prediction. We 
have trained both model types with the same algorithm to 
facilitate comparison. We implemented various evaluation 
parameters and strategies with the aim of ensuring com-
parability with other studies and for robust evaluation of 
our approaches. In addition, we applied a novel evaluation 
parameter for accuracy from regression models (rounded 
phenotypes), which approximates AOC in classification mod-
els. Moreover, we used R2 and RMSE from ANOVA analysis, 
as additional parameters to evaluate the regression models 
following Martins et al. (2020). For the classification mod-
els, we combined various evaluation parameters commonly 
used in assessing classification models (AOC, ROC, POC, 
F1-score) and with the exact and 0.5-unit DEV (Rodríguez 
Alvarez et al., 2019; Shi et al., 2023). Across the different ML 
approaches, we observed only minor differences in  predictive 

performance, as measured by the various evaluation param-
eters. Notably, DL and GBM approaches demonstrated rel-
atively higher performance when used in regression tasks 
compared to classification models across the different eval-
uation parameters. For all the classification approaches, DL 
outperformed GBM in all evaluation parameters employed.

In the regression analyses, differences between employed 
learning approaches (DL, GBM, PLS) varied according to 
employed evaluation parameters (R2, RMSE, AOC), the dif-
ferent human-error ranges allowed (exact vs 0.5-unit DEV) 
and validation strategies (within herd vs across herd). Accord-
ingly, the PLS and DL models showed comparable overall 
prediction accuracy with DL outperforming PLS in the exact 
phenotype while PLS showed the highest accuracy when a 
human-error range of 0.5-unit DEV was assumed. Despite 
having the lowest prediction accuracy in terms of R2 values, 
the GBM approach was as predictive as the DL and PLS 
approaches in observed RMSE.

The PLS regression is a technique that reduces the dimen-
sions of predictor variables into uncorrelated latent variables 
(James et al., 2013), while DL is a flexible nonparametric 
modeling approach that can adapt to associations beyond 
linearity and identify concealed patterns (Kononenko and 
Kukar, 2007). DL methods are becoming increasingly popular 
in various disciplines (Alom et al., 2019) but some limitations 
still linger including difficulty of interpretability and explain-
ability (Alzubaidi et al., 2021). Our results suggest that, in the 
task of predicting BCS, PLS may be a promising alternative 
to DL, as it requires relatively fewer computational resources 
while achieving comparable accuracy levels.

A significant challenge hampering the comparability of 
results among studies investigating the feasibility of  predicting 
BCS from image data is the inconsistent application of 

Table 1. Accuracy in percentage of the classification models DL and GBM from the 7:3 random split

DL, % GBM, %

Exact 0.5-unit DEV Exact 0.5-unit DEV

Mean 48.1 93.5 46.0 90.9

SD 1.5 0.9 2.0 1.0

Range 45.9 to 50.7 92.7 to 95.3 42.6 to 49.6 89.7 to 92.7

DL = DeepLearning, GBM = Gradient Boosting Machine, Exact = exact score, DEV = deviation, SD = Standard deviation.

Table 2. Validation results for sensitivity, precision, and F1-score in percentage for DL, using the 7:3 random split

BCS Sensitivity, % Precision, % F1-Score, %

Exact 0.5-unit DEV Exact 0.5-unit DEV Exact 0.5-unit DEV

1.5 3 (0-11) 88 (71-100) 25 (0-100) 40 (0-100) 3 (0-14) 39 (0-100)

2.0 55 (45-62) 99 (97-100) 63(60-69) 98 (96-99) 59 (51-63) 98 (97-99)

2.5 67 (63-76) 98 (96-100) 47 (43-52) 94 (93-97) 55 (52-57) 96 (95-97)

3.0 33 (21-46) 98 (96-99) 40 (35-45) 91 (88-97) 36 (27-43) 94 (93-97)

3.5 44 (32-60) 82 (77-93) 41 (32-51) 88 (82-93) 42 (32-48) 85 (80-92)

4.0 7 (0-29) 72 (61-83) 30 (0-100) 93 (71-100) 9 (0-34) 81 (73-91)

4.5 3 (0-20) 26 (0-55) 13 (0-100) 23 (0-100) 4 (0-25) 13 (0-57)

WAvg 48 (46-51) 94 (93-95) 47 (44-52) 91 (89-94) 46 (44-49) 91 (89-94)

The parenthesis represents the range among replicates. DL = DeepLearning, BCS = Body Condition Score, Exact = exact score, DEV = deviation, 
WAvg = weighted average by frequency.

http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skad376#supplementary-data
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 different modeling approaches (classification or regression). 
In this study, we aim to address this challenge by implement-
ing both regression and classification approaches to predict 
BCS. Potential differences in prediction performance between 
regression and classification approaches could be due to the 
nature of the predicted or outcome variable (continuous ver-
sus categorical variables, respectively), model complexity, 
data distribution and evaluation metrics. We compared the 
accordance between proportion of BCS phenotypes predicted 
using regression and classification approaches. We did that 
to test the nature of predicted phenotypes and the associated 
choice of evaluation metrics in the relative performance of 

the two approaches using the same data, thus similar data 
distribution. Our results showed that DL and GBM regres-
sion and classification models had a moderately high level of 
accordance on the exact phenotype with minimum 56% and 
maximum 76%, having DL being superior to GBM. When 
allowing for a 0.5-unit DEV, both models showed a very high 
level of agreement (>97%) across 7:3 split validation and 
herd validation.

Comparison of different sets of predictors underscored 
the importance of including cow-specific effects of eval-
uator and round of evaluation in the present study. Unlike 
Shi et al. (2023) and Rodríguez Alvarez et al. (2019) who 

Table 3. Validation results for sensitivity, precision, and F1-score in percentage for GBM, using the 7:3 random split

BCS Sensitivity, % Precision, % F1-Score, %

Exact 0.5-unit DEV Exact 0.5-unit DEV Exact 0.5-unit DEV

1.5 2 (0-12) 90 (80-100) 25 (0-100) 68 (0-100) 4 (0-21) 66 (0-98)

2.0 65 (60-71) 96 (94-98) 58 (54-65) 95 (92-98) 61 (58-67) 95 (94-97)

2.5 54 (47-60) 97 (95-99) 47 (44-55) 92 (88-94) 50 (46-56) 94 (93-96)

3.0 36 (30-43) 91 (88-96) 38 (33-43) 89 (86-94) 37 (33-43) 90 (88-93)

3.5 32 (25-38) 78 (71-83) 37 (29-43) 88 (75-94) 34 (30-38) 83 (78-87)

4.0 13 (3-24) 72 (57-89) 26 (8-41) 71 (44-91) 17 (4-28) 71 (55-84)

4.5 10 (0-38) 43 (20-73) 32 (0-67) 63 (33-100) 13 (0-40) 48 (32-84)

WAvg 46 (43-50) 91 (90-93) 45 (40-50) 89 (88-92) 45 (41-48) 90 (88-92)

The parenthesis represents the range among replicates. GBM = Gradient Boosting Machine, BCS = Body Condition Score, Exact = exact score, 
DEV = deviation, WAvg = weighted average by frequency.

Table 4. Accuracies from the herd validation scenario of classification models

DL, % GBM, %

Exact 0.5-unit DEV Exact 0.5-unit DEV

Herd 1 46.8 91.2 43.6 86.8

Herd 2 49.5 93.0 46.1 92.5

Herd 3 38.3 87.4 35.9 81.4

DL = DeepLearning, GBM = Gradient Boosting Machine, Exact = exact score, DEV = deviation.

Table 5. Validation results from regression models using the 7:3 random split

BCS PLS DL GBM

Exact 0.5-unit DEV Exact 0.5-unit DEV Exact 0.5-unit DEV

1.5 33 (19-52) 91 (80-100) 16 (6-29) 89 (72-100) 6 (0-18) 84 (76-94)

2.0 49 (46-52) 97 (94-99) 50 (45-54) 97 (95-99) 53 (47-58) 97 (96-99)

2.5 60 (56-69) 98 (96-99) 67 (61-73) 98 (97-99) 62 (57-66) 98 (96-99)

3.0 55 (51-58) 98 (97-100) 52 (44-60) 98 (97-99) 51 (41-57) 97 (95-99)

3.5 45 (36-51) 94 (91-99) 41 (34-48) 91 (86-98) 39 (33-45) 90 (83-94)

4.0 23 (10-35) 86 (80-96) 23 (7-29) 78 (71-83) 23 (10-31) 75 (62-91)

4.5 9 (0-20) 65 (42-78) 9 (0-20) 64 (40-78) 2 (0-20) 47 (20-73)

WAvg 51.2 96.1 52.0 95.5 50.4 94.3

R2 0.67 (0.65-0.68) 0.66 (0.64-0.68) 0.63 (0.61-0.66)

RMSE 0.31 (0.29-0.33) 0.29 (0.26-0.32) 0.30 (0.28-0.32)

Accuracy of the BCS categories is presented in percentage and parenthesis represents the range among replicates. PLS = Partial Least Square, 
DL = DeepLearning, GBM = Gradient Boosting Machine, BCS = Body Condition Score, R2 = R-square, RMSE = Root Mean Square Error, Exact = exact 
score, DEV = deviation, WAvg = weighted average by frequency.
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did not include cow-specific information in their algorithm 
 development, this study diverges in its approach. While con-
structing the BCS reference data, Rodríguez Alvarez et al. 

(2019) and Shi et al. (2023) involved one or two trained eval-
uators scoring BCS simultaneous with 3D-image acquisition. 
Consequently, the effect of evaluator and round of  evaluation 

Table 6. Validation results for the PLS model using the herd splitting method

BCS Herd 1 Herd 2 Herd 3

Exact 0.5-unit DEV Exact 5-unit DEV Exact 0.5-unit DEV

1.5 22 83 60 100 17 83

2.0 35 89 55 97 30 83

2.5 60 92 55 98 34 89

3.0 49 97 47 96 51 95

3.5 34 90 40 97 54 97

4.0 31 88 25 83 28 91

4.5 75 100 0 30 23 77

WAvg 45.7 91.5 48.4 95.1 39.6 90.3

R2 0.46 0.67 0.57

RMSE 0.39 0.33 0.34

Accuracy of the BCS categories is presented in percentage. PLS = Partial Least Square, BCS = Body Condition Score, R2 = R-square, RMSE = Root Mean 
Square Error, Exact = exact score, DEV = deviation, WAvg = weighted average by frequency.

Table 7. Validation results for the DL model using the herd splitting method

BCS Herd 1 Herd 2 Herd 3

Exact 0.5-unit DEV Exact 0.5-unit DEV Exact 0.5-unit DEV

1.5 11 81 30 80 11 83

2.0 40 92 55 98 39 89

2.5 75 95 64 100 46 93

3.0 42 98 48 97 44 96

3.5 24 82 33 93 42 92

4.0 13 44 33 75 18 74

4.5 50 75 0 50 18 59

WAvg 49.3 92.3 50.7 95.3 40.4 90.6

R2 0.45 0.68 0.54

RMSE 0.33 0.31 0.35

Accuracy of the BCS categories is presented in percentage. DL = DeepLearning, BCS = Body Condition Score, R2 = R-square, RMSE = Root Mean Square 
Error, Exact = exact score, DEV = deviation, WAvg = weighted average by frequency.

Table 8. Validation results for the GBM model using the herd splitting method

BCS Herd 1 Herd 2 Herd 3

Exact 0.5-unit DEV Exact 0.5-unit DEV Exact 0.5-unit DEV

1.5 3 67 0 90 0 78

2.0 25 86 42 98 29 88

2.5 51 93 63 99 58 92

3.0 62 94 52 97 33 95

3.5 49 93 38 97 29 81

4.0 19 88 25 88 12 69

4.5 0 100 0 40 0 32

WAvg 42.2 89.8 48.0 95.9 35.9 86.6

R2 0.49 0.67 0.45

RMSE 0.32 0.33 0.35

Accuracy of the BCS categories is presented in percentage. GBM = Gradient Boosting Machine, BCS = Body Condition Score, R2 = R-square, RMSE = Root 
Mean Square Error, Exact = exact score, DEV = deviation, WAvg = weighted average by frequency.
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(if repeated measures) became superfluous. However, we 
aimed to build a reference dataset representing a real-world 
situation on dairy cattle farms. Therefore, it was necessary 
to include cow-specific information (evaluator and round of 
evaluation) along with CFIT features, to produce similar pre-
dictability comparable to the relevant literature.

Predictive value of contour data from 3D-images 
for dairy cattle body condition
We used contour data extracted from 3D-images to predict 
BCS of Jersey dairy cows using different ML techniques. 
Studies on prediction of BCS using computer-vision inves-
tigated a variety of predictive features including angles, 
distances and curvatures at predefined anatomical points 
(Coffey et al., 2003; Ferguson et al., 2006; Bewley et al., 
2008), the animal’s shape reconstructed from images cap-
tured with 2D (Azzaro et al., 2011) or thermal cameras 
(Halachmi et al., 2008, 2013) as well as contour or depth of 
an animal captured from top-down 3D images (Salau et al., 
2014; Rodríguez Alvarez et al., 2019; Yukun et al., 2019; Liu 
et al., 2020; Shi et al., 2023).

In general, although studies based on anatomical points 
from 2D-images have achieved good results, it has been 
demonstrated that contour or depth-based features from 
3D-images resulted in more robust prediction of BCS. The 
study of Liu et al. (2020) used 3D-shape features from six 
predefined regions which were used for prediction of BCS 
using ensemble models while that of Rodríguez Alvarez et al. 
(2019) fed pre-corrected depth images of cows directly into 
a CNN model, which learned to extract relevant features for 
BCS prediction through its layers of convolutions and pooling 
leading.

Rodríguez Alvarez et al. (2019) reported AOC of 41% 
and 97% on the exact and 0.5-unit DEV, for an ensemble 
model. The four models used for the ensemble model ranged 
in AOC from 30% to 40% and 89% to 97% for the exact 
and 0.5-unit DEV, respectively. Liu et al. (2020) showed also 
for an ensemble classification model an AOC of 56 and 94% 
for the exact and 0.5-unit DEV. However, both studies only 
validated (7:3 split or five-fold cross validation) their results 
within herd environment.

In our study, all contour features across the back of the ani-
mal were extracted from 3D-images and fed to robust models 
including DL to predict BCS. We showed one of the highest 
accuracies of up to 95.5% within 0.50 units indicating the 
potential of contour data for robust prediction of body con-
dition score. The stability of the features used for prediction 
(Figure 4) showed back height were very stable, whereas the 
contours showed more variation from picture to picture. It is 
biologically meaningful that the back of a mature animal is 
rather stable. The higher variability in the contours comes from 
the changes in condition, but also from the annotation of the 
3D-images and features extraction. That means the location of 
the different features on the contours can vary between pic-
tures. However, the covariance between close related features 
within contour shows high covariance (Figure 5), showing that 
the features can be used for prediction.

Previous studies investigating the possibility of predict-
ing BCS using image data in cattle have mainly been car-
ried out in research farms. One of the challenges in the 
development and practical implementation of robust BCS 
prediction approaches using computer-vision might be the 
differences in efficiency of the developed systems and models 

in  environments/farms than those used for training (O’Ma-
hony et al., 2023). In this regard, our study conducts a sensi-
tivity analysis of the developed system and prediction models, 
wherein a training dataset derived from various commercial 
dairy farms is utilized to predict cows’ BCS from a distinct, 
unobserved farm. We trained and validated both classification 
and regression models in a commercial context to assess how 
well the trained models can predict in commercial environ-
ments. The results indicate that prediction models performed 
well and without marking loss of accuracy when deployed for 
prediction in an unseen farm/dataset. It has been shown in 
various fields of application that the performance of various 
ML techniques, including DL, heavily relies on the amount 
and quality of data available for learning (Fan and Shi, 2022). 
One additional advantage in our study, compared to previous 
studies on prediction of BCS using computer-vision, is the use 
of relatively large amount of data, both in terms of number 
animals and number of records available for these animals.

Perspectives of using predicted body condition in 
management and breeding
The feasibility to predict BCS on dairy farms from 3D- 
images has been proposed in this study and in a review of 
Qiao et al. (2021). Predicted BCS phenotypes with satisfying 
accuracy, can help dairy farmers to improve management 
decisions. A good management tool to improve dairy farmers 
management decisions, could be daily or weekly phenotypes 
for energy balance calculated from frequent measurements 
of BCS along with BW (Thorup et al., 2018). Wathes et al. 
(2007) showed that severe negative energy balance in early 
lactation had adverse negative impact on dairy cows’ fertil-
ity performance, where fails to conceive resulted in culling. 
Randall et al. (2015) showed cows with a BCS below 2 where 
at greater risk of lameness compared to cows with a BCS 
higher than 2. Oltenacu and Broom (2010) found the genetic 
selection for improved milk production have increased the 
period and level of negative energy balance for dairy cows, 
which has adverse effects on metabolic health, fertility and 
productive health. Using the SimHerd simulation software, 
Anneberg et al. (2016) showed that reducing the risk of dif-
ferent diseases related to hoof, metabolic and reproductive 
performances had significant positive economic impact on 
dairy farms gross margin.

Veerkamp (2002) showed the importance of accounting for 
the variance in BW and BCS for feed efficiency evaluations. It 
is important to distinguish between muscle and adipose tissue 
because of the difference in energy density per kg tissue, where 
adipose tissue has the highest energy density. However, a few 
genetic evaluation centers have included BCS when modelling 
feed efficiency in genetic evaluations (Jamrozik et al., 2021; 
Parker Gaddis et al., 2021; Stephansen et al., 2021b). There 
is a big potential to include a predicted phenotype of BCS 
in feed efficiency models. That means feed efficiency models 
then could (to some extent) distinguish between mobilization 
or deposition of muscle and adipose tissue. Future research 
should focus on utilizing big data through precision livestock 
farming to improve genetic evaluation for feed efficiency.

Body condition score has been documented to describe the 
level of subcutaneous fat reserves with reasonable accuracies. 
Wright and Russel (1984) reported an R2 of 0.89 between 
BCS and subcutaneous fat in Friesian cows. However, in a 
review by Mann (2022) suggested that BCS is a poor proxy to 
describe the total body fat reserves, because BCS is  inaccurate 
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to describe visceral fat and differences in muscle mass. Ide-
ally, we could measure the total body fat, but that is not fea-
sible in large-scale recording and requires dissection of the 
animal. Future studies should focus on establishing a predic-
tion of total body fat from various predictors (features from 
 3D-images, milk components, blood metabolites, etc.).

Conclusions
This study aimed to build a reliable prediction of BCS in Dan-
ish Jersey herds. We tested different methods for predicting 
BCS in commercial conditions, but also validated the results 
with a common 7:3 random split and a novel herd validation. 
In addition, we have tested for the first time the feasibility 
of using contour features from 3D-images in the prediction 
of BCS. The validation results show that predicting the exact 
phenotype can be done with an accuracy of ~50% for classi-
fication and regression models. Allowing a 0.5-unit deviation 
gives higher accuracies for all models. The best performing 
model across classification and regression models was DL. 
However, the results for regression models show that the PLS 
model have similar validation results as DL. In conclusion, 
it is possible to establish a reliable prediction of BCS with 
contour features from 3D-images in commercial Jersey Herds.

Supplementary Data
Supplementary data are available at Journal of Animal Science 
online.
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