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Background: Many previous studies have revealed a close relationship between

lipoprotein metabolism and sepsis, but their causal relationship has, until now,

remained unclear. Therefore, we performed a two-sample Mendelian

randomization analysis to estimate the causal relationship of lipoprotein-

associated phospholipids with the risk of sepsis.

Materials and methods: A two-sample Mendelian randomization (MR) analysis

was performed to investigate the causal relationship between lipoprotein-

associated phospholipids and sepsis based on large-scale genome-wide

association study (GWAS) summary statistics. MR analysis was performed using

a variety of methods, including inverse variance weighted as the primary method,

MR Egger, weighted median, simple mode, and weighted mode as

complementary methods. Further sensitivity analyses were used to test the

robustness of the data.

Results: After Bonferroni correction, the results of the MR analysis showed that

phospholipids in medium high-density lipoprotein (HDL; ORIVW = 0.82, 95% CI

0.71-0.95, P = 0.0075), large HDL (ORIVW = 0.92, 95% CI 0.85-0.98, P = 0.0148),

and very large HDL (ORMR Egger = 0.83, 95% CI 0.72-0.95, P= 0.0134) had

suggestive causal relationship associations with sepsis. Sensitivity testing

confirmed the accuracy of these findings. There was no clear association

between other lipoprotein-associated phospholipids and sepsis risk.
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Conclusions: Our MR analysis data suggestively showed a correlation

between higher levels of HDL-associated phospholipids and reduced risk

of sepsis. Further studies are required to determine the underlying

mechanisms behind this relationship.
KEYWORDS

lipoprotein-associated phospholipids, sepsis, Mendelian randomization, causal
relationship, genetics
Introduction

In 2016, the Third International Consensus Definition for Sepsis

and Septic Shock (Sepsis-3) defined sepsis as a life-threatening organ

dysfunction resulting from dysregulated host responses to infection,

and emphasized the primacy of the non-homeostatic host response to

infection (1). Sepsis is a life -threatening disease with a high incidence

and it remains one of the main causes of death globally. In 2017, an

estimated 48.9 million incident cases of sepsis and 11 million sepsis-

related deaths were reported worldwide, representing 19.7% of all

global deaths (2). Sepsis is therefore significant public health problem

with considerable economic consequences.

Based on differences in density, size, lipid and apolipoprotein

composition, lipoproteins can be divided into five main

subcategories: chylomicrons, very low-density lipoprotein

(VLDL), low-density lipoprotein (LDL), intermediate-density

lipoprotein (IDL) and high-density lipoprotein (HDL) (3). The

lipids found in HDL are mainly surface phospholipids, internal

cholesterol esters, and triglycerides. Phospholipids are mainly

phosphatidylcholine, lysophosphatidylcholine, and sphingomyelin,

each accounting for 32 – 35 mol%, 1.4 – 8.1 mol%, and 5.6 – 6.6 mol

% of total lipids in HDL, respectively (4). At present, various

activities of HDL have been reported, mainly including anti-

inflammatory, anti-oxidative, immunomodulatory, anti-apoptotic,

endothelial, and anti-thrombotic functions (5–8). Studies have

shown that serum and HDL phospholipids are significantly

reduced after a single intravenous dose of endotoxin (9).

Phospholipids have also been suggested to play a specific role in

HDL’s protective capacity against the pro-inflammatory effects of

C-reactive protein (CRP). A study has shown that HDL blocks the

upregulation of CRP-induced inflammatory adhesion molecules
S, Genome-wide

Egger, Mendelian

rval; SNP, Single
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through its phospholipid components (10). In addition, when

recombinant HDL made with HDL apolipoprotein and

phosphatidylcholine (PC) instead of saline was administered

intravenously 3.5 hours before a single intravenous dose of

endotoxin, healthy volunteers showed fewer flu-like symptoms

and lower plasma inflammatory cytokines (11). These data

suggest that the anti-inflammatory and immunomodulatory

effects of HDL are closely related to its phospholipids. Although

Mendelian randomization (MR) analysis has shown a causal

relationship between high levels of high-density lipoprotein

cholesterol and a reduced risk of infectious hospitalizations (12).

However, the causal relationship between HDL-related

phospholipids and infectious diseases or sepsis is unclear.

One observational study identified a reduction in LDL, HDL, and

HDL-associated apolipoproteins in non-survivors of sepsis compared

with survivors (13). LDL can reduce sepsis-associated

lipopolysaccharide (LPS) damage by binding to LPS (14). In mouse

models, the lethal effects of LPS were prevented by removing LDL

receptor-induced high endogenous LDL levels (15). Thus, LDL can

partially reduce the degree of LPS-induced post-inflammatory acute

phase response. Other studies have shown that triglyceride-rich

lipoproteins, such as chylomicrons and VLDL, also can inactivate

LPS and prevent endotoxin-induced rodent deaths (16–18). IDL is a

residual lipoprotein produced by VLDL hydrolysis. In a large study of

more than 7,000 participants, endotoxemia was found to be associated

with high concentrations of VLDL, IDL, and LDL particles, as well as

low concentrations of HDL particles (19). Although the surface of all

lipoproteins is composed of phospholipids, mainly PC and

sphingomyelins (SM), there are significant differences in

phospholipid species for different lipoproteins. Therefore, various

lipoproteins and their phospholipids have different functions, and

this study aims to explore the causal relationship between

lipoprotein- associated phospholipids and sepsis.

Mendelian randomization (MR) refers to a statistical method based

on genome-wide association studies (GWAS) that use genetic variation

as instrumental variables (IVs) to assess the causality of observed

associations between modifiable exposures or risk factors and clinically

relevant outcomes (20). MR minimizes traditional confounding and

reverses causation because genetic variants are randomly distributed

during meiosis and are independent of environment, disease onset, and

progression (21). Therefore, MR is not affected by the confounding
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biases found in traditional observational studies. Based on this

knowledge, we applied a two-sample MR analysis to

comprehensively investigate the genetic association of lipoprotein-

associated phospholipids with sepsis. The results of this study may

offer novel strategies for personalized treatments for sepsis.
Materials and methods

MR analysis

MR uses genetic variation as a tool variable to assess non-

confounding causal relationships between exposure and outcome

and it must satisfy the following three assumptions (22): (1) There is

a strong correlation between instrumental variables and exposure

factors, (2) there is no connection between instrumental variables

and confounding factors, and they are independent of each other,

(3) the instrumental variables are associated with outcomes only by

exposure, and there is no direct correlation. A flowchart of causal

reasoning for lipoprotein-associated phospholipids and sepsis is

depicted in Figure 1. In short, lipoprotein-associated phospholipids

were classed as the exposure and sepsis was the result. Single

nucleotide polymorphisms (SNPs) significantly associated with

lipoprotein-associated phospholipids were selected as IVs based

on strict inclusion and exclusion criteria. A series of heterogeneity
Frontiers in Endocrinology 03
and sensi t iv i ty analyses were performed to ident i fy

significant associations.
Data sources

This study used publicly available databases. Up to 24,925

individuals were tested in 14 genotype datasets from 10 European

studies using additive genetic models. A genome-wide single

nucleotide polymorphism (SNP) panel of 39 million genetic

markers was tested for univariate associations with the

concentrations of lipids and metabolites in 123 humans quantified

by high-throughput NMR spectroscopy metabolomics. Individual

lipoprotein phospholipids were analyzed using a high-throughput

serum Nuclear Magnetic Resonance (NMR) metabolomics platform.

The method provided serum measurement information, including

lipoprotein subclass distribution and lipoprotein particle

concentration, as well as detailed molecular information of serum

lipids, including free and esterified cholesterol, sphingomyelin, and

fatty acid saturation. (23). Individuals on lipid-lowering medications

or pregnant individuals were excluded from the analyses. Genetic

statistics for sepsis were derived from the UK Biobank, and we

identified 11,643 cases of sepsis, with 474,841 controls of European

ancestry. All cases were adjusted for age, sex, chip, and the first 10

principal component analysis.
FIGURE 1

Flow chart of causal inference between lipoprotein-associated phospholipids and sepsis.
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Selection of IVs

We extracted qualified IVs according to strict selection criteria.

First, we selected independent SNPs closely related to various

lipoprotein-associated phospholipids and P < 5×10-8 as potential

IVs, respectively. Second, the European-based 1,000 Genome

Projects reference panel was used to calculate the linkage

disequilibrium (LD) and the threshold for clumping was set to

R2 < 0.01, while the clumping window size was set to 10,000 kb.

Third, SNPs with palindromic and a minor allele frequency (MAF)

of less than 0.3 were also eliminated. Finally, IV strength was

assessed using the F-statistic to further extract SNPs that were

closely related to the exposure. If F > 10, the results should not suffer

from weak instrument bias (24).
Statistical analysis

R version 4.3.0 (R Foundation for Statistical Computing,

Vienna, Austria) and the Two-Sample MR package were used for

statistical analyses (25). P values < 0.05 were to be statistically

significant. We performed MR analysis in five different ways:

inverse variance weighted (IVW) as the primary method, MR

Egger, weighted median, simple mode, and weighted mode as

complementary methods (26–28).

We used Cochran’s Q statistic to detect heterogeneity in MR

analyses, with P values > 0.05 indicating no heterogeneity (25). If

heterogeneity was present, the random-effects model of the IVW

method was used. If heterogeneity was absent, then a random-

effects analysis was equivalent to a fixed-effect analysis. (29, 30). MR

Egger regression was used to examine the effect of horizontal

pleiotropy, and P values > 0.05 were indicative of no horizontal

pleiotropy (31). Therefore, in the absence of pleiotropy, the IVW

analysis method was preferred, and in the presence of pleiotropy,

the MR Egger regression method was used (32). MR Egger

regression can detect pleiotropy. To test the effect of each SNP on

the results, we used leave-one-out analysis to determine whether the

estimates were biased or driven by outliers (30). We corrected

multiple comparisons using the Bonferroni method and set the

statistical significance to P < 0.0042 (0.05/12) based on the number

of exposures. If the P value was between 0.0042 and 0.05, we

considered suggestive evidence of the potential causal

associations (33).
Results

Using the above method, SNPs were screened for this study and

details of the selected SNPs are shown in Table S1. Further, the causal

effects of each SNP on sepsis are shown in the forest plot (Figure S1).

In the MR analysis, we used a variety of methods to assess the

causal relationship between lipoprotein-associated phospholipids and
Frontiers in Endocrinology 04
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FIGURE 2

Scatter plot of the causal relationship between HDL-associated
phospholipids and sepsis. (A) Phospholipids in medium HDL.
(B) Phospholipids in large HDL. (C) Phospholipids in very large HDL.
Analyses were conducted using IVW, weighted median, weighted
mode, simple mode, and MR Egger methods. The slope of the line
indicates the magnitude of the causal relationship. Error bars
indicate 95% CI. MR, mendelian randomization; SNP, single
nucleotide polymorphism.
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sepsis. The results of the MR analysis suggestively showed that HDL-

associated phospholipids are causally related to sepsis (Figure 2).

Phospholipids in medium HDL (ORIVW = 0.82, 95% CI 0.71-0.95,

P = 0.0075) and phospholipids in large HDL (ORIVW = 0.92, 95% CI

0.85-0.98, P = 0.0148) were negatively associated with sepsis. Due to

the pleiotropy of phospholipids in very large HDL, the MR Egger

regression method was used (ORMR Egger = 0.83, 95% CI 0.72-0.95,

P = 0.0134). However, phospholipids in LDL, IDL, VLDL, and

chylomicrons were not causally associated with sepsis (Figure S2;

Table S2). Thus, only three HDL-associated phospholipids

(phospholipids in medium HDL, phospholipids in large HDL, and

phospholipids in very large HDL) suggestively showed significant

causal relationship associations with sepsis (Figure 3).

In sensitivity analysis, we performed heterogeneity, pleiotropy, and

leave-one-out analysis to assess the reliability and robustness of the
Frontiers in Endocrinology 05
results (Table 1). Cochran’s Q test showed no heterogeneity between

IVs (phospholipids in mediumHDL, PIVW = 0.277, PMR Egger = 0.1914;

phospholipids in large HDL, PIVW = 0.7786, PMR Egger = 0.8902;

phospholipids in very large HDL, PIVW = 0.1084, PMR Egger =

0.2545). The symmetry of the funnel plot also confirmed the absence

of heterogeneity, suggesting that causal associations were less likely to

be affected by potential bias (Figure S3). Therefore, the random-effects

model of the IVW method was used. To reduce bias due to horizontal

pleiotropy, we performed MR Egger intercept testing, which showed

that overall horizontal pleiotropism was absent in all IVs

(phospholipids in medium HDL, P = 0.8224; phospholipids in large

HDL, P = 0.1190). When horizontal pleiotropy is present, the MR

Egger regression method can be used in MR analysis (phospholipids in

very large HDL, P = 0.0435). The leave-one-out analysis (Figure S4)

showed no substantial difference in the estimated causal effect when
FIGURE 3

Forest plot of the causal relationship between HDL-associated phospholipids and sepsis. The black dots represent the OR value obtained by each
method and the solid line represents the 95% CI. IVW, inverse variance weighted; MR, Mendelian randomization; OR, odds ratio; CI,
confidence interval.
TABLE 1 Heterogeneity and pleiotropy analysis of MR.

Exposure Analysis Methods Effect size P value

Phospholipids in medium HDL Heterogeneity Cochran’s Q test 7.501 (QIVW) 0.277

7.418(QMR Egger) 0.1914

Pleiotropy MR Egger regression 0.0051 (egger_intercept) 0.8224

Phospholipids in large HDL Heterogeneity Cochran’s Q test 11.4849 (QIVW) 0.7786

8.7506 (QMR Egger) 0.8902

Pleiotropy MR Egger regression 0.0186 (egger_intercept) 0.119

Phospholipids in very large HDL Heterogeneity Cochran’s Q test 29.2373 (QIVW) 0.1084

23.7268(QMR Egger) 0.2545

Pleiotropy MR Egger regression 0.0188(egger_intercept) 0.0435
fro
ntiersin.org

https://doi.org/10.3389/fendo.2023.1275132
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zeng et al. 10.3389/fendo.2023.1275132
individual SNPs were systematically removed and the MR analysis was

repeated. This showed a strong association between exposure and

outcomes, thereby validating the reliability of the results of this study.
Discussion

The inference of causality in genetics was usually made by MR

analysis. MR analysis was a form of instrumental variable analysis in

which genetic marker SNPs were often used as tools to infer the causal

effects of exposure variables on outcome variables. SNPs were the basis

of genetic polymorphisms and lead to most of the genetic differences

between individuals. It was well known that SNPs had a close

relationship with disease, and this relationship was the basis for

understanding the etiology, medical prevention, and diagnosis of

disease. Studies had found that various genetic and environmental

factors could lead to abnormalities in blood lipids and lipoproteins, and

it could be seen that plasma lipid and lipoprotein concentrations were

highly heritable. In addition, in the field of lipid and lipoprotein

metabolism, almost 30 different genes encoding key proteins had

been implicated, and more than 200 different SNPs had been

identified in these genes (34). The genetic variability involved could

affect the final plasma lipid levels. The two-sample MR analysis used in

this study showed that HDL-associated phospholipids had a suggestive

causal relationship with sepsis. There were no clear associations

between other lipoprotein-associated phospholipids and sepsis risk,

including LDL, IDL, VLDL-associated phospholipids, and

phospholipids in chylomicrons.

Sepsis remains the leading cause of morbidity and mortality

worldwide, and its pathogenesis is complex and involves multiple

interactions between infecting microorganisms and the host.

Studies have found a rapid and significant decrease in serum

cholesterol, phospholipids, apoB, and apoA-I carried in LDL and

HDL during acute phase reactions to endotoxemia and various

inflammatory in humans (35, 36). Among them, HDL

phospholipids have been shown to selectively decrease, while the

number of HDL particles remains unchanged. Phospholipids

showed a greater decline of approximately 20%, and a highly

statistically significant linear relationship between the percentage

reduction in phospholipids and the peak CRP (R2 = 0.97, P = 0.001)

(9). Although all lipoproteins bind endotoxins, HDL is the most

protective because it is rich in surface phospholipids (37). HDL is

the main carrier of phospholipids in lipoproteins and has significant

endotoxin neutralization ability. Infusion of HDL prevented the

fatal consequences of LPS administration in mice (38) and

prevented LPS-induced cytokine production in rabbits (39) and

human volunteers (40). Sphingosine 1-phosphate (S1P) is a lipid-

signaling molecule and approximately 55% and 35% of plasma S1P

is partitioned into HDL and albumin, respectively (41). As an

extracellular and intracellular messenger, S1P regulates the

pathophysiological processes involved in sepsis progression. In

patients with sepsis, serum S1P levels were significantly reduced,

leading to sepsis capillary leakage, impaired tissue perfusion, and

organ failure, which are all inversely correlated with disease severity

(42) . Other HDL-assoc ia t ed sph ingo l ip ids , such as

sphingosinephosphorylcholine and lysosulfatide may also enhance
Frontiers in Endocrinology 06
endothelial cell migration, survival, and the cytoprotective effects of

HDL (43). It could be seen that the serum HDL-associated

sphingolipids level can predict the prognosis of sepsis, which

provides ideas for the clinical treatment of sepsis patients.

One study found that phospholipid transfer active protein

(PLTP) and endothelial lipase (EL) were significantly higher than

in patients with non-sepsis (44). This lipase plays a major role in

hydrolyzing the phospholipids in HDL (45). Studies have also

shown that increased PLTP activity might promote phospholipid

transfer from HDL to tissues (46). Increased transfer of HDL

phospholipids to tissues might contribute to the regeneration of

damaged cell membranes and lung surfactants, and endotoxins

bound to HDL phospholipids might be excreted into the bile (47).

Thus, increased PLTP activity during inflammation may be a

protective mechanism that can attenuate the LPS response by

modulating HDL phospholipids. This study revealed the potential

causal role of HDL-associated phospholipids in sepsis, suggesting

that therapeutic strategies to increase serum levels of HDL-

associated phospholipids might be beneficial in patients with

sepsis. However, further studies are required to improve our

understanding of the mechanisms by which HDL-associated

phospholipids affect various aspects of sepsis pathology.

Our MR analysis showed a correlation between elevated HDL-

associated phospholipid levels and a reduced risk of sepsis. HDL

was the main carrier of phospholipids in lipoproteins and had a

significant endotoxin neutralizing ability. The core functions of

HDL were considered to be antioxidant and anti-inflammatory

(48). In addition, studies had shown that the antioxidant activity of

HDL could be significantly affected by the modulation of HDL

surface lipids. The surface phospholipid composition of HDL also

influenced the anti-inflammatory, anti-apoptotic and anti-infective

effects of HDL (49). In conclusion, not only did the content of HDL-

associated phospholipids and their ability to neutralize endotoxins

contributed to the prevention of sepsis, but their antioxidant, anti-

inflammatory, anti-apoptosis, and anti-infective effects were also

beneficial for sepsis. Further research is needed to identify the

underlying mechanisms behind this relationship.

This study had several strengths, including resistance to

confounding factors in traditional epidemiology. We used a

variety of MR analysis methods to obtain more reliable data. This

study was more efficient and less costly than RCTs. In addition,

instrumental variables with larger sample sizes were selected from

recent GWAS studies to ensure adequate statistical power.

However, it is important to note the limitations of this study. As

our study only included European populations, the data do not

apply to extrapolations from other non-European populations.

Further research on more diverse populations is required.
Conclusion

Herein, we identified suggestive causal relationship associations

between HDL-associated phospholipids levels and the risk of sepsis.

These data could aid the development of novel strategies for the

diagnosis and treatment of sepsis. However, more research is

needed to further explore this question.
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