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ABSTRACT: The implementation of quality control strategies is crucial to ensure the
reproducibility, accuracy, and meaningfulness of metabolomics data. However, this pivotal
step is often overlooked within the metabolomics workflow and frequently relies on the use
of nonstandardized and poorly reported protocols. To address current limitations in this
respect, we have developed QComics, a robust, easily implementable and reportable method
for monitoring and controlling data quality. The protocol operates in various sequential
steps aimed to (i) correct for background noise and carryover, (ii) detect signal drifts and
“out-of-control” observations, (iii) deal with missing data, (iv) remove outliers, (v) monitor
quality markers to identify samples affected by improper collection, preprocessing, or
storage, and (vi) assess overall data quality in terms of precision and accuracy. Notably, this
tool considers important issues often neglected along quality control, such as the need of
separately handling missing values and truly absent data to avoid losing relevant biological
information, as well as the large impact that preanalytical factors may elicit on metabolomics
results. Altogether, the guidelines compiled in QComics might contribute to establishing
gold standard recommendations and best practices for quality control within the metabolomics community.

■ INTRODUCTION
The metabolome encompasses a multitude of metabolites with
diverse physicochemical properties, including substrates and
end-products that participate in the endogenous metabolism,
metabolites derived from absorption and biotransformation of
exogenous compounds from diet, lifestyle habits, and environ-
mental pollution (i.e., the exposome), and microbiota-related
metabolites.1,2 Accordingly, mass spectrometry (MS)-based
metabolomics generates vast and complex data, comprising
hundreds to thousands of molecular features that exhibit wide
concentration ranges and large interindividual variability. The
acquisition of reproducible and meaningful data requires the
application of standard operating procedures (SOPs) to
minimize human errors (e.g., errors in pipetting during sample
processing), random errors (e.g., fluctuations allocated to
intrinsic method precision and other analytical limitations),
and systematic errors (e.g., biases that persist throughout the
analytical process). However, unwanted sources of variation
are hardly controllable and make the implementation of quality
control (QC) strategies mandatory to monitor and control
data quality along the entire analytical workflow.3−5 On the
one hand, metabolite levels can be influenced by a myriad of
preanalytical factors related to sample collection and
preprocessing, conditions that must be tightly controlled to
guarantee the metabolic integrity of biological samples under

study.6 Moreover, although metabolomics normally employs
straightforward extraction protocols, the chemical complexity
of biological matrices requires, at least, the removal of proteins
and potential interferences (e.g., salts and lipids) and other
additional method-specific steps (e.g., preconcentration and
derivatization).7 Despite numerous efforts made for its
automation, sample preparation still largely relies on human
handling in many laboratories, thus being considered to be one
of the most error-prone steps in metabolomics. Finally,
instrumental stability issues and fluctuations in analytical
performance also have a negative impact on reproducibility
and accuracy, especially when dealing with large-scale
epidemiological studies or complex samples. Along the
experiment, the MS system may suffer from significant drifts
in sensitivity, mass accuracy, retention time (RT), and peak
resolution due to different reasons: (i) contamination with
components from the matrix (e.g., lipids), mobile phase (e.g.,
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buffers), or other impurities (e.g., plasticizers); (ii) deterio-
ration and clogging of chromatographic columns; (iii)
uncontrolled temperature in the laboratory and/or instrument
components (e.g., autosampler trays), which may provoke
degradation and precipitation of samples and mobile phases, as
well as to strongly influence the performance of separation,
ionization, and detection processes.4 In this context, several
scientific task-force groups have been established to address
current challenges and provide general recommendations for
proper QC among the metabolomics community, such as the
Metabolomics Society Data Quality Task Group (DQTG)8,9

and the metabolomics Quality Assurance and quality Control
Consortium (mQACC).10−12 However, despite these efforts,
only a few standardized protocols have been published up to
date with the aim of harmonizing this crucial QC step within
the metabolomics workflow.13−16

In conventional targeted analysis, variability factors are
typically addressed by using spiked internal standards (ISs),
most often consisting of isotopically labeled compounds.
However, this approach is not viable in untargeted
metabolomics as samples may contain thousands of a priori
unknown metabolites. A compromise solution commonly
applied in large-scale targeted metabolomics is to use a set
of ISs representing the physicochemical space of the method
coverage (i.e., at least one IS per metabolite class).2,17 As an
alternative, the analysis of biological QC samples is nowadays
the gold standard in metabolomics, as first proposed by
Sangster et al. in 2006.13 These QC samples are usually
prepared by pooling equal volumes of all samples under
investigation, although surrogate QCs (e.g., commercially
available biological samples or certified reference materials)
can also be employed when the pooling strategy is not
practicable (e.g., large epidemiological cohorts). Then, QC
samples are analyzed at the beginning of the analytical run to
equilibrate the instrument, as well as at intermittent points
throughout the experiment to monitor system stability and
correct experimental variability sources during data process-
ing.18,19 Furthermore, some authors have proposed the use of
serially diluted QC samples to discard molecular features
lacking a linear correlation between the MS response and the
relative concentration, which are expected to be artifacts rather
than true biological signals.20 However, it should be noted that
correlation analysis is inherently sensitive to the dilution
strategy (e.g., inclusion of diluted QCs at very high/low
concentrations). As metabolites can be present in very different
and wide concentration ranges, this strategy should consider
enough dilution points to properly address linearity, thereby
considerably increasing analysis times and hindering sub-
sequent data processing. After analysis, to assess method
reproducibility, most QC approaches solely rely on (i)
inspecting the clustering of QCs in principal component
analysis (PCA) scores plots and (ii) computing the relative
standard deviation (RSD) for metabolites of interest across
QC samples.13−16 The main limitation of these previously
published QC protocols is their subjective nature and lack of
harmonization between laboratories, since predefined quality
criteria and standard procedures have not yet been established,
as recently highlighted by the mQACC.11 Furthermore, it
should be noted that these methods mainly focus on
addressing analytical variability (e.g., drifts along the sequence
run) but frequently underestimate the great impact that
preanalytical factors may elicit on metabolomics results.
Considering the growing interest in the exposome and its

relationship with health outcomes, it also becomes essential to
adapt current QC practices for dealing with heterogeneous
data sets comprising both endogenous metabolites and
xenobiotics, which are normally present at very different
concentration levels in the organism.
Herein, we present “QComics”, a comprehensive protocol

for QC assessment of metabolomics data based on a sequential
multistep workflow: (i) initial data exploration (i.e., detection
of contaminants, batch drifts, and out-of-control measure-
ments), (ii) handling missing values and truly absent data, (iii)
removal of outlying samples, (iv) monitoring quality markers
to address preanalytical errors, and (v) final data quality
assessment. The quality criteria employed in QComics have
been adapted from guidelines for validating conventional
bioanalytical methods21 and from existing literature on current
QC practices in metabolomics.3,11 To simplify its implementa-
tion, this QC protocol can easily be performed in software that
is available to most researchers (e.g., Microsoft Excel and
MetaboAnalyst webtool), without the need of advanced
statistical and programming skills.

■ EXPERIMENTAL SECTION
Blank and Quality Control Samples. The implementa-

tion of QComics requires procedural blanks and QC samples,
obtained as follows. Blank samples must be prepared by
replacing the biological sample under study with water during
the extraction process but using the same chemicals, labware,
and SOPs as for real samples. In the case of simple extraction
protocols (e.g., protein precipitation with organic solvents),
blank extraction solvents can instead be employed for this
purpose. On the other hand, the QC sample is prepared by
mixing equal aliquots of each of the samples under
investigation or by using a bulk representative sample when
the pooling strategy is not viable. Before analysis, the QC
sample must be treated by applying the same extraction
procedure used for real samples. Optionally, study samples can
also be spiked with a set of ISs, as traditionally done in targeted
analysis.
Metabolomics Analysis. To develop and validate

QComics, we leveraged metabolomics data that were generated
using the untargeted approach described by Gonzaĺez-
Domińguez et al. as a case study.22 Briefly, plasma samples
were treated with cold acetonitrile for protein precipitation,
and metabolite extracts were then analyzed by reversed-phase
ultrahigh-performance liquid chromatography coupled to high-
resolution mass spectrometry (UHPLC-MS), using the
operating conditions described elsewhere.22 The injection
order of samples in the MS system should follow this
sequence:

(1) Inject five consecutive procedural blank samples to
stabilize the system (e.g., operating temperatures and
chromatographic pressure) and to check the background
noise.
(2) Inject several consecutive QC samples to condition
the system for the study matrix (i.e., stable chromato-
graphic pressure, reproducible RT, peak area, and peak
shape for selected metabolites). This conditioning step
usually requires at least five QC samples, although this
number might be increased (e.g., 10 injections) when
studying complex matrices (e.g., tissues) and when
applying less robust analytical approaches (e.g., hydro-
philic interaction liquid chromatography, HILIC).
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(3) Analyze real samples in random order and
intercalate QCs across the sequence (e.g., one QC
after every 10 samples). If the sample size is small, the
frequency of QC injection may be increased to ensure a
minimum of 10% QC samples across the analytical run.
(4) Inject five procedural blank samples at the end of the
sequence run to assess carryover. We do not recommend
intercalating blank samples throughout the sequence as
this may result in partial deconditioning of the system
(e.g., shifts in RT and peak symmetry) due to differences
in matrix composition, which would make necessary
injecting several reconditioning QCs after blanks before
continuing with the analysis of real samples, thereby
lengthening total run times.

After MS-based analysis, a set of metabolites that can
regularly be detected in QC samples (hereinafter referred to as
“chemical descriptors”) must be selected to assess method
reproducibility and data quality. These metabolites should
preferably belong to different chemical classes representing the
analytical coverage of the MS method, have diverse molecular
weights (MW) and peak intensities, and be well-distributed
along the chromatographic run. In targeted experiments,
spiked ISs can be used as additional quality markers. Herein,
for the particular case of reversed-phase UHPLC-MS analysis
of plasma samples, we propose the set of chemical descriptors
listed in Table 1. Note that m/z and RT values correspond to
those obtained by applying the metabolomics method
described elsewhere,22 the user should adapt the set of
chemical descriptors according to the analytical performance of
their own methods.
Implementation of QComics. The QComics protocol

operates through a multistep workflow to sequentially address
various challenges that may strongly influence data quality, as
detailed in Figure 1. In the next sections of this article, we
discuss recommendations and guidelines for properly dealing
with background noise and potential contaminants, batch drifts
and “out-of-control” measurements, missing values and truly
absent data, outlying samples, improper handling/storage of
biological samples, and overall quality assessment.

■ RESULTS AND DISCUSSION
Initial Data Exploration. The first step in QComics

involves a preliminary exploratory data analysis to check for
potential contaminants, carryover, trends according to the run
order, and “out-of-control” measurements.
Inspection of Procedural Blank Samples. Metabolomics

data, especially when applying untargeted approaches designed
to detect as many molecular features as possible, are prone to
contain artifact signals originating from sources other than the
biological matrix under investigation, such as additives and
preservatives incorporated during sample collection and
processing, ghost peaks derived from sample preparation
(e.g., derivatization), impurities present in solvents and
reagents, and contaminants coming from labware and the
MS system (e.g., plasticizers or column bleeding). Further-
more, these contaminants and other matrix components may
accumulate in the instrument (e.g., in the autosampler or in the
column) as a result of inadequate washing between sample
injections, leading to the appearance of carryover signals from
the foregoing samples in subsequent injections.
To minimize the impact of this background noise,

procedural blank samples must be injected at the beginning

and at the end of the sequence run to identify potential
artifacts in the data set.23 As the exclusion criterion, QComics
flags molecular features as a “potential contaminant” when
their mean values in real samples do not exceed three times the
mean values detected in blanks, as recently reported by the
mQACC.11 However, we recommend not removing these
peaks prior to data analysis as some of them can be biologically
relevant (e.g., free fatty acids that are frequently employed as
slip agents in plastic consumables). Instead, if the “contami-
nant” is selected as of potential interest after data analysis, the
researcher should determine to which extent the blank
contribution might influence the quality of results. To this
end, we propose discarding only those features with an RSD
value higher than 15% in blank injections, as low blank-related
variability is not expected to differentially affect group
comparisons or statistical testing.

Detection of Batch Drifts and “Out-of-Control” Measure-
ments. The most frequent origin of systematic errors in
metabolomics is deficient instrumental stability (e.g., loss in

Table 1. Set of Chemical Descriptors to Assess the Method
Reproducibility and Data Quality

metabolite
monoisotopic
mass (Da) m/z (Da)

retention
time (min)

creatinine 113.0589 [M + H]+:
114.0667

0.68

[M − H]−:
112.0511

L-phenylalanine 165.0790 [M + H]+:
166.0868

2.01

[M − H]−:
164.0712

hippuric acid 179.0582 [M + H]+:
180.0660

3.02

[M − H]−:
178.0504

indole-3-acetic acid 175.0633 [M + H]+:
176.0711

3.98

[M − H]−:
174.0555

cortisone 360.1937 [M + H]+:
361.2015

4.84

[M + Cl]−:
395.1626

dehydroepiandrosterone
3-sulfate

368.1657 [M + Na]+:
391.1555

5.36

[M − H]−:
367.1579

cholic acid 408.2876 [M + Na]+:
431.2774

6.30

[M − H]−:
407.2798

stearoyl-L-carnitine 427.3656 [M + H]+:
428.3734

6.45

monooleoyl-glycerol 356.2927 [M + Na]+:
379.2825

7.07

palmitic acid 256.2402 [M + Na]+:
279.2300

7.22

[M − H]−:
255.2324

bilirubin 584.2635 [M + H]+:
585.2713

7.78

[M − H]−:
583.2557

1,2-dipalmitoyl-
phosphatidylcholine

733.5622 [M + Na]+:
756.5520

9.19

[M + Cl]−:
768.5311
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MS sensitivity or deterioration of chromatographic columns),
which is ultimately mirrored in signal drifts according to the
run order. To verify the presence of gradual changes along the
analytical run, and thus evaluating the need of implementing
data normalization approaches,19 the peak intensity of each
chemical descriptor should be plotted with respect to their run
order to check for time-related trends in the data (Figure
2A,B). Then, the examination of PCA scores plots enables
exploring if samples show a continuous drift (Figure 2C) or a
homogeneous distribution (Figure 2D) in the PCA space. If
prepared by pooling, QC samples should ideally cluster in the
center of the plot.
Besides the abovementioned gradual drifts in signal, the

analytical system can also experience sudden deterioration
(e.g., column clogging), thereby resulting in “out-of-control”
measurements that are hard to correct through normalization
approaches. In that case, the implementation of Shewhart
control charts would facilitate the detection of abnormal QC
samples to determine if a batch is acceptable or not (Figure
2E). To detect “out-of-control” measurements, create time
series plots with upper and lower critical limits (±SD, ± 2SD,
± 3SD) for each chemical descriptor and set the control rules
proposed by Westgard et al.:24 (i) one QC sample exceeds the
±3SD limit; (ii) two consecutive QC samples exceed the
±2SD limit in the same direction of the control chart (i.e.,
above or below the mean); (iii) four consecutive QC samples
exceed the ± SD limit in the same direction of the control
chart (i.e., above or below the mean); (iv) 10 consecutive QC

samples fall in the same direction of the control chart (i.e.,
above or below the mean). If QC samples do not meet these
quality criteria, neighboring study samples should be scruti-
nized to evaluate the necessity of being discarded and
reanalyzed.
Handling Missing Values and Truly Absent Data.

Metabolomics data sets are typically characterized by high
frequency of missing values (ca. 20−30% of overall data),
which poses additional challenges during QC assessment. The
origin of missing values in MS-based metabolomics can be
allocated to a myriad of instrumental reasons, including
sensitivity limitations (i.e., metabolite levels below the
analytical limit of detection), technical issues (e.g., matrix
effects or coelution), and random errors (e.g., temporary
reduction in ionization performance). This results in diverse
types of missing values, including missing completely at
random (MCAR, i.e., missing data is independent of observed
and unobserved data), missing at random (MAR, i.e., missing
data is dependent on observed data), and missing not at
random (MNAR, i.e., missing data is dependent on unobserved
data). Moreover, missing data can also arise from the true
absence due to biological reasons (e.g., xenobiotics that are
exclusively detected in exposed individuals). Nevertheless,
common strategies for dealing with missing values in
metabolomics do not account for this heterogeneity and
simply rely on a two-step process for filtering variables
containing a high proportion of missing values and subsequent
imputation of remaining data.25,26 This may provoke the loss

Figure 1. Overview of the QComics workflow.
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of relevant biological information during the filtering step (e.g.,
exogenous metabolites with low detection rate) and lead to
inaccurate and biased results due to suboptimal imputation.
The QComics tool comprises a novel protocol for differ-

entially addressing missing and truly absent values, of particular
interest in exposomics and nutritional metabolomics. First, we
compute the rate of missing values per study sample to confirm
a consistent distribution along the entire analytical run and to
discard data with abnormally lower detection rates. This and
further steps should be performed separately in each study
group to account for group-specific metabolite occurrences
(e.g., xenobiotics coming from an intervention trial). Data
must then be scrutinized with the aim of distinguishing missing
values from potentially truly absent variables to differentially
treat them in subsequent steps. For this purpose, we assume
that a low proportion of missing values in any variable is likely
to indicate false absence due to analytical issues, while high
frequency of missing values could be allocated to true absence,
as previously reported by Armitage et al.27 Using synthetic data
sets, they found that the proportion of missing values strongly
affects subsequent statistical testing, so that the true-positive
rate was drastically reduced as the number of missing values
increased, but it was rapidly restored with more than 70%

missing values. In that scenario, a compromise between true
presence and true absence might be parametrized based on the
information that is not lost (i.e., false negatives) nor gained
(i.e., false positives) during the imputation process. Based on
this rationale, it is proposed that molecular features with more
than 70% missing values could actually be regarded as
metabolites likely to contain real zero values. This catego-
rization is even simpler in targeted metabolomics, where the
identities of analytes are a priori known. In that particular case,
we assume that missing values in endogenous metabolites may
have a plausible technical origin, as they are expected to be
regularly detected in all samples analyzed. In contrast, missing
values in exogenous metabolites (e.g., dietary compounds,
drugs, or pollutants) could be regarded as truly absent data.
Once this categorization is accomplished, QComics handles
missing values in various steps. For metabolites likely to be
truly absent (i.e., molecular features with >70% missing values
in untargeted metabolomics, exogenous metabolites in targeted
metabolomics), missing data are replaced with real zero values.
In such cases, special care must be taken during subsequent
statistical analyses to properly deal with zero-inflated data. For
the rest of the data, variables containing more than 20%
missing values in all the study groups should be removed to

Figure 2. Detection of batch drifts and “out-of-control” measurements. (A) Time series plot showing signal drift in quality control samples; (B)
time series plot showing stable signal in quality control samples; (C) principal component analysis scores plot showing signal drift in quality control
samples; (D) principal component analysis scores plot showing stable signal in quality control samples; (E) Shewhart control chart for detecting
“out-of-control” measurements.
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discard spurious signals. Finally, the remaining missing values
are imputed by using the method of choice (e.g., kNN or
Random Forest). Although rather simplistic, as the unequiv-
ocal differentiation between missing values and absent data is
difficult in practice, this categorization-based approach could
represent a complementary alternative to traditional imputa-
tion strategies,25,26 especially with the aim to get deeper
insights into the role of the exposome in health status. This is
of particular interest when studying pollutants and toxicants,
which are usually present at extremely low concentrations in
biological specimens and are hardly detectable using
metabolomics approaches. In that case, traditional imputation
methods based on filtering variables that contain high
proportions of missing values (e.g., 80% rule) are expected
to remove most exposome-related features from metabolomics
data sets, while keeping these missing data as real zero values
would prevent losing relevant information.
Detection and Removal of Outliers. The detection and

removal of outliers (i.e., data points that significantly deviate
from the remaining observations) are crucial steps in MS-based
metabolomics as they can originate from multiple sources of
analytical and biological variability, consequently leading to
inaccurate results. A great number of methods have been
proposed for these purposes based on the Mahalanobis
distance,28 Grubbs’s test,29 and nonlinear regression.30

Among them, PCA and the Hotelling T2 test have emerged
as the gold standard.31 As implemented in QComics, the
analysis of PCA scores using the Hotelling T2 statistics enables
easily identifying outliers as those study samples located far-
away the 95% Hotelling T2 ellipse in the PCA scores plot
(Figure 3A) and those with extreme values in the T2 range plot
(Figure 3B). Complementarily, observations showing high
residual variance unexplained by the PCA model can be
identified using the DmodX plot (Figure 3C). However, we
recommend excluding potential outliers only in case that
noticeable analytical or chemical anomalies in raw data could
explain these behaviors, e.g., significantly different number of
detected peaks, which could be indicative of human errors
during sample preparation, technical issues during MS-based
analysis (e.g., inefficient ionization), or sample contamination.
Quality Markers for Addressing Preanalytical Factors.

The preanalytical phase is well-recognized to be a major source
of variability and errors, as collection and preprocessing of
biological samples is frequently performed in clinical settings
by staff with limited research experience. This is especially
critical in multicenter and biobank-based studies, where
samples are collected at different laboratories and over long-
time periods. Accordingly, the implementation of SOPs for
proper sampling and preprocessing is crucial to avoid
contamination, degradation, and metabolic alteration of
biological samples,32,33 thereby ensuring that subsequent
metabolomics analysis provides an accurate reflection of the
actual in vivo metabolic profile. This requires strict control of
every step along the entire preanalytical phase, including
sample collection, preprocessing (e.g., centrifugation), aliquot-
ing, transport, storage, and thawing cycles. However, common
strategies for QC assessment typically focus on addressing
analytical quality,13−16 without considering the impact of
preanalytical factors on metabolic integrity of samples under
investigation.
Inappropriate quenching of biological samples may result in

ex vivo metabolic reactions that are mediated by residual
enzymatic activities (e.g., release of protease-derived peptides,

hydrolysis of lipids).34,35 Furthermore, exposure to air and light
has been associated with chemical transformations in readily
oxidizable and labile metabolites.36,37 In blood samples,
delayed processing and inadequate temperature during
handling can overexpress anaerobic metabolism in erythrocytes
and, consequently, alter circulating levels of energy-related
metabolites.37−39 In this respect, hemolysis may also impact
the serum/plasma metabolome as a result of the release of
intracellular metabolites and the exacerbation of metabolic
reactions triggered by erythroid enzymes.40 On the other hand,
it has repeatedly been reported that urine samples are prone to
suffer from profound metabolic alterations caused by bacterial
overgrowth and chemical degradation.41,42 On this basis, we
propose here a panel of metabolites known to be strongly
influenced by the abovementioned preanalytical errors (Table
2), which can be monitored as markers of sample quality as a
part of the QComics protocol. The visualization of data in the
form of box plots facilitates the detection of observations
showing abnormal levels for these quality markers (i.e., peak
intensities over ±3 × IQR), which could be indicative of
improper handling/storage of the biological sample. As these
metabolites can be influenced by a myriad of physiological and
pathological stimuli, we recommend monitoring various of
them before considering the exclusion of samples. Although
this panel of markers has been designed for blood and urine,
which are the most commonly employed biological matrices in
metabolomics, this QC strategy can easily be adapted by the
user to other tissue-specific metabolites.

Figure 3. Detection of outliers. (A) Principal component analysis
scores plot with 95% Hotelling T2 ellipse; (B) T2 range plot; (C)
DmodX plot.
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Table 2. Panel of Quality Markers to Assess the Influence of Preanalytical Errors. Normal concentration ranges were obtained
from the Human Metabolome Database. Arrows indicate the effect that preanalytical factors have been reported to elicit on
metabolite expression (↑ increased levels, ↓ decreased levels).

Marker Concentration Range

Pre-Analytical Effect

ReferenceBlood Urine

Hypoxanthine Blood: 0.1−14.7 μM ↑ (enzymatic reactions) 34,35,39

Sphingosine 1-phosphate Blood: 0.3−0.5 μM ↑ (enzymatic reactions) 35
Ascorbic acid Blood: 11.0−171.0 μM; Urine: 1.7−22.7 μmol/mmol creatinine ↓ (oxidation) ↓ (oxidation) 36,41

Dopamine Blood: < 0.13 nM ↓ (oxidation) 36,37

D-Glucose Blood: 3.1−6.9 mM ↓ (anaerobic reactions) 37,38

Lactic acid Blood: 6.8−11.1 μM; Urine: 3.4−12.6 μmol/mmol creatinine ↑ (anaerobic reactions) ↑ (anaerobic reactions) 37,38,41,42

Pyruvic acid Blood: 10.0−141.0 μM ↑ (anaerobic reactions) 38,39

Creatine Urine: 9.0−135.0 μmol/mmol creatinine ↑ (bacterial growth) 41,42

Acetic acid Urine: 2.5−106.0 μmol/mmol creatinine ↑ (bacterial growth) 41,42

Succinic acid Urine: 1.1−14.5 μmol/mmol creatinine ↑ (bacterial growth) 42

Figure 4. Data quality assessment. (A) Principal component analysis scores plot showing tight clustering of quality control samples; (B) time series
plot with predefined tolerance windows for peak intensity; (C) time series plot with predefined tolerance windows for retention time; (D) time
series plot with predefined tolerance windows for peak width; (E) time series plot with predefined tolerance windows for m/z error.

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.3c03660
Anal. Chem. 2024, 96, 1064−1072

1070

https://pubs.acs.org/doi/10.1021/acs.analchem.3c03660?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.3c03660?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.3c03660?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.3c03660?fig=fig4&ref=pdf
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.3c03660?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Data Quality Assessment. After data processing and
cleaning as explained above (i.e., flagging background noise
and carryover signals, monitoring drifts and “out-of-control”
measurements, handling missing values and truly absent data,
outlier detection, and removal of samples affected by
preanalytical factors), the last step in QComics involves
evaluating overall data quality in terms of precision and
accuracy. To this end, exploratory PCA can be first applied to
the whole data set to confirm a tight clustering of QC samples
in the scores plot as an indicator of system stability along the
analytical run (Figure 4A). Then, method precision and
accuracy must be estimated by applying the following
acceptance criteria to chemical descriptors detected in QC
samples: (i) RSD < 30% for peak intensity, (ii) RSD < 2% for
RT, (iii) RSD < 15% for peak width, (iv) m/z error <10 ppm
(this latter only for experiments conducted in high-resolution
MS).3,11 Note that these acceptance criteria can be tailored
according to the technical MS specifications. Additionally, time
series plots with predefined tolerance windows can be used to
visualize the reproducibility and stability of every quality
metrics across the experiment (Figure 4B−E), thereby
facilitating the identification of abnormal data points for
potential exclusion or reanalysis. To conclude, the precision
estimators can also be employed to discard peaks with a
technical variation exceeding biological interindividual differ-
ences, as these molecular features are likely to introduce great
variability in data and, consequently, hinder subsequent
statistical modeling.

■ CONCLUSIONS
The inherent complexity and variability of metabolomics data
demand the application of robust QC strategies. However,
despite numerous efforts made to increase awareness and
promote best working practices among the metabolomics
community, there is a considerable lack of standardization in
QC workflows. To address this gap, we have developed a
sequential multistep QC protocol, termed as QComics, aimed
to manage the most important challenges influencing data
quality, including the correction of background noise and
carryover, detection of gradual signal drifts and “out-of-
control” measurements, dealing with missing values and truly
absent data, detection and removal of outliers, monitoring of
sample quality markers to address preanalytical errors, and
overall data quality assessment. This tool generates easily
interpretable outputs in the form of figures (e.g., Figures 2−4)
and tables (e.g., tabulated RSD estimations), which could be
annexed to scientific publications for consistent reporting of
the data quality. Although it was initially designed for MS-
based metabolomics, it should be noted that QComics can also
be used to manage other omics and MS data. In this sense, we
would like to stress that some features of this QC protocol
have successfully been applied in recent metabolomics and
metallomics studies,43−50 which highlights its reliability to deal
with complex and heterogeneous data. Therefore, we strongly
believe that QComics will facilitate the implementation of good
QC practices, at both application and reporting levels, and thus
become a gold standard in metabolomics research.
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