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Abstract

Impaired glucose tolerance (IGT) and β-cell dysfunction in insulin resistance associated with 

obesity lead to type 2 diabetes (T2D). Glucose-stimulated insulin secretion (GSIS) from β-cells 

occurs via a canonical pathway that involves glucose metabolism, ATP generation, inactivation 

of KATP channels, plasma membrane depolarization, and increases in cytosolic concentrations 

of [Ca2+]c. However, optimal insulin secretion requires amplification of GSIS by increases 

in cyclic adenosine monophosphate (cAMP) signaling. The cAMP effectors protein kinase A 

(PKA) and exchange factor activated by cyclic-AMP (Epac) regulate membrane depolarization, 

gene expression, and trafficking and fusion of insulin granules to the plasma membrane for 

amplifying GSIS. The widely recognized lipid signaling generated within β-cells by the β-isoform 

of Ca2+-independent phospholipase A2 enzyme (iPLA2β) participates in cAMP-stimulated insulin 

secretion (cSIS). Recent work has identified the role of a G-protein coupled receptor (GPCR) 

activated signaling by the complement 1q like-3 (C1ql3) secreted protein in inhibiting cSIS. In 

the IGT state, cSIS is attenuated, and the β-cell function is reduced. Interestingly, while β-cell-

specific deletion of iPLA2β reduces cAMP-mediated amplification of GSIS, the loss of iPLA2β in 

macrophages (MØ) confers protection against the development of glucose intolerance associated 

with diet-induced obesity (DIO). In this article, we discuss canonical (glucose and cAMP) and 

novel noncanonical (iPLA2β and C1ql3) pathways and how they may affect β-cell (dys)function 

in the context of impaired glucose intolerance associated with obesity and T2D. In conclusion, 

we provide a perspective that in IGT states, targeting noncanonical pathways along with canonical 

pathways could be a more comprehensive approach for restoring β-cell function in T2D.

Introduction

Glucose is the major in vivo regulator of insulin secretion from the pancreatic islet β-cells. 

Elevations in circulating levels of glucose prompt increased transport of glucose into the 

β-cells, where it enters the glycolytic pathway. Second messengers derived during the 
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metabolism of glucose signal through multiple pathways to trigger the exocytosis of insulin 

from β-cells to affect a return to a euglycemic state. With obesity and/or type 2 diabetes 

(T2D), there is a progressive defect in β-cell function to the extent that insulin release is 

insufficient to control blood glucose levels optimally. A primary defect in these individuals 

is the inability of the β-cells to respond to glucose.

Molecular mechanisms contributing to glucose-stimulated insulin secretion (GSIS) from β-

cells have been described in the context of well-characterized canonical pathways. These are 

initiated by the transport of glucose into the β-cells, followed by the metabolism of glucose, 

leading to adenosine 5′-triphosphate (ATP) generation, inactivation of the KATP channels, 

and increases in [Ca2+]c, triggering insulin exocytosis. It has long been recognized that to 

achieve optimal insulin secretion, cyclic adenosine monophosphate (cAMP) generation and 

cAMP-mediated activation of downstream pathways that transduce signals to the plasma 

membrane and nucleus levels are integral to the amplification of GSIS. As such, cAMP 

might be regarded as a nexus through which various factors can modulate insulin secretion, 

ipso facto, β-cell function.

Ongoing studies of β-cell function during the healthy and diseased states continue to 

reveal additional pathways or modulators of GSIS. These may be considered to encompass 

noncanonical pathways that have important roles in the overall secretory function of β-cells. 

It has long been recognized that lipid signaling generated within the β-cells through 

activation of the β-isoform of Ca2+-independent phospholipase A2 enzyme (iPLA2β) 

participates in GSIS. More recent work has provided evidence for a reciprocal impact of 

a β-cell secreted protein, complement 1q like-3 (C1ql3), on β-cell function. Intriguingly, 

both iPLA2β and C1ql3 signaling intersect with the cAMP amplification pathway. In this 

article, we discuss canonical and novel noncanonical pathways involving iPLA2β and C1ql3 

and suggest how they may converge to affect β-cell (dys)function and modulate glucose 

intolerance in obesity and T2D.

Canonical Mechanism for Insulin Secretion

Biphasic GSIS

In response to elevations in circulating glucose concentrations, pancreatic islet β-cells 

secrete insulin. Glucose enters the cells via the plasma membrane transporter Glut2 in 

rodents or Glut1 in humans. It is rapidly metabolized by oxidative glycolysis to increase 

the ratio of ATP to adenosine diphosphate (ADP). Elevations in the intracellular ATP 

levels promote the inhibition of ATP-sensitive potassium channels (KATP), leading to 

depolarization of the plasma membrane. Consequently, voltage-dependent Ca2+ channels 

(VDCC) open to permit Ca2+ influx, facilitating the formation of the soluble N-

ethylmaleimide-sensitive factor attachment receptor (SNARE) protein complex-dependent 

fusion of insulin granules to the plasma membrane. This triggering of the exocytotic process 

releases a short but robust burst of insulin for the first 10 min of glucose stimulation (16, 

158, 395). This is referred to as the early phase of the biphasic glucose response. During this 

early phase, the fusion of insulin granules primarily occurs from the readily releasable pool 

(RRP) of predocked granules located within 100 to 200nm of the plasma membrane (59, 

289, 372). Subsequently, a sustained second phase of insulin secretion persists for several 
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hours with relatively reduced insulin secretion rates. During this sustained phase, insulin 

granules from the storage pool present in the cytoplasm distal to the plasma membrane 

are recruited and undergo plasma membrane fusion (372). These granules, referred to as 

newcomers, undergo fusion mainly via two modes of action: “short dock” or “no dock.” 

The short-dock newcomer insulin granules traffic to the plasma membrane and undergo 

docking before fusion, whereas no-dock newcomer insulin granules are “fast-release” and 

do not require docking before undergoing fusion. In addition to the predocked granules, the 

fusion of newcomer granules contributes partly to the insulin released in the early phase 

(238, 251, 311). The burst of insulin released in the early phase is critical for priming 

the skeletal muscle for sustained, long-term insulin-dependent glucose clearance. During 

the development of impaired glucose tolerance (IGT), typically associated with insulin 

resistance due to obesity, a reduction of early-phase insulin secretion occurs. In T2D, insulin 

secretion from both early and sustained phases is severely reduced. Overall, reduced GSIS is 

associated with IGT (18, 148, 186, 245, 250, 261, 311, 372).

Triggering and amplifying pathways of GSIS

Glucose metabolism generates signals for triggering and amplifying pathways in insulin 

secretion (Figure 1). The triggering pathway involves increases in [Ca2+]c, which directly 

contribute to the exocytosis of insulin granules (151, 153, 341). Multiple factors or 

mechanisms can contribute to the increases in β-cell [Ca2+]c (34, 39, 87, 95, 268, 290, 

295, 387). However, the best elucidated mechanism for the influx of Ca2+ is the opening 

of the VDCC in response to depolarization of the plasma membrane potential achieved 

by the closure of KATP channels. The KATP channels are complex structures comprising 

pore-forming Kir6.2 and regulatory sulfonylurea receptor 1 (SUR1) subunits (198, 223). 

Nutrient signaling effectors such as ATP generated during glycolysis or nonnutrient insulin 

secretagogues such as sulfonylureas (SUs) bind to the SUR1 or Kir6.2, causing the closure 

of KATP channels, which leads to membrane depolarization, increases in Ca2+ influx, and 

triggering of insulin secretion.

While there is ample evidence for the role of KATP in GSIS, the ability of glucose to 

amplify insulin secretion was demonstrated using a pharmacological bypass of the KATP 

channels when [Ca2+]c was clamped at an elevated level. This was achieved by treating 

islets with diazoxide in combination with KCl. Diazoxide binds directly to SUR1 to keep 

the KATP channels open, while KCl affects the depolarization of the plasma membrane. 

In this experimental paradigm, even when KATP channels were held open by diazoxide, 

KCl treatment caused plasma membrane depolarization, leading to increased [Ca2+]c and 

insulin secretion. Adding glucose in the presence of KCl and diazoxide resulted in higher 

increases in insulin secretion with minimal or no further increases in [Ca2+]c compared to 

the KCl and diazoxide treatment (91, 92, 116). Another study (91, 92, 116) showed that 

treating islets with high concentrations of SUs (e.g., tolbutamide), which bind to and elicit 

the closure of KATP channels, caused the clamping of β-cell [Ca2+]c at elevated levels, 

leading to increases in insulin secretion. The addition of glucose caused further increases in 

insulin secretion without affecting [Ca2+]c levels. These studies demonstrated the presence 

of an amplifying pathway in GSIS that is independent of KATP channels and does not require 

further increases in [Ca2+]c, suggesting that the amplifying pathway essentially increases 
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the efficacy of [Ca2+]c in insulin secretion. Henquin et al. (121) evaluated the physiological 

significance of the amplifying pathway by assessing insulin secretion in response to glucose 

where [Ca2+]c is allowed to fluctuate freely. Under these conditions, a sigmoidal relationship 

was observed between the [glucose]-dependent curves, where the insulin secretion-response 

curve was shifted to the right of [Ca2+]c. This implies that signals, in addition to [Ca2+]c, 

are also generated by glucose that contribute to insulin secretion (114, 121). Complementing 

these studies, islets from mice with deletion of SUR1 or Kir6.2 (inactivation of KATP 

channel) also exhibited plasma membrane depolarization and increases in [Ca2+]c and 

insulin secretion (231, 241, 279). Furthermore, plasma membrane depolarization-mediated 

increases in [Ca2+]c were observed upon the deletion of KATP channels, implicating a role 

of transducers other than the KATP channels in increasing [Ca2+]c and insulin secretion. 

The amplifying pathway contributes approximately 50% to GSIS (118) during the early 

and sustained phases of insulin secretion. While its physiological importance in mouse and 

human islets (337) is accepted, the underlying molecular mechanisms are not completely 

elucidated.

cAMP signaling in stimulus-coupled insulin secretion

In addition to an increase in [Ca2+]c, which is required for triggering insulin secretion, 

cAMP functions as a key second messenger to amplify GSIS. Increased β-cell production of 

cAMP facilitates the exocytosis of insulin in both the early and sustained phases of secretion 

(12, 257, 341) and contributes to whole-body glucose homeostasis (29, 75, 98, 126, 138, 

173, 176, 177, 310, 311, 347). The major effects of cAMP in promoting insulin release 

are attributed to plasma membrane depolarization, [Ca2+]c signaling, recruitment of insulin 

granules to the plasma membrane, and activation of the exocytosis machinery (12) (Figure 

2).

The Gαs coupled G-protein coupled receptor (GPCR) agonists such as glucagon, glucose-

dependent insulinotropic peptide (GIP), glucagon-like peptide-1 (GLP1), pituitary adenylyl 

cyclase (AC) activating polypeptide (PACAP), and adrenocorticotropic hormone (ACTH) 

increase GSIS by increasing cAMP via activation of ACs, which convert ATP to cAMP. 

Increased cAMP signaling accounts for approximately 60% to 70% of total insulin output 

from β-cells in response to oral glucose stimulation (75, 176). In contrast, reduced 

cAMP signaling and inhibition of insulin secretion by somatostatin, epinephrine (130), 

neuropeptide Y (NPY), and EP3 occur through the activation of Gi-coupled coupled 

receptors (GPCRs) (65, 259). Relatively less is known about GPCRs that inhibit cAMP 

production and GSIS. Kimple and Gannon recently assessed the role of cAMP-inhibitory 

(i.e., Gi-coupled) prostaglandin E2 (PGE2)-EP3 receptor (EP3) signaling, and they reported 

that PGE2 production and secretion, and EP3 expression are up-regulated in islets isolated 

from T2D mice and humans (174, 300). Consequentially, GSIS was mitigated, and the 

maximal potentiating effect of GLP1R ligands on the process was blunted. The EP3 

receptor is among a small group of inhibitory GPCRs whose role in β-cells has been 

well-characterized (36, 37, 47, 174–176, 243, 293, 297, 298, 300, 352, 382). Additionally, 

evidence of increased cAMP levels in response to glucose was obtained based on studies 

where Ca2+ was clamped (75) or by using a fluorescence resonance energy transfer 

(FRET)-based cAMP indicator (172). Moreover, a requirement of cAMP in insulin secretion 
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was demonstrated using a membrane-permeable antagonist of cAMP, para-acetoxybenzyl 

(pAB) ester prodrug (304). The mechanisms by which exposure of islets to high glucose 

concentrations promotes increases in cAMP levels and how increases in cAMP signaling 

via activation of soluble and membrane-bound ACs function in amplifying insulin secretion 

require further clarification.

The Gαs protein is critical for optimal β-cell function, and the ablation of Gαs in mice leads 

to impaired β-cell proliferation, reduced insulin gene expression, and glucose intolerance 

(389). It is known that Gαs activates ACs and potentiates both phases of insulin secretion 

(267). The ACs are localized in the membrane (AC1–AC9) and cytosol (referred to as 

soluble AC), AC10 (62, 88, 102, 179, 347). Most AC isoforms are expressed in pancreatic 

islets and insulinoma cells (102, 192), and their function is affected by [Ca2+] (50, 62, 365), 

providing a link between cAMP and Ca2+ signaling. The Ca2+-activated (AC1 (179), AC3 

(308), AC6 (192), AC8 (62, 69)) and Ca2+-insensitive AC9 (256) have regulatory functions 

in rodent mouse β-cells (347). In human β-cells, AC5 was reported to regulate GSIS (124, 

192, 397). The soluble AC is activated by HCO3
− (derived from CO2 generated during 

glycolysis) and Ca2+ and acts as a potential sensor of ATP generated during glycolysis 

(128). Its activation has been reported to increase cAMP oscillations and is implicated in 

increasing insulin secretion in response to high glucose (75). Overall, activated ACs increase 

cAMP levels, which causes the amplification of insulin secretion. Another class of enzymes, 

the phosphodiesterases (PDEs), decrease intracellular (cAMP) by hydrolyzing cAMP to 5′ 
AMP, leading to a reduction in insulin secretion (reviewed in (88, 171, 346)).

Protein kinase A (PKA) is an effector of cAMP

The PKA is a well-characterized serine/threonine kinase and is comprised of two regulatory 

(RI and RII) and catalytic subunits each. The binding of cAMP to binding sites in the R 

subunits of PKA leads to conformational changes in the R subunits, causing the release 

of the catalytic subunits to confer kinase activity. Agonists of PKA amplify GSIS and 

tolbutamide-stimulated insulin secretion by augmenting the actions of [Ca2+]c on insulin 

exocytosis (120). The alpha (α) isoform of the type I R-subunit of PKA is abundantly 

expressed in mouse and human islets (136, 260, 319). Ablation of RIα from β-cells 

increased GSIS and glucose tolerance (136, 330), demonstrating its inhibitory function. 

Consistently, mutations identified in RIα caused increases in insulin release from human 

β-cells (330), illustrating its relevance in human β-cell function. Moreover, expressing a 

constitutively active catalytic subunit of PKA in mouse β-cells promotes increases in both 

phases of GSIS (157). Intriguingly, these genetic alterations of PKA that lead to increases 

in insulin secretion do not induce hypoglycemia, highlighting the importance of cAMP/PKA 

signaling and suggesting that it is a viable target for developing therapeutic drugs to improve 

insulin secretion in obesity and T2D (136).

The PKA-dependent phosphorylation of VDCC (12, 165), KATP (201), and Kv (191) 

channels affect stimulus-coupled insulin secretion. Voltage-dependent K+ currents are 

modulated by delayed rectifying K+ (Kv) channels that repolarize the action potential 

in the plasma membrane (39). The Kv2.1 and Kv2.2 are major channel types in both 

mouse and human β-cells, and their inactivation increases insulin secretion (143, 200). PKA 
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promotes the inhibitory effects of cAMP on the Kv channels (191, 206). This prolongs 

plasma membrane depolarization, increasing [Ca2+]c and insulin secretion. In addition to Kv 

channels, PKA has been implicated in inhibiting the KATP channels in an ADP-dependent 

manner in response to high glucose (201); the cellular ADP levels are low in β-cells 

in response to high glucose. Under this condition, PKA binds to the Kir6.2 subunit at 

serine-372 or SUR1 subunit at serine-1448 to inhibit KATP channels (25), potentially 

aiding in plasma membrane depolarization and consequently increasing insulin secretion. 

PKA-induced phosphorylation of VDCC, primarily of Cav1.3, and the mobilization of 

internal Ca2+ stores by Ca2+-induced Ca2+ release (CICR) (74, 162) are also implicated 

in insulin secretion (204). While increases in PKA activity are proportional to increases in 

cAMP levels (246), cAMP-elevating agents have no effect in increasing β-cell [Ca2+]c in 

the absence of stimulatory concentrations of glucose. These observations suggest that the 

potentiating effects of cAMP/PKA require triggering levels of [Ca2+]c, which facilitate the 

PKA-mediated amplification of insulin secretion.

The PKA is also implicated in increasing the sensitivity of [Ca2+]c for insulin exocytosis 

by acting more distally to regulate β-cell [Ca2+]c and by sensitizing the effects of Ca2+ on 

the insulin secretory machinery (325, 369). This is achieved by increasing RRP of insulin 

granules and the trafficking of insulin granules to the plasma membrane (123). Several 

proteins have been identified as targets of PKA; however, only a few in the secretory 

machinery, such as synaptotagmin-7 and snapin, upon phosphorylation, have been found 

to directly regulate the fusion of insulin granules to the plasma membrane during insulin 

exocytosis. Synaptotagmin-7 is an insulin granule protein that acts as a Ca2+ sensor and 

functions to accelerate the formation of the SNARE complexes (386). PKA-dependent 

phosphorylation of snapin (330) increases its interaction with the SNARE complex proteins 

synaptosomal-associated protein (SNAP25) and vesicle-associated membrane protein 2 

(Vamp2), and of synaptotagmin-7 at serine 103 (386) to increase SNARE complex-mediated 

fusion of insulin granules during insulin exocytosis (330).

Exchange protein activated by cyclic-AMP (Epac2) is an effector of cAMP

The cAMP guanine nucleotide exchange factor (GEF), belonging to the receptor-associated 

protein (Rap) family of small GTPases (99), is the main Epac isoform that regulates insulin 

secretion (126, 167, 192, 247, 254). Epac2 contains a regulatory region with two cAMP 

binding domains and a catalytic region. The binding of cAMP to the regulatory region 

frees the catalytic region for Epac2 function (281). The Epac2 selective analog 8-pCPT-2′O-

Me-cAMP was reported to increase the early and sustained phases of insulin secretion 

from both mouse (163, 167) and human islets (51). Antisense oligonucleotide-mediated 

knockdown of Epac2 decreased incretin-mediated potentiation of insulin secretion by 50%, 

attenuating both phases of insulin secretion from mouse islets (167). Though the Epac2 

analog does not activate PKA or PKA substrates (CREB, cAMP-response element binding 

protein, and kemptide), PKA inhibitors blocked the ability of the Epac2 analog to potentiate 

GSIS, suggesting that PKA has a permissive role in insulin secretion (51). Epac2 has 

a PKA-independent role in potentiating the effects of cAMP on insulin secretion (78, 

283), and mice lacking Epac2 exhibit reduced potentiation of GSIS in response to cAMP 

(316). Furthermore, Shibasaki et al. showed that the cAMP potentiation of the early phase 
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insulin secretion was through Epac2 (316). Elevation of cAMP facilitates the localization of 

Epac2 to the plasma membrane near the insulin granules (11). Moreover, Epac2 clusters are 

present at the docking site for the insulin granules, facilitating priming and exocytosis (11). 

Increases in the early phase of insulin secretion are achieved by Epac2-mediated increase in 

the abundance of RRP (187, 316) and the recruitment of insulin granules from RRP fusion to 

the plasma membrane (101).

A plausible mechanism suggested for the potentiation of insulin secretion by Epac2 

implicates modulation of the fusion of insulin granules to the plasma membrane by 

the small GTPase Rap1, which Epac2 activates in a cAMP-dependent manner (187). 

Subsequently, Rap1 activates phospholipase C-epsilon (PLCε) (328), which contains a 

Rap1-associated domain, allowing activation by cAMP-Epac2-Rap1. The PLCε hydrolyzes 

phosphatidylinositol 4,5-bisphosphate (PIP2) to generate inositol 1,4,5-trisphosphate (IP3) 

and the lipid metabolite diacylglycerol (DAG) (9). As a second messenger, DAG binds 

and activates protein kinase C (317) and insulin granule priming factor Munc13–1 (26) to 

facilitate insulin secretion. Consistently, knockout of PLCε disrupts the ability of the Epac2 

analog to potentiate GSIS (76), further supporting the role of cAMP-Epac2-Rap1-PLCε in 

regulating insulin secretion.

Overall, PKCs potentiate GSIS by regulating cortical actin rearrangement and 

phosphorylation of exocytotic proteins such as synaptotagmin, SNAP25, and Munc18 (key 

for regulating syntaxin-mediated plasma membrane fusion of insulin granules) (183, 351). 

Munc13–1, in turn, binds and activates the insulin granule fusion complex assembly to 

facilitate insulin secretion. Thus, PLCε links cAMP signaling to DAG-mediated potentiation 

of GSIS via PKC and Munc13–1. Additionally, Rab-interacting molecule 2α (Rim2α) has 

been implicated in mediating the effects of Epac2 on insulin secretion, as evidenced by an 

impairment in insulin secretion with Rim2α deletion (392). Rim2α has been reported to 

interact with an insulin granule-associated Rab3 GTPase (76) to regulate the docking and 

priming of insulin granules by interacting with Munc13–1 and the SNARE-core complex 

protein syntaxin to facilitate insulin exocytosis (72, 139). Epac2 interacts with Rim2α in 

a cAMP-dependent and PKA-independent manner (76), and this interaction is required for 

the potentiation of incretins on insulin secretion (167). The distinct roles of Rap1-PLCε 
and Rim2α-Munc13–1 signaling pathways in cAMP-Epac2 regulated potentiation of insulin 

secretion remain to be elucidated.

K+-channels as targets of cAMP signaling

Studies by several groups have also noted a dependence of cSIS on K+-channel activity. 

The SUs are known to bind to the SUR1 subunit of the KATP channels, causing membrane 

depolarization, the influx of Ca2+, increases in [Ca2+]c, and subsequent increases in insulin 

secretion. SUs such as tolbutamide have been reported to bind and activate Epac2 (122, 

394). However, while the interaction between Epac2 and SUs (280, 354) could not be 

confirmed, the ability of tolbutamide to increase insulin secretion was attenuated in Epac2-

null mice (394). These findings support the role of Epac2 in mediating the insulin-promoting 

effects of SUs via the KATP channels (145). Epac2 was found to interact with the SUR1 

subunit of KATP channels (254) and functions by activating the Ras-like small G protein Rap 
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in a cAMP-dependent manner. In β-cells, upon stimulation by SUs, Epac2 activates Rap1 

to facilitate its interaction with PLCε. As expected, the ability of Epac2-specific analogs 

to potentiate GSIS and increase β-cell [Ca2+]c was found to be disrupted in mice lacking 

plasma membrane-associated PLCε (76, 200). These outcomes suggest that Rap1-regulated 

PLCε links Epac2 activation by SUs to Ca2+-dependent exocytosis of insulin (76, 200). In 

addition to the KATP channels, activation of Epac2 inhibits voltage-dependent potassium 

(Kv) channels, thus prolonging the duration of the action potential and causing a delay in 

membrane repolarization, leading to increases in Ca2+ influx and insulin secretion (396). 

However, the molecular mechanism by which Epac2 modulates the activity of Kv channels 

to regulate insulin exocytosis remains to be elucidated. Molecular docking stimulation and 

site-directed mutagenesis analyses have identified that SUs and cAMP cooperatively activate 

Epac2 by binding to cyclic nucleotide-binding domains (340). Mice lacking Epac2 had 

a severe reduction in insulin secretion in response to the combined treatment of incretin, 

GLP1, and SUs (339), suggesting that Epac2 is a critical node that links incretin hormone 

signaling and SUs in β-cells to increases in insulin secretion, thus connecting the triggering 

and amplifying pathways to insulin exocytosis.

cAMP signaling in β-cell adaptation

The development of insulin resistance typically associated with obesity triggers a 

compensatory β-cell adaptive response, which involves altered insulin secretory capacity 

and increased β-cell mass. Alterations in these attributes evoke responses in the β-cells that 

culminate in the increased net output of insulin into the plasma to maintain euglycemia 

during an insulin-resistant state. When β-cells are unable to compensate completely (i.e., 

fail) to meet the increased demand for insulin due to genetics and/or environmental 

factors in the face of insulin resistance, glucose intolerance increases and leads to the 

development of an IGT state, which initially results in mild hyperglycemia and then to 

elevated hyperglycemia leading to T2D development.

The compensatory β-cell response to insulin resistance ensures that sufficient insulin is 

released from the pancreas into the plasma to maintain euglycemia. Moreover, complete 

compensation involves increased plasma insulin levels with normal glycemia, whereas, in 

partial compensation, plasma insulin levels are elevated with mild hyperglycemia. In these 

compensating phases, the increases in plasma insulin levels are not particularly associated 

with increases in the secretory capacity of β-cells but are attributed to increases in the β-cell 

mass (291). Details on the role of β-cell mass during compensation are thoroughly discussed 

elsewhere (52, 141, 203, 234, 375).

Multiple studies have shown that early β-cell dysfunction occurs with the onset of 

insulin resistance in the pathogenesis of T2D. As insulin resistance continues to increase, 

progressive β-cell dysfunction contributes to hyperglycemia in T2D (81, 86, 147, 233, 

331, 364, 379). This has been shown in populations such as Japanese Americans and 

Asian Americans (331, 364), who are generally not obese, and in Pima Indians (379), 

where insulin secretion defects occur early in T2D progression. Furthermore, groups with 

increased risk of T2D, such as normoglycemic first-degree relatives of individuals with T2D 

(54, 263), women with polycystic ovary syndrome (73), or with a history of gestational 
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diabetes (373, 388) were shown to have early onset of β-cell dysfunction. In 1987, Nesher 

et al. showed that individuals with T2D have reduced pancreatic responsiveness without 

differences in peripheral insulin sensitivity compared to obese nondiabetic individuals (242). 

DeFronzo’s group assessed β-cell function in relation to peripheral insulin sensitivity in 

lean, obese normal glucose tolerant, obese IGT, and obese T2D individuals. They reported 

that obese individuals with normal glucose tolerance have significantly reduced β-cell 

function compared to healthy individuals (4, 5, 60, 85). They further demonstrated that 

IGT reduced β-cell function by nearly 70%. These studies show that by the time a diagnosis 

of T2D is made, patients have significantly reduced β-cell function. Prentki and Khan 

corroborated these observations in studies performed using high-fat diet-induced obese 

(DIO) mice (135, 261). Their work showed that the DIO mice exhibited hyperinsulinemia, 

impaired glucose tolerance, with reduced ex vivo islets insulin secretion in response to 

glucose compared to mice on the standard chow diet (135, 261). However, another study 

reported increases in GSIS in islets isolated from DIO mice compared to controls (96). It is 

essential to determine the causes for the reductions in early and progressive β-cell functions 

with IGT during the compensation phase to delineate the mechanisms contributing to T2D. 

This will facilitate the development of more targeted and effective therapeutics for T2D.

GLP1 incretin contributes to β-cell adaptation by increasing cAMP signaling to facilitate 

β-cell proliferation and differentiation while decreasing apoptosis (149, 166). Studies in 

rodents reveal that activation of the cAMP downstream effector PKA causes translocation 

of the transcription factor CREB and transducer of regulated CREB activity-2 (TORC2) 

into the nucleus and induction of genes such as MafA1, Nkx6.1, Pdx1, recognized to 

impact β-cell mass and function (8, 21, 30, 366, 368). Exogenous treatment of GLP1 or 

GLP1 agonists in mice increases insulin secretion and glucose clearance (315), and genetic 

ablation of GLP1R or pharmacological blockage of GLP1R attenuates insulin secretion 

and glucose clearance (292, 305). The GLP1R signaling is known to be dysfunctional in 

T2D (53, 70, 180, 282, 353). Moreover, the sensitivity of GLP1 for β-cells is reduced in 

obese and T2D, compared to healthy individuals (20), and is attributed to reduced cAMP 

signaling. The β-cell cAMP levels are reduced in hyperglycemia and T2D, and islets from 

individuals with IGT or T2D have reduced early and sustained phases of GSIS and a blunted 

response to GLP1 (282, 353). Increasing cAMP signaling improves overall β-cell function 

in obesity and T2D and enhances the ability of GLP1 to improve β-cell dysfunction in T2D 

(348). Also, injecting GLP1 increased β-cell mass and insulin secretion in DIO mice treated 

with streptozotocin (135). These studies suggest that GLP1/cAMP signaling has beneficial 

effects in improving β-cell function and β-cell mass. However, the underlying molecular 

mechanisms that reduce GLP1/cAMP signaling in T2D require clarification.

The reduction in the early phase of insulin secretion indicates β-cell dysfunction is observed 

in insulin-resistant prediabetic individuals wherein the cellular insulin content is still not 

altered (78). Treatment with GLP1 receptor agonists can completely restore this secretory 

defect in prediabetes, implicating that GLP1 potentially functions by improving glycolysis-

generated ATP-mediated closure of the KATP channels (78). This is supported by the 

findings that GLP1 cannot potentiate insulin secretion in mice lacking SUR1 and Kir6.2 

subunits of the KATP channels (230, 239, 319). Conversely, neonatal diabetes patients 

harboring a gain-of-function mutation in the SUR1 have attenuated GSIS due to overactive 
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KATP channels (38), whereas treatment with GLP1R agonists potentiated GSIS in these 

patients. The Epac2 and PKA are effectors of GLP1/cAMP signaling that inhibit KATP 

channels; Epac2 by enhancing the ability of ATP to inhibit the Kir6.2 (164), and PKA 

by reducing the stimulatory actions of Mg2+-ADP at SUR1 (201). Thus, it is possible 

that GLP1/cAMP, via its effectors Epac2 and PKA, directly inhibits KATP channels. 

However, the molecular mechanism by which an increase in GLP1R signaling modulates 

KATP channel activity is not completely elucidated. In addition to the KATP channels, 

GLP1 signaling also inhibits the delayed rectifier voltage-dependent K+ current (Kv) (217), 

prolonging the duration of the action potential, and thereby increasing the influx of Ca2+ by 

VDCC and enhancing insulin secretion.

The role of Epac2 in regulating insulin secretion from β-cells has been demonstrated in 

insulin resistance and obesity (127). Ablation of Epac2 in DIO mice was reported to increase 

body weight and reduce glucose intolerance and insulin secretion compared to mice on 

the control diet (137, 329). Furthermore, the glucose-lowering effects of SUs and GLP1 

agonist liraglutide treatment were attenuated in Epac2−/− DIO mice. This suggests a role for 

Epac2 in potentiating insulin secretion in response to the combination treatment of SU and 

liraglutide in T2D (339). In addition, it was found that the disruption of PKA inhibitor B 

(PKIB) gene (a potent inhibitor of PKA catalytic activity) improved glucose sensitivity and 

GSIS in DIO mice, suggesting that PKA potentiates insulin secretion (30). These studies 

show that cAMP/Epac2 and cAMP/PKA are beneficial in potentiating insulin secretion in 

obesity and T2D. However, the mechanisms by which Epac2 and PKA mediate the effects of 

GLP1/cAMP signaling on the RRP, priming of insulin granules, Ca2+ sensitivity, and insulin 

exocytosis, and how these attributes are altered in obesity and T2D remain to be elucidated.

Noncanonical Mechanisms for cSIS

Contribution of lipid signaling to insulin secretion

It is well-recognized that lipids, in particular eicosanoids and sphingolipids, participate in 

inflammatory processes. Here, we discuss their identified roles in β-cell secretory function 

and how modulation of their signaling can impact GSIS, in the context of obesity and T2D.

Fatty acids

GSIS is potentiated by nonesterified fatty acids (NEFAs), with the potency correlating 

directly with chain length and desaturation of the fatty acid (220, 252, 265, 333). 

The NEFAs can promote insulin secretion at basal glucose concentrations (129) and 

are particularly critical for insulin secretion in healthy nonobese individuals following 

prolonged fasting (67). During periods of short starvation, unsaturated fatty acids can 

stimulate, whereas saturated short/medium chain fatty acids decrease insulin secretion (332). 

It has been suggested that this may be related to the modulation of intercellular signaling 

that influences higher oxygen consumption rate (48), greater activation of FFAR1/GPR40 

signaling (48), or increased triglyceride esterification (77). Consistently, GSIS is enhanced 

by diets enriched in monounsaturated fatty acids (MUFAs) or PUFAs and diminished by 

diets enriched in saturated fatty acids (262). Studies in the BRIN BD11 insulinoma cell line 

suggest that arachidonic acid (AA) stimulates β-cell proliferation and insulin secretion and 
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that these effects are mitigated by hyperglycemia or the saturated fatty acid palmitate, as in 

T2D (66).

In addition to the ω-6 AA (C20:4 double bonds), other polyunsaturated fatty acids 

(PUFAs) hydrolyzed from the sn-2 position of membrane glycerophospholipids include the 

long-chain ω-3 polyunsaturated eicosapentaenoic acid (EPA, C20:5) and docosahexaenoic 

acid (DHA, C22:6). Through islet lipid enrichment studies, EPA and DHA have been 

recognized to provide signaling to improve β-cell secretion under T2D, obesity, or insulin 

resistance states. In an early study, EPA enrichment was found to prevent lipotoxicity-

induced activation of the uncoupling protein-2 (154), which can recover ATP production 

and preserve insulin secretion (168). Analogously, a diet enriched with both EPA and 

DHA reduced palmitate-mediated decreases in GSIS and apoptosis by reducing palmitate-

induced increases in β-cell reactive oxygen species (207). Concomitantly, a high-fat diet 

(HFD) enriched in EPA mitigated insulin resistance in a DIO mouse model (205). In an 

elegant study, supplementing the diet of BTBR Leptinob/ob mice with EPA was reported 

to decrease the production of PGE2 from AA and increase the production of the EPA 

metabolite PGE3, which is 10-fold less potent in reducing GSIS when compared to PGE2 

(244, 284). Moreover, EPA also decreased the expression of the PGE2 receptor, EP3. Fewer 

studies have been performed with DHA alone. Nevertheless, DHA supplementation has 

been reported to reduce insulin resistance in obese humans (2). Moreover, EPA and DHA 

index correlated positively with increased insulin sensitivity in obese men (10). Interestingly, 

overweight obese and diabetic women, but not men, had lower plasma levels of EPA 

and DHA (3), implying a sex-difference association of these ω-3 fatty acids with T2D. 

The protective effects of these ω-3 fatty acids in obesity and T2D were reasoned to be 

related to reductions in AA levels that occur with EPA and/or DHA supplementation. 

Furthermore, EPA and DHA potentially function to alter membrane structure, fluidity, and 

signal transduction, which are beneficial for β-cell function (13, 156). Also, EPA and DHA 

are thought to signal through the GPCR (GPR)120 receptor (249) to induce GLP-1 secretion 

from enteroendocrine L-cells to promote insulin secretion (27). In islets, GPR120 expression 

has been identified in β-cells, and lipid agonists of GPR120 were found to promote insulin 

secretion through inhibition of somatostatin secretion, and GPR120 signaling was found to 

be impaired in the db/db mouse (71). An ω-3 metabolite of EPA, 5-hydroxyicosapentaenoic 

acid (5-HEPE), has been reported to enhance GSIS and cAMP generation (181) by signaling 

through the GPR119 receptor, which is predominantly expressed in β-cells (253).

Eicosanoids

Metabolism of AA in β-cells generates oxidized bioactive lipids (Figure 3) that have 

been implicated in insulin secretion. Forty years ago, studies identified an inhibitory 

effect of PGE2 on GSIS (229, 287, 306). This was later attributed to PGE2 signaling 

via the EP3 receptor to inhibit c-Jun N-terminal kinase (JNK1) activation of AKT serine/

threonine kinase 1 (AKT) phosphorylation leading to downstream dephosphorylation of the 

transcription factor forkhead box protein O1 (FOXO1), facilitating its entry into the nucleus 

to dysregulate insulin synthesis and GSIS (226, 227). Alternatively, reduced GSIS has 

also been associated with EP3 receptor signalling-mediated decreases in cAMP production 

(47, 174), and inhibiting EP3 receptor signaling improves insulin secretion from islets of 
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T2D donors (174). Reports along these lines have led to further exploration of targeting 

EP3 receptors to counter β-cell dysfunction and the progression of T2D (243). Similarly, 

PGD2 has been reported to reduce GSIS by signaling through the PGD2 receptor GPR44/

DP2, highly expressed in human β-cells (202), to inhibit cAMP production (1). In T2D, 

GPR44/DP2 expression is increased in islets (115), and while in vitro inhibition of this 

receptor increased GSIS from human islets, short-term in vivo inhibition was without affect 

(326). Additionally, cytokines contribute to β-cell dysfunction in T2D (68, 327, 378). 

In particular, interleukin-1β (IL-1β) is elevated in islets from T2D donors and induces 

cyclooxygenase 2 (COX2), leading to increased production of PGE2 and EP3 receptor 

expression, with an overall effect of amplifying PGE2-EP3 signaling in the β-cells (56, 255, 

350) and reducing GSIS. Consistently intervening with IL-1β receptor signaling improves 

GSIS (188, 219). Further, PGE2 generated through the elevated COX2 expression in human 

islets from T2D donors decreases the expression of genes involved in β-cell function, such 

as Pdx1, Nkx6.1, and MafA1 (371). This raises the possibility of dysregulated metabolism 

of AA to PGE2 in T2D islets. Further, PGE1, which is derived from dihomo-γ-linolenic 

acid (DGLA) and signals through EP2 receptor, has been reported to decrease in vitro and 

in vivo GSIS (229, 285). A potential mechanism for this is the PGE1-mediated activation 

of the G-protein Gz to inhibit β-cell endocytosis, which is an integral component of the 

exocytosis-endocytosis process that needs to be maintained in equilibrium to preserve 

β-cell volume for optimal β-cell function (400). In contrast to the above-discussed PGs, 

prostacyclin (prostaglandin I2, PGI2) through PGI2 receptor (IP)-GPCR signaling induces 

adenyl cyclase to increase the production of cAMP, which directly activates Epac2 to induce 

GSIS (105). The potential of PGI2 analogs in mitigating glucose intolerance and insulin 

resistance associated with T2D has also been identified (296). Collectively, these studies 

suggest that several different PGs may serve as therapeutic targets to improve β-cell function 

in T2D.

HETEs

Other metabolites of AA, such as hydroxyeicosatetraenoic acids (HETE), have also been 

shown to have profound effects on GSIS. These include 12-HETE and 20-HETE generated 

by lipoxygenases (LOX) and cytochromes P450 (CYP4A & CYP4F), respectively. Islets 

from T2D donors are reported to have increased expression of 12-LOX (140). Consistently, 

the deletion of 12-LOX in a rodent model of T2D is associated with reductions in 12-HETE, 

preservation of GSIS (345), and inhibition of insulin resistance associated with DIO (248, 

307). Similarly, increases in 20-HETE appear to decrease GSIS, and rescue of GSIS is 

observed with the inhibition of 20-HETE-induced decrease in Glut2 (393). Moreover, 

the production of epoxyeicosatrienoic acids (EETs) (209), which promote GSIS (83), by 

CYP2C & CYP2J, also modulates the effects of 20-HETE on GSIS. In contrast to these 

studies, 20-HETE has been suggested to provide a positive feedback regulation of GSIS by 

signaling through the Gq/G11-coupled free fatty acid receptor 1 (FFAR1) expressed highly 

in β-cells (142, 185, 286, 309) to facilitate insulin exocytosis. Interestingly, though the 

basal levels of 20-HETE in islets from multiple rodent models of T2D and human T2D 

donors were increased, under conditions of GSIS, the levels of 20-HETE were reported to 

be decreased, and the addition of selective FFAR1 agonists failed to rescue GSIS in the T2D 

islets (356). This suggested impairment in the positive regulatory loop on GSIS mediated by 

Ramanadham et al. Page 12

Compr Physiol. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



20-HETE in T2D. Human islet FFRA1 mRNA levels were consistently found to correlate 

positively with the insulinogenic index (349).

EETs

The CYP2-catalyzed metabolism of AA leads to the generation of EETs, which are rapidly 

metabolized to dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide hydrolase (sEH). 

Among the EETs, 5,6-EET has been reported to induce insulin secretion (83). However, 

all isomers of EETs in the plasma of humans correlated positively with insulin sensitivity 

(90). In a model of KATP-independent insulin secretion, imidazoline-induced GSIS was 

reported to occur through AA-derived EET generation (314). Further, because of their 

rapid degradation, the potential beneficial effects of EETs have mostly been gleaned from 

examining the effects of inhibiting or reducing the expression of sEH. Luo et al. were the 

first to demonstrate an improvement of in vivo insulin secretion and a reduction in blood 

glucose levels of streptozotocin diabetic mice with inhibition or deletion of sEH, and an 

increase in GSIS with sEH inhibition (209). Similar manipulation of sEH in a DIO model 

also reduced plasma glucose levels and mitigated insulin resistance development (210). In 

this regard, the expression of CYP2 isoforms was decreased, sEH expression increased 

with obesity in the Zucker rat model (399), and the knockout of CYP2C44 decreased 

glucose tolerance and insulin sensitivity (90). Consistently, CYP2J gene therapy resulted 

in increases in EET levels and reversal of insulin resistance in T2D rodent models (db/db 
and fructose-treated mice) (390). Further, deletion of sEH in db/db mice markedly reduced 

blood glucose levels (131). The effects of EETs in ameliorating T2D are likely related to the 

prevention of decreases in insulin receptor signaling and phosphorylation of AMP-activated 

protein kinases (AMPKs) in a variety of peripheral tissues (390). The expression of sEH 

has been found to increase in islets from mice and macaque maintained on HFD and from 

T2D donors (182). In the same study, sEH inhibition, genetic reduction, and EET treatment 

were demonstrated to potentiate GSIS and reduce HFD-induced β-cell death. At the β-cell 

level, the positive impact of sEH inhibition on GSIS appears to be due to the potentiation 

of KATP-independent amplification of insulin secretion involving cAMP signaling (117). 

Consistently, sEH inhibition or genetic reduction increased glucose-stimulated ATP and 

cAMP levels in the islets (182). Given these observations, modulating sEH activity is under 

consideration as therapy for many disorders, including obesity and diabetes (107).

Sphingolipids (SLs)

Another major class of lipids implicated in modulating GSIS and T2D is the SLs (6, 

336). Among them, ceramides induce insulin resistance (32, 338) and decrease insulin 

gene transcription (103) and are reported to be elevated in T2D (6, 108). In contrast, 

decreasing ceramide synthesis promotes insulin sensitivity (125, 398) and β-cell survival 

(193, 195). Moreover, elevations in dihydroceramides have been reported in the plasma of 

subjects that eventually developed T2D (380). Intriguingly, inhibiting de novo production 

of hypothalamic ceramides in the obese Zucker T2D model reduced glucose intolerance 

and enhanced GSIS (45). In contrast, the ceramide metabolite sphingosine-1-phosphate 

(S1P), which has the opposite effects of ceramides (190, 318), promotes GSIS by activating 

sphingosine kinase 2 (SK2) GPCR (46), the predominant SKR expressed in β-cells (225). 

Ramanadham et al. Page 13

Compr Physiol. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Other ceramide-derived SLs have also been suggested to affect GSIS positively or negatively 

(35).

Phospholipases A2-derived lipids and β-cell function

Phospholipases A2 (PLA2s)—The family of phospholipases A2 (PLA2s) catalyzes 

the hydrolysis of the sn-2 substituent from the glycerol backbone of membrane 

glycerophospholipids to yield a free fatty acid and a lysophospholipid (96). The major 

constituents of the PLA2 family are (s)ecretory, (c)ytosolic, and Ca2+-(i)ndependent PLA2s, 

with the iPLA2s being the most recent family of PLA2s described and characterized (41, 

64). Ca2+ at mM and μM concentrations are essential for the activity of sPLA2s and the 

membrane association of cPLA2, respectively. In contrast, the iPLA2s mobilize and manifest 

activity in the absence of Ca2+ (270). Among the iPLA2s, the cytosolic iPLA2, designated 

Group VIA iPLA2 or iPLA2β, was discovered in 1997 (22, 213, 344) and was soon followed 

by the description of the membrane-associated iPLA2γ (Group VIB iPLA2) in 2002 (221). 

Other iPLA2s (iPLA2δ, iPLA2ε, iPLA2ζ, and iPLA2η) (42, 146, 301, 367) have since been 

described but remain to be characterized in detail. Several members of the sPLA2 family 

have been demonstrated to negatively (group X (322) and V (321)) or positively (IB (276)) 

influence GSIS, whereas cPLA2 overexpression can promote insulin exocytosis (155), but 

sustained cPLA2 activation reduces β-cell function and GSIS (152, 232).

iPLA2β and GSIS—Given recent studies concerning mechanisms that promote β-cell 

decompensation during the development of obesity and T2D, this article focuses on the 

very first functional role ascribed to iPLA2β, relating to its involvement in insulin secretion. 

Before its formal description in 1997, work done by the Turk and Gross groups identified 

a phospholipase A2 activity in islet β-cells, but not in non-β-cells, that was manifested 

in the absence of Ca2+ and was stimulatable by ATP (100, 273), leading to its initial 

designation as ASCI-PLA2 (ATP-stimulatable Ca2+-independent phospholipase A2) (357). 

Subsequently, its predominant expression in the β-cells of the islets was demonstrated at 

the mRNA (213) and protein (194) levels. Cloning of iPLA2β from hamster, mouse, and 

rat identified protein homologs that are 85 kDa (752 amino acids) (22, 213, 344) with a 

serine lipase consensus sequence (GTSGT), preceded by eight N-terminal ankyrin repeats 

(213, 344). In human lymphocyte lines and in testis, iPLA2β was described as containing 

a 54-amino acid insert interrupting the eighth ankyrin repeat (189), and analyses in human 

pancreatic islets identified cDNA species that encoded two distinct 85 kDa (VIA-1) and 

88 kDa (VIA-2) human iPLA2β isoforms (215). Subsequent characterization of iPLA2β by 

several groups identified other features in the protein that included: GXGXXG nucleotide-

binding motif (214, 221), N-terminal caspase-3 cleavage site (DVTD) (19), putative 

bipartite nuclear localization sequence (KREFGEHTKMTDVKKPK) (214), and C-terminal 

1–9-14 calmodulin-binding motif (IRKGQGNKVKKLSI) and a calmodulin-binding peptide 

(AWSEMVGIQYFR) (146, 214, 359). Studies in numerous laboratories over the past three 

decades have identified iPLA2β as a ubiquitous enzyme that has roles in phospholipid 

remodeling, cell proliferation, apoptosis, and signaling.

Earlier works revealed that fuel secretagogue-induced hydrolysis of β-cell membrane 

phospholipids promotes accumulations of AA and its metabolites in β-cells (28, 362). 
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The islets are particularly enriched in AA-containing glycerophospholipids, with 31% 

residing in glycerophosphoethanolamine (GPE), 53% in glycerophosphocholine, 10% in 

glycerophosphoinositol, and 3% in glycerophosphoerine (271, 272). The fraction of AA in 

islet GPE is greater than that in liver, heart, or brain (275) and nearly half of this is contained 

in plasmenylethanolamine species, as in the brain (275). Further, islet subcellular organelles 

(mixed membranes, secretory granules, plasma membranes, endoplasmic reticulum) are 

enriched in AA-containing plasmenylethanolamine molecular species (275), and this pool 

is the major source of AAs that are hydrolyzed during GSIS (271) and subsequent 

accumulations in AA correlated with temporal increases in GSIS (273, 274, 278).

Studies by the Turk group revealed that AA at concentrations that accumulate within the 

β-cell with high glucose stimulation promotes increases in [Ca2+]c levels (228, 383, 384). 

Subsequent collaborative efforts with the Phillipson group led to delineation of a molecular 

mechanism whereby the AA inactivates the β-cell-delayed rectifier potassium channel, 

Kv2.1, causing a prolongation of glucose-induced action potentials and elevation in [Ca2+]c. 

These observations suggest that arachidonic acid also plays a key second messenger role in 
GSIS (23, 144).

Prior to the 1990s, the hydrolysis of membrane phospholipids in β-cells was understood to 

occur via phospholipases that are expressed in β-cells and activated by increases in [Ca2+]c. 

However, if the hydrolysis of AA induced by glucose were dependent on the Ca2+ influx, 

it would not align temporally with the pathway through which it affects Ca2+ influx. A 

solution to this conundrum was provided by studies demonstrating that glucose-induced 

release of AA occurred, in part, in the absence of Ca2+ or in the presence of Ca2+-channel 

blockers (358, 383), suggesting the expression of a Ca2+-independent PLA2 activity. In fact, 

in the early 1990s, the Gross group reported expression of a myocardial ASCI-PLA2 (110–

113). Subsequently, analogous studies not only identified a similar iPLA2 in β-cells but 

determined that its activation led to AA accumulation in β-cells and that this correlated with 

GSIS (100, 273). This iPLA2 was subsequently designated iPLA2β, based on the presence 

of the GXSXG lipase consensus motif and a GXGXXG nucleotide-binding motif that was 

sequentially first identified in the potato enzyme patatin (14).

The recognition of an iPLA2β activity in the islets prompted a detailed characterization 

of its role in GSIS, especially in light of the recognition that T2D is characterized by 

a select defect in GSIS (266). Studies in insulinoma cells and islets (rodent and human) 

utilizing multiple approaches to modify iPLA2β activity or expression strongly supported 

the following: (i) GSIS correlates with the iPLA2β-dependent accumulation of AA in the 

β-cells and the release of PGE2 from β-cells (268, 273, 274, 278), (ii) iPLA2β promotes 

glucose, but not AA-induced increase in [Cai
2+] (273) and (iii) iPLA2β activation reduces 

depolarization-induced Kv2.1 currents, thus promoting Ca2+ flux and amplifying GSIS (23, 

144). These observations brought to light a positive impact of iPLA2β on promoting insulin 

secretion from β-cells.

These observations suggest that dysfunction of iPLA2β in β-cells is critical to 

the development of β-cell decompensation associated with T2D. Indeed, nonglucose 

secretagogues, but not glucose, have been reported to increase PLA2 activity and insulin 
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secretion from islets isolated from mice fed a HFD. This raises the possibility that PLA2 

activation is a mechanism that participates in β-cell compensation associated with insulin 

resistance (324). In support of this possibility, a recent study demonstrated that mice with 

a conditional knockout in β-cell iPLA2β have elevated fasting glucose levels and exhibit 

glucose intolerance that is exacerbated when maintained on a HFD (360). Deficiency 

in iPLA2β was also associated with mitigating obesity in a variety of models (49, 63), 

reductions in plasma glucose and insulin levels, and improvement in glucose tolerance (63).

Role of complement1q-like 3 (C1ql3) in insulin secretion—Secreted proteins are 

critical metabolic regulators that play significant roles in cell-cell communication between 

different cell types. These proteins relay the metabolic status of the origin cell to impart 

metabolic changes in the target cells in an autocrine, paracrine, or endocrine manner. The 

roles of islet endocrine hormones such as glucagon, insulin, somatostatin (SST), pancreatic 

polypeptide (PPY), and ghrelin secreted by alpha (α), beta (β), delta (δ), PP, and epsilon 

(ε) cells, respectively, have been well-characterized in whole-body glucose homeostasis. 

Additionally, significant crosstalk occurs within islets between distinct islet cells and a few 

notable autocrine and paracrine regulators have been identified, such as SST, urocortin-3, 

islet amyloid polypeptide (IAPP), and glucagon. The SST secreted from δ-cells act on α- 

and β-cells to inhibit glucagon and insulin secretion, respectively (40, 79, 134). A late β-cell 

maturity marker, urocortin-3, secreted from β-cells, decreases SST secretion from δ-cells 

(132). Moreover, glucagon has an intra-islet role in increasing insulin secretion from β-cells. 

Islet autocrine and paracrine regulators have been previously reviewed (44, 84, 119, 134, 

288, 355).

Eleven percent of the human and mouse genome transcripts encode for secreted proteins, 

and approximately 3000 secreted proteins have been annotated, but the function for most 

of them remains undescribed (363). To this end, Koltes et al. used an unbiased approach 

of the weighted gene expression network analysis to identify secreted protein regulators of 

islet function (184). Using lean and obese islet transcriptomics data, they identified that 

islets express 850 transcripts encoded for secreted proteins whose expression significantly 

changes with obesity. This suggested that several islet-derived secreted proteins potentially 

manifest roles in response to obesity. Islets by mass are only 1% of the total pancreas 

weight. So, it is conceivable that several of the islet-derived secreted proteins are involved in 

crosstalk between distinct islet cells in an autocrine and/or paracrine manner in obesity. They 

further identified 44 hub genes with high connectivity attributes encoding secreted proteins 

to affect islet function in obesity. Of those, the complement 1q like 3 (C1ql3) secreted 

protein was reported as a top hub gene, illustrating the utility of unbiased network analysis 

in identifying secreted protein regulators affecting islet function in obesity. The complement 

1q (C1q)/tumor necrosis factor (Tnf)-related proteins (CTRP) are secreted proteins (e.g., 

adiponectin) that are evolutionarily conserved from zebrafish to humans (385). They have 

been implicated in lipid and carbohydrate metabolism, immunity, inflammation, and synapse 

homeostasis (33, 94, 312, 323). C1ql3, also called CTRP13, is a soluble secreted protein 

whose primary structure resembles proteins encoded by highly homologous genes: C1ql-1, 

-2, and -4. It is expressed in adipose tissue and the brain of lean mice. Obesity due to a 

HFD or homozygosity for the LeptinOb mutation was reported to increase the expression of 

Ramanadham et al. Page 16

Compr Physiol. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



C1ql3 in the brain and islets (184), whereas caloric restriction decreases its expression (43). 

Serum C1ql3 levels are increased in LeptinOb mice (43). Wei et al. have reported that C1ql3 

regulates glucose metabolism (374), and epidemiological studies have shown an association 

between serum C1ql3 levels and T2D and metabolic disorders in humans (7, 80, 82, 313).

C1ql3 is abundantly expressed in islets, and its expression is increased in islets from db/db, 

DIO, and LeptinOb (>30-fold) mice (104). Localization of C1ql3 is in insulin-positive 

β-cells, but not in α- or δ-cells, identifying β-cells as the source of the secreted C1ql3 

protein. The molecular mechanism of obesity-induced transcriptional regulation of C1ql3 

and how C1ql3 is secreted from β-cells is unknown. A recent report by Gupta et al. 

(104) demonstrated that C1ql3 inhibits high glucose (16.7 mM)-stimulated insulin secretion 

without affecting insulin secretion in response to low (2.8 mM) or sub-maximal (11.1 

mM) glucose from mouse islets. Remarkably, C1ql3 almost completely blocked insulin 

secretion in response to stimulation with exendin-4 (a stable analog of GLP1) and cAMP 

from mouse and human islets. In addition, C1ql3 also decreased cAMP levels in response 

to high glucose. Such an inhibitory impact of C1ql3 on insulin secretion was confirmed 

using mouse and human C1ql3 recombinant proteins, C1ql3-conditioned media, knockdown 

approaches in clonal β-cells, and mouse and human islets. Since high glucose treatment 

is known to increase cAMP levels in β-cells by activating soluble AC (124, 192, 397), 

the inhibitory effect of C1ql3 on insulin secretion in response to high glucose could be 

due to the attenuation of cAMP signaling. Remaining to be elucidated are the molecular 

mechanisms and the physiological significance of β-cell C1ql3 in regulating islet function to 

affect whole-body glucose homeostasis in lean vs. obesity states (Figure 4).

The brain-specific angiogenesis inhibitor 3 (BAI3) has been identified as a receptor 

for C1ql3 (224). The BAI3 is a member of the BAI subfamily of adhesion GPCRs. 

These proteins are involved in synaptogenesis, angiogenesis, and tumor suppression 

(57, 235, 320). Structurally, BAI3 is comprised of an extracellular N-terminal CUB 

domain, four thrombospondin type 1 repeats, a hormonebinding domain, the GPCR auto-

proteolysis-inducing domain (GAIN) with an auto-proteolysis site (GPS), the characteristic 

7-transmembrane repeat of a GPCR, an intracellular α-helical RKR motif, and PDZ domain-

binding motif (57). BAI3 is expressed primarily in the brain and has been implicated in 

psychiatric disorders such as schizophrenia, bipolar disorder, and addiction (169, 197). It 

is also expressed in islets and muscles, and mutations in BAI3 have been linked to T2D 

in human GWAS studies (109, 150). The BAI3 receptor is coupled to Gi and has a role in 

early-onset venous thromboembolism risk (15), stimulation of testosterone secretion (342), 

and myoblast fusion (106). Further, BAI3 signaling is required in the synaptic organization, 

acquisition of social transmission of food preference (370), and mediation of cell-cell 

adhesion (334). In β-cells, siRNA-mediated knockdown of BAI3 increased insulin secretion 

from INS1(832/13) cells and is implicated in mediating the inhibitory effects of C1ql3 on 

insulin secretion (104). These studies suggest a role for this poorly characterized BAI3 

signaling in insulin secretion affecting β-cell function. The molecular mechanism by which 

C1ql3/BAI3 regulates islet function remains to be elucidated.
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Perspective: Potential Interplay Between iPLA2β and C1ql3 During T2D 

Development

Nearly 35 million people in the USA have T2D, and obesity is a major risk factor for T2D 

(196, 303). A key feature of T2D development is that during the initial phase of obesity-

induced metabolic stress, β-cells compensate for increasing insulin secretion to achieve 

glucose homeostasis. However, chronic obesity manifests insulin resistance, prompting 

further attempts of β-cell compensation until the β-cells cannot overcome the metabolic 

demands and begin to fail (133). The concept of β-cell compensation progressing to β-cell 

decompensation is entrenched in the T2D field. However, mechanisms that contribute to this 

eventuality are still not completely understood.

There is strong evidence in the literature that defects in insulin granule exocytosis 

machinery, metabolism, and electrical activity contribute to β-cell dysfunction in IGT 

associated with obesity and T2D (81, 89). The early phase insulin secretion loss is the initial 

event during the development of β-cell dysfunction in IGT (81). This is attributed primarily 

to defects in insulin exocytosis, as cellular insulin content is not significantly altered during 

this state. Treatment with GLP1 receptor agonists that increase cAMP signaling can restore 

early phase insulin secretion deficits (315), highlighting the role of downstream cAMP 

effectors Epac2 and PKA in improving glucose responsivity of the β-cells to secrete insulin. 

The overall mechanism of how PKA and Epac2 mediate GLP1/cAMP effects on improving 

insulin secretion in IGT is not completely understood. It is possible that upon activation, 

PKA and Epac2 increase the ability of glucose to inactivate KATP and Kv2.1 channels, 

delaying membrane repolarization, thus increasing the duration of the action potential and 

enhancing the rise in [Cac]2+ (58, 191, 199, 218, 335, 391). These events promote the 

fusion of insulin granules to the plasma membrane for insulin exocytosis. Epac2 binds to 

and inhibits KATP channels (145, 254), whereas PKA phosphorylates KATP (25) and Kv 

(191, 206) channels. In addition to regulating plasma membrane electrical activity, Epac2 

and PKA can directly affect the secretory machinery (325, 369) of the insulin granules by 

facilitating the RRP pool, docking, priming, and fusion of insulin granules to the plasma 

membrane (386). Furthermore, cAMP/PKA regulates β-cell gene expression through CREB 

to increase insulin secretion (8, 21, 30, 366, 368). The beneficial effects of GLP1/cAMP 

signaling in improving β-cell function are well established. However, the precise mechanism 

by which PKA and Epac2 function in improving β-cell dysfunction in IGT remain to be 

determined (Figure 5).

When the clinical diagnosis of T2D is made, the β-cell function is already reduced by 

70% (4, 5, 60, 85). Moreover, normal and impaired glucose-tolerant obese individuals also 

have significantly decreased β-cell function (4, 5, 60, 85). The mechanisms that cause 

this reduction in β-cell function are not yet completely understood. Stable GLP1 analogs 

(e.g., exenatide, liraglutide, semaglutide) are currently wellaccepted T2D therapeutics with 

many advantages over older β-cell secretagogues that function in a glucose-independent 

manner (e.g., SUs, glinides) (264). These GLP1 agonists have been the most successful 

approaches in T2D treatment, and their effect in improving β-cell function is via the GPCR-

mediated activation of cAMP signaling. Even though stable GLP1 analogs function in a 
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physiologically relevant manner, they remain ineffective or insufficiently effective in 20% 

to 40% of T2D individuals in improving β-cell function (55, 161, 178). Thus, a complete 

understanding of how β-cell cAMP signaling is regulated in the healthy, obese, and T2D 

states is essential for developing interventions for improving β-cell function in IGT for 

treating individuals with T2D. The canonical approach involves elucidating the downstream 

molecular mechanism by which cAMP regulates β-cell function. An additional approach 

involves identifying and characterizing signaling pathways that either directly activates, 

antagonize, or synergize with the cAMP signaling to modulate β-cell function. Elucidating 

these cell-signaling pathways that modulate cAMP signaling would be key to improving our 

understanding of β-cell adaption that can also be targeted to increase the efficacy of GLP1 

analogs that are used for the treatment of T2D. In this regard, we have identified C1ql3 and 

iPLA2β as manifesting opposing effects on the cAMP pathway in the β-cells.

C1ql3 negatively impacts insulin secretion

C1ql3 is secreted from islet β-cells and has its maximal inhibitory effect on insulin 

secretion in response to stimulation by exendin-4 (GLP1 agonist) and cAMP (104, 184), 

implicating it as an autocrine regulator of insulin secretion. Moreover, C1ql3 was found 

to not affect insulin secretion in response to submaximal or basal glucose concentrations, 

mitochondrial metabolites (isocitrate, α-ketoglutarate, malate, and glutamate), amino acids 

(leucine, glutamine, alanine, arginine), or fatty acids (monoacylglycerols, DAGs, palmitate) 

(104, 184). The expression of C1ql3 and BAI3 is increased by greater than 30-fold and 4-

fold, respectively, in islets obtained from euglycemic obese mice, during conditions when β-

cells are undergoing functional adaption to obesity or IGT associated with insulin resistance. 

Thus, it is plausible that the activation of C1ql3/BAI3 signaling in β-cells during obesity 

contributes to regulating cAMP signaling mediated β-cell adaptation during IGT/T2D state. 

Elucidating the precise molecular mechanism of how C1ql3/BAI3 regulates cAMP-signaling 

in β-cells within a healthy pancreas, as well as under pathogenic conditions such as obesity 

and T2D, will elucidate whether C1ql3 contributes to β-cell dysfunction associated with IGT 

in obesity and T2D. It is broadly accepted that β-cell mass is increased to adapt to obesity-

associated insulin resistance (52, 141, 203, 234, 375). However, the relationship between 

proliferation and functional maturity of β-cells is poorly understood. Several studies have 

suggested that proliferating β-cells are functionally immature (31, 222, 269, 302). Thus, it 

is possible that C1ql3 signaling also has a role in reducing the responsivity of β-cells to 

glucose/cAMP for optimal insulin secretion in the proliferating β-cell population.

iPLA2β positively impacts insulin secretion

The ubiquitous Ca2+-independent PLA2 (iPLA2β) (22, 146, 221, 344) hydrolyzes the 

sn-2 substituent of membrane glycerophospholipids to yield a free fatty acid and a 

2-lysophospholipid (237, 361). The iPLA2β participates in cellular lipid metabolism, 

signaling, energy homeostasis (170, 237, 381), and amplification of cSIS (212, 216, 271, 

274, 277, 278). Supporting a role for iPLA2β in insulin secretion are the findings that 

islets from global iPLA2β-null mice exhibit impaired GSIS (23, 24) in the presence of 

forskolin, which activates AC to generate cAMP. These mice exhibit normal glucose 

tolerance in the unstressed state (24) but develop more severe glucose intolerance while 

exhibiting better insulin sensitivity than wild-type littermates when subjected to DIO (24). 
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This discordance of the effects of DIO on insulin secretion and sensitivity in the global 

iPLA2β-null mice suggests that iPLA2β plays distinct roles in the molecular mechanisms 

underlying insulin secretion and insulin action and in the impact of DIO on these processes. 

Arachidonic acid is a major sn-2 substituent in β-cell membranes, and its iPLA2β-mediated 

hydrolysis correlates with stimulated insulin secretion (24, 100, 212, 216, 271, 274, 277, 

278). Mechanistically, arachidonic acid has been reported to inactivate the inward rectifier 

Kv2.1 channel to prolong β-cell membrane polarization and enhance Ca2+ influx (23, 144). 

This is recapitulated in β-cells overexpressing iPLA2β and mitigated in iPLA2β-null β-cells 

(23, 144) treated with glucose and carbachol, which signals through acetylcholine receptors 

to increase cAMP generation in the β-cells.

Linking C1ql3 and cell-specific iPLA2β to cAMP signaling

The ability of cAMP signaling to improve β-cell function is reduced in IGT (obese and 

T2D) states (282, 353). It has been reported that glucose tolerance and cSIS in mice with 

select deficiency in β-cell-iPLA2β (iPLA2ββKO) are impaired (360) and are exacerbated in 

DIO mice. Conversely, cSIS insulin secretion and glucose tolerance improvement occur 

in mice overexpressing iPLA2β (iPLA2ββTG) in β-cells. These observations support a 

role for β-cell-iPLA2β in maintaining glucose tolerance and improving β-cell function. 

Understudied but critical contributors to islet inflammation in T2D are the macrophages 

(MØ), and MØ and precursor monocytes express iPLA2β (97, 236, 258, 343). Activation 

of iPLA2β favors polarization of MØ to an inflammatory M1 phenotype (17, 240), which 

triggers events that contribute to diet-induced insulin resistance in diabetes and obesity 

(159, 160, 208, 294, 376, 377). We find that mice with select iPLA2β deficiency in MØ 

(iPLA2βMØKO) have improved β-cell function, glucose tolerance, and insulin sensitivity 

(360). Thus, increased MØ-iPLA2β signaling contributes to the detrimental effects of MØ 

on β-cell dysfunction in IGT/T2D, countering the beneficial effects of β-cell iPLA2β 
signaling in improving cSIS. The expression of C1ql3 and BAI3 is increased in islets 

during IGT, implicating that enhanced C1ql3/BAI3 signaling in β-cells could potentially be 

exacerbating the reduction of cAMP signaling, thereby contributing to β-cell dysfunction 

in IGT/T2D. This could be achieved by C1ql3/BAI3 signaling to decrease the ability of 

iPLA2β to increase cSIS (Figure 6).

GSIS is reduced from pancreatic β-cells, in the context of impaired glucose tolerance 

(IGT) and T2D (18, 148, 250, 261, 311, 372). Furthermore, amplification of GSIS in 

response to the incretins is also blunted. Decades of work established that cAMP is essential 

for promoting insulin secretion and maintaining whole-body glucose homeostasis (176, 

299, 310, 347). β-cell cAMP levels and signaling are reduced in islets from individuals 

with IGT or T2D (282, 353). The Gs-coupled receptor signaling, including for GLP1, in 

β-cells, is very well characterized, however, little is known about factors that function to 

regulate cAMP signaling. Targeting C1ql3 and iPLA2β that function reciprocally to increase 

GLP1/cAMP signaling is an innovative strategy to improve β-cell function in obesity/T2D. 

Excitingly, it could also provide a solution for improving the effectiveness of GLP1 drugs 

that are used for T2D treatment. An intriguing path is to resolve the previously unrecognized 

crosstalk between two well-established pathways involving iPLA2β and GLP1 signaling, 

and how C1ql3 modulates their roles to affect β-cell (dys)function. We posit that the study of 
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a link between iPLA2β and C1ql3 could elucidate the initial signaling events that contribute 

to β-cell dysfunction in the IGT state associated with obesity before the clinical diagnosis of 

T2D (61, 93, 211, 233). Table 1 lists the abbreviations used throughout the article.
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Didactic Synopsis

Major teaching points

• β-Cell dysfunction is observed during impaired glucose tolerance states 

associated with obesity and type 2 diabetes (T2D).

• Insulin secretion from β-cells occurs through well-understood canonical and 

less-understood noncanonical pathways.

• The canonical pathways include: (i) triggering and amplifying pathways that 

regulate glucose-stimulated insulin secretion (GSIS) and (ii) the amplification 

of GSIS by activating cAMP signaling via PKA/Epac proteins.

• A requisite for optimal stimulus-coupled insulin secretion is the activation of 

cAMP signaling in β-cells.

• Noncanonical pathways include signaling by C1ql3 secreted protein and 

iPLA2β-derived lipids generated within the β-cells.

• C1ql3 and iPLA2β signaling intersect at the cAMP level to produce opposing 

effects on insulin secretion.

• It is speculated that the dysregulation of C1ql3 and iPLA2β proteins 

contributes to the β-cell dysfunction associated with obesity and T2D.

• Detailed studies of these noncanonical pathways will improve our 

understanding of β-cell secretory function/capacity and offer new therapeutic 

avenues to counter impaired β-cell function in obesity and T2D.
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Figure 1. Triggering and amplifying pathways of glucose in increasing insulin secretion (GSIS) 
from β-cells.
Glucose enters the β-cells via the Glut2 in rodents and Glut1 in humans transporters and 

undergoes metabolism by the glycolytic pathway. The increase in the ATP/ADP ratio 

causes inhibition of the KATP channels. This causes the depolarization of the plasma 

membrane, causing the influx of Ca2+ through VDCC. The subsequent increase in [Ca2+]c 

facilitates the fusion of insulin granules to the plasma membrane. This step is called the 

triggering pathway. The metabolism of glucose leads to generation of metabolites or second 

messengers that amplify the ability of [Ca2+]c to increase insulin secretion. This is called the 

amplifying pathway of GSIS.
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Figure 2. Cyclic AMP signaling amplifies GSIS in β-cells.
The green dotted line shows the triggering pathway of glucose in increasing insulin 

secretion. The activated Gs-coupled GPCR signaling increases cAMP levels thereby 

activating its downstream effectors Epac2 and PKA. Subsequently, PKA increases insulin 

secretion by modulating the function of VDCC, Kv2.1, KATP, Snapin, and Syt7, and nuclear 

translocation and activation of CREB. Epac2 binds KATP channels, causing activation of IP3 

and DAG. The IP3 increases Ca2+ release from the ER, and DAG binds and activates the 

Munc13–1 priming factor and PKC to increase insulin secretion by facilitating the fusion of 

insulin granules to the plasma membrane.
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Figure 3. Contribution of β-cell-derived lipids to insulin secretion.
Elevations in circulating glucose concentrations induce phospholipases A2 (PLA2s)-

catalyzed hydrolysis of the sn-2 fatty acid substituent from β-cell membranes. The 

released fatty acids can then be metabolized by oxidases to generate bioactive 

lipid mediators (e.g., PGs, prostaglandins; HETEs, hydroxyeicosatetraenoic acids; and 

EETs, epoxyeicosatrienoic acids). Further, membrane-associated sphingomyelins can be 

hydrolyzed by sphingomyelinases to ceramides, which can be converted to sphingosine-1-

phosphate (S1P). These lipids via intracrine, autocrine, paracrine, and endocrine 

mechanisms are recognized modulators of insulin secretion.
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Figure 4. C1ql3 regulates cAMP signaling and amplifies GSIS in β-cells.
Upon secretion from β-cells, C1ql3 signals in an autocrine manner by binding to its receptor 

BAI3 to regulate insulin secretion by inhibiting cAMP signaling.
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Figure 5. IGT and T2D can affect multiple aspects of the cAMP signaling to decrease insulin 
secretion.
The IGT/T2D states can potentially reduce cAMP levels, size of the RRP insulin granule 

(IG) pool, docking of the IGs to the plasma membrane, priming of the IGs to the plasma 

membrane, the fusion of the IGs to the plasma membrane, and PKA-CREB mediated β-cell 

gene expression. Additionally, IGT/TD can also decrease the ability of glucose to cause 

plasma membrane depolarization-regulated insulin secretion.
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Figure 6. Proposed role of the noncanonical signaling pathways affecting the β-cell secretory 
function during IGT and T2D.
During IGT/T2D, mRNA abundance and the secretion of C1ql3 are increased from the 

β-cells. The C1ql3 binds to and activates its receptor BAI3 to decrease cAMP signaling, 

affecting the RRP of IGs, docking of IGs, the priming of IGs, fusion of IGs, and PKA-

CREB-regulated expression of genes. Another signaling event mediated by iPLA2β causes 

an increase in cSIS. The interplay between C1ql3 and iPLA2β in IGT/TD could be important 

in modulating cAMP signaling, affecting insulin secretion from β-cells during IGT/T2D.
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Table 1

Abbreviation List

AA arachidonic acid

AC adenylate cyclase

ADP adenosine diphosphate

AKT Ak strain transforming serine/threonine kinase 1

AMK AMP-activated protein kinases

ATP adenosine 5′-triphosphate

BAI3 brain-specific angiogenesis inhibitor 3

Ca2+ calcium ion

[Ca2+]c cytosolic Ca2+ concentration

cAMP cyclic adenosine monophosphate

CICR Ca2+-induced calcium release

C1ql3 complement 1q-like-3

COX cyclooxygenase

cPLA2 cytosolic phospholipase A2

cSIS cAMP-stimulated insulin secretion

CTRP13 C1q/TNF-related protein 13

CUB complement C1r/C1s, Uegf, Bmp1

CREB cAMP-response element binding protein

CYP cytochrome P450

DAG diacylglyceride

DGLA dihomo-γ-linolenic acid

DHA docosahexaenoic acid

DHET dihydroxyeicosatrienoic acids

DIO diet-induced obesity

DP2 prostaglandin D2 receptor

EET epoxyeicosatrienoic acids

EP PGE2 receptor

EPA eicosapentaenoic acid

Epac exchange protein activated by cyclic-AMP

FFAR1 free fatty acid receptor 1

FOXO1 forkhead box protein O1

FRET fluorescence resonance energy transfer

GAIN G-protein-coupled receptor (GPCR) autoproteolysis-inducing domain

GEF guanine nucleotide exchange factor

GRP G protein-coupled receptor

Gs Gs protein

Gi Gi protein

Gα Gs alpha subunit

GIP glucose-dependent insulinotropic polypeptide

GLP1 glucagon-like peptide-1
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GPCR G-protein coupled receptor

GPE glycerophosphatidylethanolamine

GPR120 G-protein coupled receptor 120

GPR119 G-protein coupled receptor 119

GPR44 G-protein coupled receptor 44

GPS glycerophosphatidylserine

GSIS glucose-stimulated insulin secretion

GWAS genome-wide association studies

HEPE hydroxyeicosapentaenoic acid

HETE hydroxyeicosatetraenoic acid

HFD high-fat diet

IAPP islet amyloid polypeptide

IG insulin granule

IGT impaired glucose tolerance

IP3 inositol trisphosphate

iPLA2 Ca2+-independent phospholipase A2

iPLA2β β-isoform of Ca2+-independent phospholipase A2

iPLA2ββKO select-deficiency of iPLA2β in β-cells

iPLA2ββTG select overexpression of iPLA2β in β-cells

JNK1 c-Jun N-terminal kinase

K+ potassium ion

KATP potassium-sensitive ATP-channel

Kv2.1 delayed rectifier K+-channel

LOX lipo-oxygenase

MØ macrophages

M1 inflammatory MØ phenotype

MAFA1 MAF BZIP Transcription Factor A

MUFA mono-unsaturated fatty acid

Munc mammalian uncoordinated-18

NEFA nonesterified fatty acid

NKX6.2 NK6 Homeobox 2

PDE phosphodiesterase

PDXl pancreatic and duodenal homeobox l

PDZ modular protein-protein interacting domain

PKA protein kinase A

PGE2 prostaglandin E2

PGI2 prostaglandin I2

PKC protein kinase C

PLA2 phospholipase A2

PLCε phospholipase C-epsilon

PUFAs polyunsaturated fatty acids

P450 cytochrome P450
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PGD2 prostaglandin D2

PUFA polyunsaturated fatty acid

Rab Ras superfamily of small G proteins

Rap receptor-associated protein

RIα R-subunit

RIM Rab-interacting molecules

RRP readily releasable pool

sEH soluble epoxide hydrolase

siRNA small interfering RNA

SL sphingolipid

SMase sphingomyelinase

SNAP synaptosomal-associated protein

SNARE soluble N-ethylmaleimide-sensitive factor attachment protein receptor

S1P sphingosine-1-phosphate

sPLA2 secretory phospholipase A2

SU sulfonylurea

SUR1 sulfonylurea receptor 1

T2D type 2 diabetes

TF transcription factor

Tnf tumor necrosis factor

TORC2 transducer of regulated CREB activity-2

Vamp2 vesicle-associated membrane protein 2

VDCC voltage-dependent Ca2+-channels
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