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Abstract

Three-dimensional markerless pose estimation from multi-view video is emerging as an exciting 

method for quantifying the behavior of freely moving animals. Nevertheless, scientifically precise 

3D animal pose estimation remains challenging, primarily due to a lack of large training 

and benchmark datasets and the immaturity of algorithms tailored to the demands of animal 

experiments and body plans. Existing techniques employ fully supervised convolutional neural 

networks (CNNs) trained to predict body keypoints in individual video frames, but this demands 

a large collection of labeled training samples to achieve desirable 3D tracking performance. Here, 

we introduce a semi-supervised learning strategy that incorporates unlabeled video frames via 

a simple temporal constraint applied during training. In freely moving mice, our new approach 

improves the current state-of-the-art performance of multi-view volumetric 3D pose estimation 

and further enhances the temporal stability and skeletal consistency of 3D tracking.

1 Introduction

In 3D pose estimation, the positions of user-defined body keypoints are inferred from 

images to reconstruct body kinematics (Desmarais, Mottet, Slangen, & Montesinos, 2021). 

Precise pose measurement is a long-standing computer vision research problem with 

a myriad of applications, including to human-computer interfaces, autonomous driving, 

virtual and artificial reality, and robotics (Sarafianos, Boteanu, Ionescu, & Kakadiaris, 

2016). Specialized hardware and deep learning empowered algorithmic advances have 

inspired new developments in the field, with the ultimate goal to recover 3D body poses 

in natural, occlusive environments in real time. While most research and development 

have thus far focused on human body tracking, there has been a growing push in the 
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biological research community to extend 3D human pose estimation techniques to animals. 

Precise quantification of animal movement is critical for understanding the neural basis of 

complex behaviors and neurological diseases (Marshall, Li, Wu, & Dunn, 2022). The latest 

generation of tools for animal behavior quantification ditch traditionally coarse and ad hoc 

measurements for 2D and 3D pose estimation with convolutional neural networks (CNNs) 

(Bala et al., 2020; Dunn et al., 2021; Gosztolai et al., 2021; Günel et al., 2019; Mathis et al., 

2018; Pereira et al., 2019, 2022).

Nevertheless, the majority of state-of-the-art 3D animal pose estimation techniques are fully 

supervised, and their performance depends on large collections of 2D and 3D annotated 

training samples. Large-scale, well-curated animal 3D pose datasets are still rare, making it 

difficult to achieve consistent results on real-world data captured under varying experimental 

conditions. Marker-based motion capture techniques (Marshall et al., 2021; Mimica, Dunn, 

Tombaz, Bojja, & Whitlock, 2018) enable harvesting of precise and diverse 3D body pose 

measurements, but they are difficult to deploy in freely moving animals and can potentially 

perturb natural behaviors. Manual annotation of animal poses therefore often becomes 

mandatory. However, manual annotation is time-consuming, and it can become difficult for 

human annotators to precisely localize body landmark positions under nonideal lighting 

conditions or heavy (self-) occlusion of the body. Although the influence of label noise has 

not yet been closely examined for pose estimation, overfitting to these inherently ambiguous 

labels might adversely affect model performance, as it does in image classification (Patrini, 

Rozza, Krishna Menon, Nock, & Qu, 2017). In addition to issues with data scarcity, fully 

supervised training schemes are often limited by the quality of training data. Even when 

using hundreds of training samples, the performance of fully supervised 3D pose estimation 

models can be inconsistent (Wu et al., 2020), especially when deployed in new environments 

and subjects.

This label scarcity has become a major bottleneck in the current animal 3D pose estimation 

workflows, limiting model performance, generalization to different environments and 

species, and comprehensive performance analysis. In recent years, the success of semi-

supervised (Berthelot et al., 2019) and unsupervised deep learning (T. Chen, Kornblith, 

Norouzi, & Hinton, 2020; He, Fan, Wu, Xie, & Girshick, 2020) methodologies has 

presented new possibilities for mitigating annotation burden. Rather than relying solely 

on task-relevant information provided by human supervision, these approaches exploit 

the abundant transferable features embedded in unlabeled data, resulting in robustness to 

annotation deprivation and better generalization capacity.

In this paper, we introduce a semi-supervised framework which seamlessly integrates with 

the current state-of-the-art 3D rodent pose estimation approach (Dunn et al., 2021) to 

enhance tracking performance in low annotation regimes. The core of our approach is 

additional regularization of body landmark localization using a Laplacian temporal prior. 

This encourages smoothness in 3D tracking trajectories without imposing hard constraints, 

while expanding supervisory signals to include both human-annotated labels and the implicit 

cues abundant in unlabeled video data. To further reduce reliance on large labeled datasets, 

we also emphasize a new set of evaluation protocols that operate on unlabeled frames, thus 

providing more comprehensive performance assessments for markerless 3D animal pose 
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estimation algorithms. We have collected and validated our proposed method on a new 

multi-view video-based mouse behavior dataset with 2D and 3D pose annotations, which 

have released to the community. Compared to state-of-the-art approaches in both animal and 

human pose estimation, our method improves keypoint localization accuracy by 15 to 60% 

in low annotation regimes, achieves better tracking stability, and anatomical consistency, and 

is qualitatively more robust during identified difficult poses.

Our main contributions can be summarized as follows:

1. We introduce a state-of-the-art performing approach by leveraging temporal 

supervision in 3D mouse pose estimation.

2. We release a new multi-view 3D mouse pose dataset consisting of freely moving, 

naturalistic behaviors to the community.

3. We benchmark the performance of a broad range of contemporary pose 

estimation algorithms using the new dataset.

4. We designate a comprehensive set of evaluation metrics for performance 

assessment of animal pose estimation approaches.

2 Related Work

2.1 3D Animal Pose Estimation

There are currently three primary categories of 3D animal pose estimation techniques. The 

first category encompasses multi-view approaches based on triangulation of 2D keypoint 

estimates (Bala et al., 2020; Günel et al., 2019; Karashchuk et al., 2021; Mathis et al., 2018). 

These are typically lightweight in terms of model training and inference and are improved 

by post hoc spatial-temporal filtering (Karashchuk et al., 2021) when measuring freely 

moving behavior, where occlusions are ubiquitous. The second category leverages multi-

view geometric information during end-to-end training. Zimmermann et al. (Zimmermann, 

Schneider, Alyahyay, Brox, & Diester, 2020) and Dunn et al. (Dunn et al., 2021) use 

3D CNNs to process volumetric image representations obtained via projective geometry, 

whereas Yao et al. (Yao, Jafarian, & Park, 2019) propose a self-supervised training 

scheme based on cross-view epipolar information. These techniques improve 3D tracking 

accuracy and consistency by exploiting multi-view features during training, although they 

are more computationally demanding. The third category comprises learned transformations 

of monocular 2D pose estimates into 3D space (Bolaños et al., 2021; Gosztolai et al., 

2021). Monocular 3D pose estimation is an exciting and important advance in flexibility, 

but unavoidable 3D ambiguities currently limit its performance compared to multi-view 

techniques (Bolaños et al., 2021; Iskakov, Burkov, Lempitsky, & Malkov, 2019).

Despite the recent acceleration in method development, it remains challenging to build 3D 

animal pose estimation algorithms that achieve scientifically precise performance flexibly 

across diverse environments and species. Compared to humans, lab animals such as mice 

and rats are much smaller in scale, less articulated, and bear higher appearance similarities 

among different individuals (Moskvyak, Maire, Dayoub, & Baktashmotlagh, 2020), which 

limits the availability of discriminable features for body part tracking and annotation. 
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Because of the drastic differences in animal body profiles across species, (e.g. cheetahs vs. 

flies), it is also difficult to leverage the universal skeleton models and large-scale pretraining 

datasets that power the impressive tracking performance in humans (Cao et al., 2019; Wu et 

al., 2020). It is imperative that we develop algorithms that more efficiently use the limited 

resources available for animals.

2.2 Semi-Supervised and Unsupervised Pose Estimation

Semi-supervised and unsupervised learning schemes reduce the reliance on laborious data 

annotation currently bottlenecking large-scale supervised training. These schemes learn 

from the implicit structure and distribution of unlabeled data and can utilize knowledge of 

universal principles, such as physics and geometry, to improve tracking performance.

Inspired by classic multi-view stereo 3D reconstruction, many works in 3D human 

pose estimation utilize annotation-free geometric supervision in the form of multi-view 

consistency (Iqbal, Molchanov, & Kautz, 2020; Kocabas, Karagoz, & Akbas, 2019; 

Rhodin, Spörri, et al., 2018; Wandt, Rudolph, Zell, Rhodin, & Rosenhahn, 2021), 3D-

to-2D reprojection consistency (C.-H. Chen et al., 2019; Wandt & Rosenhahn, 2019), and 

geometry-aware 3D representation learning (Rhodin, Salzmann, & Fua, 2018). Training 

constraints with respect to consistent bone length, valid ranges of joint angles, and body 

symmetry (Dabral et al., 2018; Pavllo, Feichtenhofer, Grangier, & Auli, 2019; Spurr, Iqbal, 

Molchanov, Hilliges, & Kautz, 2020; Wu et al., 2020) can also encourage biomechanically-

plausible tracking results. Exploiting temporal context is also effective, as we discuss in 

the next section. Appropriate use of these implicit supervision signals results in consistent 

and robust pose estimates using only a small fraction of the labeled data required for fully 

supervised approaches.

2.3 Temporal 3D Pose Estimation

The temporal nature of behavior provides information that can be harnessed to improve 3D 

pose estimation. Intuitively, movement progresses continuously through time in 3D space, 

providing a strong prior for future poses given their temporal history – body movement 

trajectories evolve smoothly and are bounded by plausible, physiological velocities. The 

spatial displacement between consecutive poses should therefore be small, exhibiting 

relative consistency or smoothness along the time dimension. Pose estimates from static, 

temporally isolated observations ignore these intuitive constraints.

Previous 3D pose estimation algorithms have incorporated temporal information in several 

different ways. Given a sequence of pose predictions, temporal consistency can be 

introduced as part of the post-processing optimization that refines initial 2D (prior to 

triangulation) or 3D keypoint estimates (Bala et al., 2020; Joska et al., 2021; Karashchuk et 

al., 2021; Zhang, Dunn, Marshall, Olveczky, & Linderman, 2021). Temporal consistency 

assumptions have also been used for filtering out invalid pseudolabels used for self-

supervision (Mu, Qiu, Hager, & Yuille, 2020).

Another popular scheme for exploiting temporal information for 3D pose estimation is 

to build models that infer pose from spatiotemporal inputs, using either recurrent neural 

networks (Hossain & Little, 2018), temporal CNNs (Pavllo et al., 2019), or spatial-temporal 
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graphical models (Wang, Yan, Xiong, & Lin, 2020). Hossain and Little (Hossain & Little, 

2018) processed 2D pose sequences using layer-normalized LSTMs to produce temporally 

consistent 3D poses. Other works have used temporal CNNs for similar purposes (R. Liu 

et al., 2020; Pavllo et al., 2019). Temporal information can also be explicitly encoded and 

appended to model input using apparent motion estimations such as optical flow (X. Liu et 

al., 2021).

Other approaches incorporate temporal information as a form of regularization during 

training. By employing a temporal smoothness constraint, one enforces the assumption 

that joint positions should not displace significantly over short periods of time (Wang et 

al., 2020; Wu et al., 2020), encouraging learned temporal consistency in pose predictions. 

Critically, these temporal constraints can be applied to unlabeled video frames, providing 

an avenue for semi- and unsupervised learning. Chen et al. (L. Chen, Lin, Xie, Lin, 

& Xie, 2021) further exploited temporal consistency in hand pose estimates along both 

forward and backward video streaming directions to establish an effective self-supervised 

learning scheme. Our approach is most similar to Wu et al. (Wu et al., 2020), in that 

we incorporate a temporal smoothness constraint in the learning objective to support a 

semi-supervised scheme. But we employ this constraint with multi-view, volumetric 3D pose 

estimation during freely moving, naturalistic behavior, rather than during monocular 2D 

pose estimation in restrained animals.

2.4 Pose Evaluation Metrics

In this manuscript we also report a complementary set of performance metrics that provides 

more comprehensive benchmarks for sparsely labeled 3D animal pose data. The cornerstone 

metrics of the field are Euclidean distance errors relative to ground-truth 3D keypoints: 

mean per-joint position error (MPJPE), and, sometimes, PA-MPJPE, which evaluates 

MPJPE after rigid alignment of 3D predictions to ground-truth poses. Although these 

evaluation protocols convey an imperative assessment of a model’s landmark localization 

capability, they fall short for most markerless animal pose datasets, where 3D keypoint 

ground-truth is derived from noisy manual labeling only in a small subset of video frames.

Unlike in large-scale human benchmarks, in animals these position error metrics do 

not reflect the large extant diversity of possible poses and are prone to overestimating 

performance. Human3.6M (Ionescu, Papava, Olaru, & Sminchisescu, 2013) and HumanEva 

(Sigal, Balan, & Black, 2010) employ motion capture systems to acquire comprehensive 

ground-truth labels over hundreds of thousands of frames, spanning multiple human 

actors and dozens of action categories. Similar evaluation is nearly impossible for most 

markerless 3D animal pose datasets, where acquisition of 3D labels requires laborious 

human annotation.

Single-frame position errors over sparsely labeled recordings also ignore whether models 

capture the continuous and smooth nature of movement. Models with the same mean 

position error on a small subset of samples can diverge significantly, and pathologically, 

in unlabeled frames. We illustrate this in Fig.2 (a), which shows a set of synthetic movement 

trajectories. The three noisy traces all have the same average position error, yet represent 

distinct, and erroneous, movement patterns. The fidelity of predictions on unlabeled data 
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can be captured using temporal metrics. For example, Pavllo et al. introduced the mean 

per-joint velocity error (MPJVE) to quantify the temporal consistency of predictions 

(Pavllo et al., 2019). Thus far, works in animal pose estimation have not incorporated 

quantitative temporal metrics, although some have presented qualitative evaluations of 

keypoint movement velocity (Karashchuk et al., 2021; Wu et al., 2020).

Finally, manually annotated 3D pose ground-truth is inherently noisy and exhibits 

substantial intra- and inter-labeler variability. We analyzed the coefficients of variation 

(CV = σ
μ ) (Reed, Lynn, & Meade, 2002), which measures the degree of data dispersion 

relative to its mean, for the lengths of 22 body segments connecting keypoints in our 

manually labeled mouse dataset (details in Section 4.1). Although the keypoints are intended 

to represent body joints, between which the lengths of body segments should remain 

constant, independent of pose, we found a 10% to 20% deviation in length for the majority 

of segments (Fig.2 (b)). This aleatoric uncertainty in the ground-truth labels will propagate 

to position errors.

Given these issues, we argue that it is important to establish more diverse evaluation 

protocols for markerless 3D animal pose estimation. These protocols should ideally capture 

temporal and anatomical variances in both labeled and unlabeled frames. In addition to 

our new semi-supervised training scheme, we introduce two new consistency metrics that 

resolve differences between models not captured by standard position errors, and these new 

metrics do not rely on large numbers of ground-truth annotations.

2.5 3D Animal Pose Datasets and Benchmarks

Despite the critical importance of large-scale, high-quality datasets for developing 3D 

animal pose estimation algorithms (Jain et al., 2020), such resources are relatively 

uncommon compared to what is available for 3D human pose. Animal datasets are not 

easily applied across species, due to differences in body plans, and high-throughput marker-

based motion capture techniques are challenging to implement in freely-moving, small-sized 

animals. Nevertheless, multiple 3D animal pose datasets have been released in recent years, 

including in dogs (Kearney, Li, Parsons, Kim, & Cosker, 2020), cheetahs (Joska et al., 

2021), rats (Dunn et al., 2021; Marshall et al., 2021), flies (Günel et al., 2019), and 

monkeys (Bala et al., 2020). But in mice, by far the most commonly used mammalian model 

organism in biomedical research (Ellenbroek & Youn, 2016), large-scale pose datasets are 

still lacking. The LocoMouse dataset (Machado, Darmohray, Fayad, Marques, & Carey, 

2015) contains annotated 3D keypoints in animals walking down a linear track. While being 

a valuable resource for developing gait tracking algorithms, the dataset does not represent 

the diversity of mouse poses composing the naturalistic behavioral repertoire. Several 3D 

mouse datasets also accompany published manuscripts (Zimmermann et al., 2020), but they 

are limited in the number of total annotated frames. Here we provide a new, much larger 

3D mouse pose dataset consisting of 6.7 million frames with 310 annotated 3D poses (1860 

annotated frames in 2D) on 5 mice engaging in freely moving, naturalistic behaviors, which 

we make publicly available as a resource for the community. We also utilize the scale of our 

dataset to benchmark a collection of popular 3D pose estimation algorithms and assess the 
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impact of temporal constraints on performance, providing guidance on the development of 

suitable strategies for quantifying mouse behavior in three dimensions.

3 Methods

3.1 Volumetric Representation

Following recent computer stereo vision methods (Dunn et al., 2021; Iskakov et al., 2019; 

Kar, Häne, & Malik, 2017; Zimmermann et al., 2020), we construct a geometrically-aligned 

volumetric input V t from multi-view video frames at each timepoint t and estimate 3D pose 

from them using a 3D CNN.

As memory limitations restrict the size of the 3D volume (64 × 64 × 64 voxels in our 

case), to increase its spatial resolution, we center the volume at the inferred 3D centroid of 

the animal. This centroid is inferred by triangulating 2D centroids detected in each camera 

view using a standard 2D UNet (Ronneberger, Fischer, & Brox, 2015), except with half the 

number of channels in each convolutional layer. For triangulation, we take the median of all 

pairwise triangulations across views. We then create an axis-aligned 3D grid cube centered 

at the 3D centroid position, which bounds the animal in 3D world space. We use N = 64
voxels per grid cube side, resulting in an isometric spatial resolution of 1.875 mm per voxel.

Here, we briefly review the volume generation process. After initialization, 3D grids 

are populated with 2D image RGB pixel values from each camera using projective 

geometry. With known camera extrinsic (rotation matrix R, translation vector t) and 

intrinsic parameters K, a 2D image ℱ can be unprojected along the viewing rays as 

they intersect with the 3D grid. In practice, rather than performing actual ray tracing, 

the center coordinates of each 3D voxel Xi, j, k is projected onto the target 2D image plane 

by K R ∣ t Xi, j, k and the value of Xi, j, k is set by bilinear sampling from the image at the 

projected point (Kar et al., 2017). The unprojected image volumes from different views 

are concatenated along the channel dimension, resulting in a N × N × N × Ncam * C -sized 

volumetric input, where C is the channel dimension size of each input view (C = 3 for RGB 

images). While we sample directly from 3-channel RGB images to reduce memory footprint 

and computation costs, other approaches unproject features extracted by 2D CNNs (Iskakov 

et al., 2019; Tu, Wang, & Zeng, 2020; Zimmermann et al., 2020).

The unprojected image volumes are then processed by a 3D UNet (implementation details 

in Section 4.5), producing volumetric heatmaps associated with different keypoints. The 

differentiable expectation operation soft argmax (Nibali, He, Morgan, & Prendergast, 2018; 

Sun, Xiao, Wei, Liang, & Wei, 2018) is applied along spatial axes to infer the numerical 

coordinates of each keypoint.

3.2 Unsupervised Temporal Loss

At high frame rates, the per-frame velocity of animals is low and their overall movement 

trajectory should typically be smooth. We encode these assumptions as an unsupervised 

temporal smoothness loss ℒT ⋅  that can be easily integrated with heatmap-based pose 

estimation approaches.
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Consider the inputs to the network to be a set of temporally consecutive chunks T where 

each chunk Tn consists of 3D volumetric representations constructed from c adjacent 

timepoints

Tn = V ti, …, V ti + c − 1 ,

where c specifies the time span covered by the unsupervised loss.

Given the 3D keypoint coordinates predicted by the 3D CNN Jt, j ∣ ti ≤ t ≤ ti + c, 1 ≤ j ≤ NJ

from one temporal chunk Tn, the temporal smoothness loss penalizes the keypoint-wise 

position divergence across consecutive frames, which is equivalent to constraining the 

movement velocity within the temporal window.

ℒT Jt, j = 1
c ∑

t = ti

ti + c − 1 1
NJ

∑
j = 1

NJ
d Jt, j, Jt + 1, j

(1)

where NJ is the number of 3D keypoints and d is the distance metric used for comparing 

displacement across timepoints.

This general formulation does not enforce limitations on the choice of distance metric, but 

empirically we found that L1 distance performed better than L2-norm Euclidean distance. 

Though it is difficult to give a theoretical explanation for this observation, the underlying 

reason could be similar to that for L1 total variation regularization in optical flow estimation. 

Formulating the smoothness constraint as a Laplacian prior allows discontinuity in the 

motion and is well known to be more robust to data outliers compared to quadratic 

regularizers (Wedel, Pock, Zach, Bischof, & Cremers, 2009). We have therefore used an 

L1 distance metric for all experiments presented in the later sections.

3.3 Supervised Pose Regression Loss

The unsupervised temporal loss on its own is insufficient and will result in mode degeneracy 

where the network learns to produce identical poses for all input samples. We therefore 

also include a standard supervised pose regression loss over a small set of labeled frames 

during training. Given the ground-truth and predicted 3D keypoint coordinates Jt and Ĵ t, the 

supervised regression loss is defined as

ℒS(Jt, J t) = 1
NJ

∑
j = 1

NJ
d(Jt, j, J t, j)

(2)

We use L1 distance for computing the joint distances over L2 distance metric based on 

empirical results, which agrees with the results of Sun et al. on 3D human pose estimation 

(Sun et al., 2018).
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4 Experiments

4.1 Dataset

For performance evaluation, we collected a total of five 1152 × 1024 pixels color video 

recordings from 6 synchronized cameras surrounding a cylindrical arena. We direct the 

reader to Appendix B and Supplementary Video 1 for more details on the 3D mouse pose 

dataset. Each set of recordings corresponds to a different mouse (M1, M2, M3, M4, M5). 

M1 and M2 were recorded for 3 minutes and M3, M4, M5 were recorded for 60 minutes. 

The number of manually annotated 3D ground-truth timepoints for 22 body keypoints is n = 

81, 91, 48, 44 and 46 from each recording, respectively (486, 546, 288, 264, and 276 total 

annotated video frames). Out of the 22 keypoints, 3, 4, 6, 6, and 3 locate at the animal’s 

head, trunk, forelimbs, hindlimbs, and tail, respectively. Notice that the two keypoints at 

the middle and end of the tail were excluded from quantitative evaluations presented in this 

paper, as they were often cropped outside the bounds of the 3D grids. This results in a total 

of 20 body keypoints and 22 corresponding body segments used for analysis.

We allocated n = 172 from M1 and M2 for training and n = 48 from M3 for internal 

validation. We report all metrics using data from M4 and M5 (n = 90 labeled timepoints, 

plus unlabeled timepoints for additional temporal and anatomical consistency metrics), 

which were completely held out from training or model selection. We also simulated low 

annotation conditions by randomly selecting 5% (n = 8), 10% (n = 17) and 50% (n = 86) 

from the training samples and compared with the full annotation 100% condition.

4.2 Evaluation Metrics

4.2.1 Localization Accuracy—We adopt the three common protocols used in 3D 

human pose estimation for evaluating the landmark localization accuracy of different 

models.

• Protocol #1: Mean per-joint position error (MPJPE) evaluates the mean joint-

wise 3D Euclidean distances between the prediction and ground truth keypoint 

positions. For J keypoints,

MPJPE(s) = 1
J j

∥ sj − sj
gt ∥ 2

• Protocol #2: Procrustes Analysis MPJPE (PA-MPJPE) reports the MPJPE 

values after rigidly aligning the landmark predictions (translation and rotation) 

with the ground-truth.

• Protocol #3: Normalized MPJPE (N-MPJPE) assesses the scale-insensitive 

MPJPE estimation errors by respectively normalizing the prediction and ground-

truth landmarks by their norm (Rhodin, Spörri, et al., 2018).

4.2.2 Temporal Smoothness—The aforementioned single-frame evaluation metrics 

are inadequate for capturing the importance of temporal smoothness in videos. We therefore 

also report the mean per-joint velocity errors (MPJVE) proposed by Pavllo et al. (Pavllo 

et al., 2019). MPJVE is the mean absolute value of first-order derivative of predicted pose 
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sequences. We used T = 10000 continuous frames from recordings of mouse M5 for this 

evaluation.

MPJVE(s) = 1
T ⋅ j j t = 1

T − 1
|st, j − st + 1, j|

4.2.3 Body Skeleton Consistency—Although not explicitly constrained during 

training, the anatomical consistency of predictions is an important component of model 

tracking performance. Inspired by the analysis by Karashchuk et al. (Karashchuk et al., 

2021), we examined the mean and standard deviation of the estimated length of 22 body 

segments over 10000 continuous frames from M4 for this analysis.

4.3 Training Strategies

To evaluate the influence of temporal training, we designed four different model training 

schemes that were each applied to the 5%, 10%, 50% and 100% annotation conditions.

Baseline/DANNCE (Dunn et al., 2021)—We employ the multi-view volumetric method 

presented by Dunn et al. as the baseline comparison. All baseline models are trained solely 

with the supervised regression L1 loss over the labeled frames.

Baseline + smoothing.—No changes are made during the training; instead, the 

predictions from the baseline models are smoothed in time for each keypoint, with a set 

of different smoothing strategies.

Temporal baseline.—During training, each batch contains exactly one labeled sample 

with three additional unlabeled samples drawn from its local neighborhood. This scheme 

ensures a balance between supervised and unsupervised loss throughout the optimization. 

The models were then jointly trained with ℒS and ℒT.

Temporal + extra.—In addition to the partially labeled training batches used in temporal 

baseline model training, the training set contains Nu completely unlabeled, temporally 

consecutive chunks included only in the unsupervised temporal loss.

For experiments conducted under lower annotation conditions, 5%, 10% and 50%, we use 

respectively 95% Nu = 163 , 90% Nu = 154  and 50% Nu = 86  unlabeled chunks with 

respect to the entire training set. This aimed to match the number of samples used in the 

100% baseline and temporal baseline models. For experiments using 100% of the training 

data, we add 20% Nu = 34  extra unlabeled temporal chunks.

4.4 Comparison with state-of-the-art approaches

We compare the performance of our proposed approach against other contemporary animal 

and human pose estimation methods. Specifically, we have replicated and evaluated the 

following approaches on the mouse dataset:

Li et al. Page 10

Int J Comput Vis. Author manuscript; available in PMC 2024 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2D animal pose estimation.—DeepLabCut (DLC) (Mathis et al., 2018) is a widely 

adopted toolbox for markerless pose estimation of animals, which expanded on the previous 

state-of-the-art method DeeperCut (Insafutdinov, Pishchulin, Andres, Andriluka, & Schiele, 

2016). We followed the default architecture and training configurations using ResNet-50 

as the backbone and optimized the network using sigmoid cross-entropy loss. Following 

the same practice by Mathis et al. (Mathis et al., 2018), the original frames were cropped 

around the mice instead of downsampling. 2D human pose estimation. We implemented 

the SimpleBaseline (Xiao et al., 2018) for its near state-of-the-art performance in 2D human 

pose estimation with simple architectural designs. This method leverages off-the-shelf object 

detectors to first locate the candidate subject(s) and performs pose estimation over the 

cropped and resized regions. Compared to DLC/DeeperCut, additional deconvolutional 

layers are added to the backbone network to generate higher-resolution heatmap outputs.

Multi-view 3D human pose estimation.—Learnable Triangulation (Iskakov et al., 

2019) adopts a similar volumetric approach except that features extracted by a 2D backbone 

network, instead of raw pixel values, are used to construct the 3D inputs. Similar to 

SimpleBaseline, a 2D backbone network processes cropped and resized images, where the 

resulting multi-view features are unprojected on the-fly to construct the volumetric inputs in 

the end-to-end training.

Monocular 3D human pose estimation.—Pavllo et al. (Pavllo et al., 2019) presented 

a training scheme for sparsely labeled videos that also leveraged temporal semi-supervision. 

Instead of using a smoothness constraint, temporal convolutions are performed over 

sequences of predicted 2D poses obtained from off-the-shelf estimators to regress 3D 

poses, with additional supervision from a 3D-to-2D backprojection loss and a bone length 

consistency loss between predictions on labeled and unlabeled frames. Notice that we did 

not specifically train a 3D root joint trajectory model as in the original implementation but 

directly used the ground truth 3D animal centroids for convenience. Without easy access to 

off-the-shelf keypoint detectors for mice, we employed our best performing 2D model to 

obtain initial 2D pose estimates.

In addition to the aforementioned approaches, we have adapted a 2D variant of our proposed 

temporal constraint and applied it to the DLC architecture, similar to DeepGraphPose (Wu 

et al., 2020). Instead of using a final sigmoid activation and optimizing against target 

probability maps, we performed a soft argmax on the resulting 2D heatmaps and applied 

both a supervised regression loss and an unsupervised temporal loss as described in Section 

3.2 and 3.3, except in the 2D pixel space.

For all approaches, ResNet-50 was used as the backbone network if not otherwise specified. 

The 2D mouse bounding boxes were computed from 2D projections of ground-truth 3D 

poses. For 2D approaches, the 2D poses were first estimated separately in each camera view 

and triangulated into 3D using the same median-based protocol as described in Section 3.1. 

The Protocol 1 MPJPE results were reported for each approach under different annotation 

conditions (5%, 10%, 50% and 100%).
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4.5 Implementation Details

We implemented a standard 3D UNet (Ronneberger et al., 2015) with skip connections to 

perform our method’s 3D pose estimation. The number of feature channels is [64, 64, 128, 

128, 256, 256, 512, 512, 256, 256, 128, 128, 64, 64] in the encoder-decoder architecture, 

followed by a final 1 × 1 × 1 convolution layer outputting one heatmap for each joint 

position. The encoder consists of four basic blocks with two 3 × 3 × 3 convolution layers 

with padding 1 and stride 1, one ReLU activation and one 2 × 2 × 2 max pooling for 

downsampling. The decoder consists three downsampling blocks, each with one 2 × 2 × 

2 transpose convolution layer of stride 2 and two 3 × 3 × 3 convolution layers. The 3D 

keypoint coordinates were estimated by applying soft argmax (Sun et al., 2018) over the 

predicted heatmaps. We did not explore additional 3D CNN architectures, as this is not the 

focus of the paper, but we expect that the semi-supervised training strategy should generalize 

easily to different model architecture, as demonstrated for 2D in later sections (Section 1).

We trained all models using an Adam optimizer (β1 = 0.9, β2 = 0.999, ϵ = 1e − 7) with a 

constant learning rate of 0.0001 for a maximum of 1200 epochs. We used a mini-batch 

size of 4. We did not use an early stopping for the training; instead, we used the model 

checkpoint with the best internal validation MPJPE value for evaluation on the test set.

Empirically, we found that a warm-start strategy that only incorporated the unsupervised 

loss during a later stage performed better for training the temporal+extra models. A similar 

strategy was also used by Xiong et al. (Xiong, Fan, Grauman, & Feichtenhofer, 2021). The 

temporal+extra models were only supervised by the pose regression loss during the first 

third of the training epochs, and the unsupervised temporal loss was added afterwards.

5 Results and Discussion

In this section, we quantitatively and qualitatively evaluate the performance gains of our 

semi-supervised approach.

5.1 Localization Accuracy

We first validated the performance of our semi-supervised approach across 5%, 10%, 50% 

and 100% annotation conditions using MPJPE and its two variants (Fig.3). Compared 

to fully supervised models, the temporal consistency constraint generally improved the 

keypoint localization accuracy, especially in the low annotation conditions. The temporal 

baseline models improved the MPJPE by 3.0% and 34.8% respectively using 5% and 10% 

of the training samples. With additional temporal supervision in “temporal+extra” models, 

our approach improved localization errors by 36.5% and 38.6% for the same low annotation 

condition.

To confirm that this improvement in localization accuracy could not simply be obtained 

via post-processing, we tested deliberate smoothing of baseline model predictions using 

different smoothing methods and window sizes (the full comparisons are presented in 

Appendix A1). Despite the obvious decrease in trajectory oscillations from temporal 

smoothing (Appendix A Fig.7), no type of post hoc smoothing improved localization 

accuracy more than 1%. This suggests that the unsupervised temporal constraint encourages 
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more selective and flexible adaptation of the spatio-temporal features, rather than naive 

filtering.

5.2 Temporal Smoothness

We first performed a qualitative examination of the movement trajectories of four different 

keypoint positions over 1000 frames (Fig.4 (a)). Given the same amount of labeled training 

data, the temporal approach produced noticeably smoother keypoint movement trajectories 

compared to baseline.

We then quantitatively evaluated MPJVE over a longer period of 10000 frames (Fig.4 (b)). 

The inclusion of temporal supervision improved MPJVE by 15.6%, 29.6%, 18.4% and 

24.3% for each of the four annotation conditions and by 67.8%, 59.6%, 36.1% and 22.0% 

when additional unlabeled chunks were added. Post hoc temporal smoothing achieved 

superior trajectory smoothness as indicated by MPJVE (gray lines), but only resulted in 

marginal improvement in MPJPE. In the meanwhile, the temporal semi-supervised models 

improved both MPJVE and MPJPE when compared to the baseline models. This reiterates 

the importance of having a set of comprehensive and complementary performance metrics: 

MPJVE metric should not be interpreted alone but rather in concert with basic localization 

accuracy metrics.

5.3 Body Skeleton Consistency

We also quantitatively analyzed the length variations of different body segments of 10000 

consecutive frames (Fig.5). For simplicity, we grouped the 22 body segments into four 

general categories: head, trunk, forelimb and hindlimb, and selected two from each category 

for presentation.

While the fully supervised models struggled to preserve anatomical consistency in low 

annotation conditions, temporal semi-supervision helped to produce more consistent body 

structure. The temporal models exhibited less variability in predicted body segment lengths 

and more closely matched ground-truth average values, especially for the head and trunk. 

For body segments with higher coefficients of variation in the ground-truth data (forelimb, 
hindlimb), the addition of temporal supervision generally decreased such variability.

5.4 Qualitative Performance on Difficult Poses

In practice, we have identified that baseline models are prone to producing inaccurate 

keypoint predictions in low annotation regimes, especially for the limbs, when animals are in 

specific rearing poses. Aside from changes in appearance, such behaviors take place at lower 

frequencies than others and are thus underrepresented in labeled training data. We therefore 

also presented qualitative visualization results for one example sequence of rearing behavior 

frames.

While the baseline 10% model predicted malformed skeletons due to the limited label 

availability (Fig.6 blue bounding boxes), the addition of temporal supervision produced 

marked improvements in physical plausibility. With supervision from additional unlabeled 

temporal chunks, the “temporal+extra” model produced qualitatively better predictions, even 
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when compared to the 100% baseline model. In cases where the fully supervised baseline 

model made inaccurate estimates of difficult hindlimb positions (Fig.6 red bounding box), 

the semi-supervised approach, with only 10% of the labeled data, better recovered the 

overall posture.

5.5 Quantitative Comparisons with Other Approaches

We quantitatively examined the proposed method’s performance against other widely-

adopted animal and human pose estimation approaches, as summarized in Table.1.

Methods for post hoc triangulation of 2D poses.—Our proposed method 

consistently outperforms approaches that first independently estimate 2D pose in each 

camera view and reconstruct the 3D poses via post hoc triangulation. Compared to 

implicit optimization against heatmap targets, we observed that adapting existing 2D 

architectures to direct regression of keypoint coordinates effectively improved the overall 

metric performance (Table.1 “DLC + soft argmax”). While approaches like SimpleBaseline 

appeared sensitive to the quality of 2D bounding boxes, the soft argmax approach was 

able to operate robustly over full-sized images (i.e no cropping or resizing). Applying 

the 2D variant of our proposed temporal semi-supervision method further improved the 

performance under all annotation conditions, which implies that the temporal constraint 

behaves as a powerful prior for recovering plausible poses in both 2D and 3D.

The monocular 3D pose method.—Considering the inherent ambiguities in monocular 

3D representations, it was expected that performance from monocular estimation cannot 

achieve scientific-level resolutions comparable to multi-view methods, even with 100% of 

training data and regularization from additional temporal information. These observations 

are consistent with what has been reported in previous literature (Bolaños et al., 2021; 

Iskakov et al., 2019).

Multi-view 3D pose estimation methods.—We did not observe particular advantages 

of using 3D volumes constructed from 2D features maps vs. raw pixel values. This 

likely implies that feature-based volumetric approaches require more accurate 2D feature 

extraction, via backbone networks pretrained on large-scale 2D pose datasets (Tu et al., 

2020). For the human pose case, strong off-the-shelf 2D pose estimators already exist, 

whereas such options are limited for animal applications. Our results suggest that volume 

construction directly from pixels, i.e., the strategy used in our temporal semi-supervision 

method, is the more suitable choice for 3D animal pose estimation in cases where species-

specific training data are scarce. This conclusion should nevertheless be re-evaluated in the 

future once larger 2D animal pose datasets become available.

6 Conclusion

In this paper, we present a state-of-the-art semi-supervised approach that exploits implicit 

temporal information to improve the precision and consistency of markerless 3D mouse 

pose estimation. The approach improves a suite of metrics, each providing a complementary 

measure of model performance, and the approach is particularly effective when the labeled 

data are scarce. Along with the newly released mouse pose dataset, these enhancements will 
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facilitate ongoing efforts to measure freely moving animal behavior across different species 

and environments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments.

We thank Diego Aldarondo, Ugne Klibaite, and members of the t.Dunn lab for helpful and engaging discussions.

• Funding:

T.W.D. acknowledges support from the National Institutes of Health (R01GM136972) and the McKnight 
Foundation Technological Innovations in Neuroscience Award.

Appendix A Additional Quantitative Results

We provide additional metric evaluation results using different smoothing strategies as 

discussed in section 5.1. We also qualitatively demonstrate the effects of such post hoc 

smoothing on the original trajectories.

Appendix B The Multi-View 3D Mouse Pose Dataset

We provide supplementary figures that demonstrate the released 3D mouse pose dataset.

Table A1
Complete localization metric comparison.

We recorded the changes in MPJPE, PA-MPJPE and N-MPJPE after applying 12 different 

post hoc smoothing strategies. We used either moving average smoothing (“MovAvg”) or 

Gaussian smoothing (“G”), with window size of 5, 10, 15, 20, 25 or 30 frames.

MP 
JPE 

(mm)

Baseline MovAvg
5

MovAvg
10

MovAvg
15

MovAvg
20

MovAvg
25

MovAvg
30

G
5

G
10

G
15

G
20

G
25

G
30

Temp.
baseline

Temp.
+extra

5% 12.8754 12.8332 12.8077 12.7994 12.7933 12.7887 12.7871 12.8399 12.8229 12.8106 12.8016 12.7949 12.7890 12.4940 8.1706

10% 10.9085 10.8740 10.8511 10.8138 10.7925 10.7829 10.7826 10.8872 10.8613 10.8390 10.8204 10.8054 10.7938 7.1162 6.6927

50% 4.9912 4.9704 4.9823 5.0063 5.0575 5.1187 5.1964 4.9767 4.9664 4.9677 4.9797 5.0021 5.0315 4.8347 50461

100% 4.3614 4.3148 4.3371 4.3533 4.4126 4.4757 4.5646 4.3329 4.3129 4.3158 4.3301 4.3530 4.3832 4.3749 4.1409

PA-
MP 
JPE 

(mm)

Baseline MovAvg
5

MovAvg
10

MovAvg
15

MovAvg
20

MovAvg
25

MovAvg
30

G
5

G
10

G
15

G
20

G
25

G
30

Temp.
baseline

Temp.
+extra

5% 10.8056 10.7785 10.7537 10.7461 10.7439 10.7363 10.7370 10.7846 10.7694 10.7569 10.7497 10.7444 10.7407 11.0714 6.6882

10% 9 4846 9.4307 9 3968 9.3564 9.3382 9.3320 9.3324 9.4464 9.4162 9.3894 9.3688 9.3537 9.3436 6.4990 5.8894

50% 4.8159 4.7846 4.7784 4.7839 4.8048 4.8404 4.8830 4.7971 4.7803 4.7736 4.7729 4.7797 4.7929 4.6510 4.7634

100% 4.2863 4.2300 4.2188 4.2139 4.2360 4.2751 4.3181 4.2542 4.2240 4.2121 4.2098 4.2164 4.2291 4.2831 3.9797

N-
MP 
JPE 

(mm)

Baseline MovAvg
5

MovAvg
10

MovAvg
15

MovAvg
20

MovAvg
25

MovAvg
30

G
5

G
10

G
15

G
20

G
25

G
30

Temp.
baseline

Temp.
+extra

5% 12.7044 12.6620 12.6374 12.6235 12.6153 12.6038 12.5988 12.6694 12.6513 12.6375 12.6271 12.6184 12.6104 12.3942 8.0054

10% 10.8479 10.8082 10.7836 10.7430 10.7199 10.7043 10.6997 10.8236 10.7949 10.7704 10.7505 10.7338 10.7202 7.0648 6.6436
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50% 4.9995 4.9775 4.9898 5.0132 5.0582 5.1143 5.1836 4.9847 4.9750 4.9768 4.9879 5.0081 5.0339 4.8756 5.0439

100% 4.3996 4.3548 4.3716 4.3836 4.4361 4.4924 4.5712 4.3731 4.3522 4.3529 4.3639 4.3833 4.4095 4.4150 4.1613

Fig. 7. Visualization of different smoothing strategies.
The thick green line corresponds to the original trajectory predicted by the 10% baseline 

model.

Fig. 8. 
Multi-view captures from the released mouse dataset.
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Fig. 9. 
Multi-view captures from the released mouse dataset (overlaid with ground-truth 

annotations).

• Availability of data and materials:

The dataset is hosted using the Duke Research Data Repository and the detailed instructions 

for accessing the training dataset are available at https://github.com/tqxli/dannce-pytorch.
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Fig. 1. Method Overview.
Our multi-view volumetric approach constructs a 3D image feature grid using projective 

geometry for each timepoint in videos. A 3D CNN (UNet) processes batches of temporally 

contiguous volumetric inputs and directly predicts 3D keypoint positions. We then combine 

a traditional supervised regression loss with an unsupervised temporal consistency loss for 

training. While the regression loss ℒS is applied only on labeled video frames, which are 

sparsely distributed across video recordings, the unsupervised temporal loss ℒT operates 

over both labeled and unlabeled frames.
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Fig. 2. Ambiguity in absolute position error analysis.
(a) In this simulated example, we present three noisy trajectories with the same absolute 

point position errors with respect the true spiral trajectory. (b) Histogram of body segment 
length variation in manually labeled mouse data. We compute the coefficient of variation 

(CV) for the lengths of 22 body segments. While CV values should ideally be close to 0, we 

instead observed notable amounts of length variation in all body segments. This illustrates 

the noise present in manually labeled 3D poses.
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Fig. 3. Qualitative comparison of landmark localization performance over different annotation 
conditions.
We randomly selected 5% (n = 8), 10% (n=17) and 50% (n=85) of the training set to 

simulate low annotation regimes. Temporal supervision generally improved performance on 

all three localization protocols compared to the baseline models, especially with limited 

access to the training data. Similar improvement cannot be achieved via post hoc smoothing 

of the predicted movement trajectories.
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Fig. 4. Analysis of temporal smoothness.
(a) Selected coordinate velocities of four different keypoint positions (snout, medial 

spine, right knee, left forehand) over 1000 consecutive frames from test mouse M4. (b) 

Quantitative MPJVE results across different training schemes over 10000 frames from test 

mouse M5. Our temporal models yield more stable movement trajectories than the baseline 

fully supervised models.
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Fig. 5. Body segment length consistency.
Plots reporting the statistics of eight different body segment lengths. The solid black 

horizontal line in each plot represents the mean body segment length computed from 

manually labeled ground-truth, and the horizontal dashed lines encompass corresponding 

standard deviations. Error bars are standard deviation.
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Fig. 6. Qualitative visualization on difficult rearing poses.
All 3D visualizations are plotted on the same spatial scale. With 10% of the training 

samples, the fully supervised baseline model consistently yields inaccurate predictions (blue 

bounding boxes). Even with 100% of the training samples, the model is still prone to making 

mistakes on limb landmarks (red bounding box). Many of these errors are corrected via 

temporal supervision when using just 10% of the labeled data, .
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