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Abstract 

Current predictors of DNA-binding residues (DBRs) from protein sequences belong to two distinct groups, those trained on binding annotations 
extracted from str uct ured protein-DNA comple x es (str uct ure-trained) vs. intrinsically disordered proteins (disorder-trained). We complete the 
first empirical analysis of predictive performance across the str uct ure- and disorder-annotated proteins for a representative collection of ten 
predictors. Majority of the str uct ure-trained tools perform well on the str uct ure-annotated proteins while doing relatively poorly on the disorder- 
annotated proteins, and vice v ersa. Se v eral methods make accurate predictions for the str uct ure-annotated proteins or the disorder-annotated 
proteins, but none performs highly accurately for both annot ation t ypes. Moreo v er, most predictors mak e e x cessiv e cross-predictions f or the 
disorder-annotated proteins, where residues that interact with non-DNA ligand types are predicted as DBRs. Motivated by these results, we 
design, v alidate and deplo y an inno v ativ e meta-model, h ybridDBRpred, that uses deep transf ormer netw ork to combine predictions generated 
by three best current predictors. HybridDBRpred provides accurate predictions and low levels of cross-predictions across the two annotation 
t ypes, and is st atistically more accurate than each of the ten tools and baseline met a-predictors that rely on a v eraging and logistic regression. We 
deplo y h ybridDBRpred as a con v enient w eb serv er at http://biomine.cs.v cu.edu/serv ers/h ybridDBRpred/ and provide the corresponding source 
code at https:// github.com/ jianzhang-xynu/ hybridDBRpred . 
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rotein-DNA interactions are central for many cellular func-
ions including transcription, gene regulation, DNA repair,
nd chromatin remodelling ( 1 ,2 ). They are annotated and
tudied using a variety of experimental methods, such as
ffinity purification, electrophoresis mobility shift assays,
hromatin immunoprecipitation, CRISPR-Cas9-based tech-
iques and atomic force microscopy ( 3–5 ). Molecular-level
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details are learned using X-ray crystallography, electron mi-
croscopy, and nuclear magnetic resonance, with around 7000
structures of protein-DNA complexes in PDB ( 6 ). However,
these techniques do not keep up with a rapid accumula-
tion of the protein and DNA sequence data ( 7 ,8 ), motivating
the development and use of fast computational predictors of
protein-DNA interactions from protein sequences ( 9–14 ) and
DNA sequences ( 15 ,16 ). These methods are developed using
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a limited amount of the experimental data and can be applied
to predict interactions in a high-throughput manner for the
uncharacterized sequences. The DNA sequence-based predic-
tors were summarized and compared in a recent survey ( 15 ),
while similar analysis is lacking for the protein sequence-based
tools. 

The protein sequence-based predictors include protein-level
and residue-level tools. The protein-level methods predict
whether a target protein sequence interacts with DNA. A few
examples of recently released tools that predict DNA-binding
proteins include StackDPPred ( 17 ), iDRBP_MMC ( 18 ), Tar-
getDBP ( 19 ,20 ), DeepTFactor ( 21 ), RF-SVM ( 22 ), CNN-Pred
( 23 ) and TPSO-DBP ( 24 ). We focus on the residue-level tools
that identify DNA binding residues (DBRs) in a given pro-
tein sequence since they provide more detailed information
compared to the protein-level approaches. Using past surveys
on this topic ( 9–14 ) and a manual literature search, we iden-
tified a comprehensive collection of 34 sequence-based pre-
dictors of DBRs. In chronological order, they include DBS-
pred ( 25 ), DBS-PSSM ( 26 ), BindN ( 27 ), DNABindR ( 28 ), DP-
bind ( 29 ,30 ), method by Ho et al. ( 31 ), DISIS ( 32 ), BindN-
RF ( 33 ), DBindR ( 34 ), DBD-Threader ( 35 ), ProteDNA ( 36 ),
BindN+ ( 37 ), NAPS ( 38 ), MetaDBSite ( 39 ), DNABR ( 40 ), Tar-
getS ( 41 ), SNBRFinder ( 42 ), DisoRDPbind ( 43 ,44 ), DQPred-
DBR ( 45 ), Dang et al. ( 46 ), TargetDNA ( 47 ), PRODNA ( 48 ),
DRNApred ( 49 ), PDRLGB ( 50 ), ENSEMBLE-CNN ( 51 ),
method by Zhang et al. ( 52 ), NucBind ( 53 ), hybridNAP ( 11 ),
DNAPred ( 54 ), ProNA2020 ( 55 ), NCBRPred ( 56 ), MTD-
site ( 57 ), DNAgenie ( 58 ) and DeepDISOBind ( 59 ). Some
of these tools provide a broader scope by predicting DNA
binding and RNA binding residues (BindN ( 27 ), BindN+
( 37 ), NAPS ( 38 ), DRNApred ( 49 ), NucBind ( 53 ) and NCBR-
Pred ( 56 )); DNA, RNA and protein binding residues (hybrid-
NAP ( 11 ), ProNA2020 ( 55 ), DisoRDPbind ( 43 ) and Deep-
DISOBind ( 59 )); and DNA, RNA, carbohydrate and pep-
tides binding residues (MTDsite ( 57 )). Moreover, TargetS pre-
dicts residues that interact with 12 types of ligands including
DNA, nucleotides, metal ions and the heme group. Virtually
all of these methods utilize machine learning algorithms to
derive their models. The early predictors rely on simple algo-
rithms, such as Naïve Bayes (DNABindR) and shallow neu-
ral networks (DBS-pred and DBS-PSSM). Subsequent tools
use more sophisticated algorithms including support vector
machines (DQPred, ProteDNA, TargetDNA, DP-bind, DISIS,
ProNA2020, NucBind, BindN, BindN+, SNBRFinder, Tar-
getS, NCBRPred and DNAPred), decision trees and forests
(NAPS, PDRLGB, DNABR, BindN-RF, and DBindR), and
logistic regression (DisoRDPbind, DRNApred, and hybrid-
NAP). Majority of the newest methods apply deep neu-
ral networks (MTDsite, DeepDISOBind, NCBRPred and
ENSEMBLE-CNN). A common theme is that they train their
models from training datasets using a process that mini-
mizes the difference between their predictions and the known
ground truth annotations. The trained models are then applied
to predict DBRs for sequences outside the training datasets. 

Based on their training datasets, they can be divided into
two distinct groups: structure-trained predictors versus intrin-
sic disorder-trained predictors. The former group uses train-
ing datasets where annotations of DBRs are extracted from
structures of protein–DNA complexes, typically using data
from the PDB ( 6 ,60 ) and the PDB-derived BioLip ( 61 ,62 )
databases. The latter group utilizes training datasets col-
lected from the DisProt database ( 63 ), where DBRs are lo-
cated in the intrinsically disordered regions (IDRs). IDRs 
are segments in a protein sequence that do not have a sta- 
ble three-dimensional structure under physiological condi- 
tions ( 64–66 ), which are especially abundant in eukaryotes 
( 67 ,68 ). DBRs in IDRs are different from structured DBRs 
in several ways. They can interact with several different lig- 
ands by folding into different conformations, are enriched 

in disorder-promoting amino acids and have larger surface 
area ( 69–71 ). Furthermore, the importance of intrinsic disor- 
der in the context of protein-DNA interactions was demon- 
strated in numerous studies ( 72–75 ). We identify two intrin- 
sic disorder-trained predictors of DBRs, DisoRDPbind and 

DeepDISObind. This low number can be explained by the 
fact that the corresponding experimental annotations were 
introduced relatively recently ( 76 ). The remaining 32 meth- 
ods are structure-trained and none of the 34 predictors are 
trained using annotations that span across structured and dis- 
ordered states. The substantial differences between the struc- 
tured and disordered states suggests that the current predic- 
tors may provide poor results for the other type of annota- 
tions. This claim is supported by recent studies that empir- 
ically found that structure-trained (disorder-trained) predic- 
tors of protein-binding residues and RNA-binding residues 
provide inaccurate predictions for the disorder-annotated 

(structure-annotated) proteins ( 77 ,78 ). However, the current 
structure-trained predictors of DBRs were never assessed on 

the disorder-annotated proteins and vice versa. Furthermore,
recent works identify a cross-prediction problem where amino 

acids interacting with a given partner type are cross-predicted 

as interacting with different partner types, resulting in partner- 
agnostic predictions ( 49 , 53 , 56 , 77 , 79 , 80 ). In our case, this
means that amino acids interacting with non-DNA partners 
(e.g. proteins and RNA) are predicted as DBRs. This may hap- 
pen because sequence-based predictors of DBRs are typically 
trained on datasets composed of DNA-binding proteins, with 

few to no proteins that interact with the non-DNA partners.
Thus, they might not be able to differentiate between different 
ligand types. While a few recent predictors of DBRs, including 
DRNApred, NCBRPred, and DisoRDPbind, were designed to 

reduce cross-predictions, a broad study that investigates this 
aspect is also missing. 

Table 1 summarizes surveys that discuss predictors of 
protein–DNA interactions from protein sequences to exam- 
ine whether literature already covers the above-mentioned as- 
pects. The five reviews consider between 8 and 14 sequence- 
based predictors of DBRs and provide insightful information 

about their models, inputs and datasets that they utilize ( 9–
14 ). Three reviews perform comparative analysis, but they 
cover a rather narrow subset of predictors of DBRs. This is 
because they focus on a broader spectrum of sequence- and 

structure-based predictors of DNA, RNA, and protein bind- 
ing residues ( 10 , 11 , 13 ). Importantly, the five surveys do not 
discuss the disorder-trained predictors and recent methods 
that were published after 2018, do not evaluate the predic- 
tors on the disorder-annotated interactions, and do not inves- 
tigate the cross-predictions. We study a substantially larger 
number of predictors, including nine recently published meth- 
ods, and we address the open questions regarding predictive 
performance of the disorder-trained vs. structure-trained pre- 
dictors. We empirically evaluate a representative set of ten 

sequence-based methods that include five structure-trained 

predictors of DBRs, both disorder-trained predictors of DBRs,
and three disorder-trained methods that predict interactions 
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Table 1. Comparison of surv e y s that co v er sequence-based predictors of DBRs 

Empirical evaluation 

Article 
Predictor type 

covered 

# 
sequence-based 
DBR predictors 

Recent 
predictors 

(2019–2023) 

Includes 
evalua- 

tion 
# evaluated 
predictors 

Covers 
structured 

& 

disordered 
data 

Test data 
dissimilar 

from 

training 
data 

Assesses 
cross- 

predictions 

This survey Structure- and 
disorder-trained 

34 9 Yes 10 Yes Yes Yes 

( 11 ) Structure-trained 9 0 Yes 3 No No No 
( 12 ) Structure-trained 8 0 No N / A N / A N / A N / A 

( 10 ) Structure-trained 14 0 Yes 5 No Yes No 
( 13 ) Structure-trained 12 0 Yes 5 No Yes No 
( 14 ) Structure-trained 12 0 No N / A N / A N / A N / A 

( 9 ) Structure-trained 11 0 No N / A N / A N / A N / A 
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ith other partner types. We use a new test dataset that in-
ludes structure- and disorder-annotated proteins that share
ow similarity to the training datasets of the evaluated meth-
ds and some of which interact with the non-DNA partners,
uch as RNA and proteins. We use these annotations to com-
aratively assess the cross-predictions. Finally, driven by re-
ults of this analysis, we design, assess and release a new
eep neural network-based meta-predictor, hybridDBRpred
 hybrid network for D NA- B inding R esidue pred iction), that
rovides accurate predictions for the structure- and disorder-
nnotated proteins. 

aterials and methods 

election of predictors 

e select a representative subset of the sequence-based pre-
ictors of DBRs. We focus on methods that are relatively re-
ent, publicly available and sufficiently fast to predict a large
ataset. More specifically, they must satisfy the following cri-
eria: (i) published on or after 2010; (ii) the server or code was
ublicly available and functional when we collected predic-
ions; (iii) output predictions for an average length sequence
300 amino acids) in < 10 min; (iv) output real-valued propen-
ities for DNA-binding and binary predictions for each amino
cid, so their results can be evaluated with commonly used
etrics. Consequently, we select five structure-trained meth-
ds: BindN+ ( 37 ), TargetS ( 41 ), TargetDNA ( 47 ), DNAPred
 54 ) and DNAgenie ( 58 ); and both disorder-trained methods,
isoRDPbind ( 43 ) and DeepDISOBind ( 59 ). These methods

nclude the two most recent predictors: the structure-trained
NAgenie and the disorder-trained DeepDISOBind. Using re-

ent results from the CAID assessment ( 81 ), we supplement
he disorder-trained DisoRDPbind and DeepDISOBind with
hree well-performing disorder-trained methods that satisfy
he criteria and predict disordered binding residues, fMoRF-
red ( 82 ), ANCHOR2 ( 83 ) and MoRFCHiBi ( 84 ). While
hese three methods were not originally designed to pre-
ict DBRs, we investigate whether they can be used for this
urpose. 

atasets 

e train and test the hybridDBRpred method on datasets
hat cover structure-annotated and disorder-annotated pro-
eins, and which include a sufficiently large number of residues
hat interact with the other / non-DNA ligand types to as-
sess the cross-predictions. They include the training dataset
that we use to train a machine-learning model, the valida-
tion dataset that we utilize to optimize predictive performance
of this model, and the test dataset that we apply to compare
performance with the current methods. We follow procedures
from related studies to compile these datasets ( 80 ,85 ). Briefly,
this means that we use full protein sequences where the bind-
ing annotations are mapped across different protein–DNA
complexes that share the same protein into the same UniProt
sequence using SIFTS ( 86 ), increasing their quality and
completeness. 

First, we collect the structure-based annotations of inter-
actions from BioLip ( 62 ,87 ), which in turn processes data
from PDB, and the disorder-based annotations from DisProt
( 63 ). Next, we cluster the collected proteins together with
the combined set of training proteins for the 10 selected pre-
dictors (BindN+, T argetS, T argetDNA, DNAPred, DNAgenie,
fMoRFpred, DisoRDPbind, ANCHOR2, MoRFCHiBi and
DeepDISOBind) at 25% similarity using Blastclust ( 88 ). We
pick one (the most recently released) protein from each clus-
ter, which ensures that the selected proteins uniformly sam-
ple the sequence space and share low similarity. We select test
proteins from the clusters that exclude any of the training pro-
teins. Consequently, we collect 39 DNA-binding proteins and
396 proteins that interact with other ligand types, with the
2:1 rate of structure- vs. disorder- annotated proteins across
both protein sets. The test dataset includes 435 proteins and
201 154 residues, with 2940 DBRs (1.5%) and 19 755 amino
acids that interact with other ligand types (9.8%). 

We source the training and validation datasets from clus-
ters that include the training proteins of the 10 selected pre-
dictors and which exclude clusters used to pick the test pro-
teins. This means that the training and validation proteins
share low ( < 25%) similarity with the test proteins. We en-
sure that the validation dataset has similar numbers of the
DNA-binding proteins when compared with the test dataset,
which means that we select 13 disorder-annotated and 26
structure-annotated DNA-binding proteins into this dataset.
We divide the remaining proteins proportionally between
the training and validation dataset. Consequently, the train-
ing dataset has 591 proteins and 241 284 residues, with
4398 DBRs (1.82%) and 22 030 amino acids that interact
with other ligand types (9.13%). The validation dataset in-
cludes 267 proteins and 116244 residues, with 2232 DBRs
(1.92%) and 9960 amino acids that interact with other ligand
types (8.57%). Supplementary Table S1 provides a detailed

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1131#supplementary-data
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breakdown of the three datasets, which are freely available at
http:// biomine.cs.vcu.edu/ servers/ hybridDBRpred . 

Assessment metrics and statistical analysis 

Evaluation is done at the residue-level and assesses the qual-
ity of the predicted real-valued propensities for DNA-binding
and binary predictions. We evaluate propensities with the
commonly used Area Under the ROC Curve (AUC). More-
over, motivated by the fact that DBRs constitute a small
fraction of the residues (1.5%) and inspired by past studies
( 11 , 49 , 58 , 77 , 80 ), we also compute AULC (Area Under the
Low false positive rate part of the ROC Curve). AULC quanti-
fies AUC for arguably the most useful part of the curve where
the number of predicted DBRs does not exceed the actual
number of DBRs. Since AULC is a relatively small number, we
compute AULCratio that divides AULC of a given method by
the AULC of a random predictor. This way, AULCratio = 1 in-
dicates a prediction that is equivalent to a random result while
higher AULCratio quantifies the rate of improvement over the
random result, e.g. AULCratio equals 2 when a given result is
twice better than a random predictor. We evaluate the binary
predictions (binds DNA versus does not bind DNA) using sev-
eral complementary metrics ( 80 ): 

Sensitivity = TPR = TP / ( TP + FN ) 

FPR (false positive rate) = 1 − Specificity = FP / ( TN + FP ) 

F1 = 2( TPR × (1 − FPR )) / ( TPR + (1 − FPR ) 

where TP, TN, FP and FN indicate the number of true posi-
tives (correctly predicted DBRs), true negatives (correctly pre-
dicted non-DBRs), false positives (non-DBRs incorrectly pre-
dicted as DBRs), and false negatives (DBRs incorrectly pre-
dicted non-DBRs), respectively. We derive binary predictions
from the propensities using a threshold, where residues with
propensities > threshold are assumed to bind DNA and the
remaining residues are assumed not to bind. We standardize
the thresholds across predictors to allow for reliable side-by-
side comparisons. In particular, we use several thresholds to
compare results for diverse predictive scenarios including low
FPRs at 0.1 and 0.2 (given the low fraction of DBRs), and high
sensitivities of 0.5 and 0.7. 

Consistent with the assessments in several related studies
( 10 , 11 , 49 ), we evaluate false positives in two distinct cate-
gories, cross-predictions when they occur for residues that
interact with the non-DNA ligands vs. over-predictions that
we measure for residues that are not annotated to bind any
ligands. Correspondingly, we compute two metrices: cross-
prediction rate (CPR) = F P non −DNA 

/ N non −DNA 

, which quan-
tifies the fraction of residues that bind non-DNA ligands
that are predicted as DBRs, and over-prediction rate (OPR)
= F P non −binding / N non −binding , that is the fraction of non-binding
residues predicted as DBRs among all non-binding residues.
Similar to AULCratio, to ease interpretation of these values
we report CPRratio and OPRratio that are computed as the
CPR and OPR of a random predictor divided by the CPR and
OPR of the evaluated method, respectively. This way, the val-
ues of the two ratios quantify the rate of improvement over
the random result. We also assess the propensities using the
area under the cross-prediction curve (AUCPC) and the area
under the over-prediction curve (AUOPC), which analyze the
relation between CPR and TPR, and between OPR and TPR,
respectively . Importantly , higher AUOPC and AUCPC values
mean that the amount of the over-predictions and cross pre- 
dictions is higher / worse. 

Lastly, we quantify statistical significance of differences be- 
tween results produced by different predictors. This analy- 
sis finds whether one method provides consistently better re- 
sults when compared with another tool over a broad range of 
different datasets. We perform 100 random selections of 20 

DNA-binding and 40 non-DNA binding proteins, with equal 
split of the structure- and disorder-annotated proteins, from 

the benchmark dataset. We evaluate statistical significance of 
differences over these 100 paired results using the Student’s 
t -test if the measurements are normal based on the Anderson–
Darling test at 0.05 significance ( 89 ); otherwise we apply the 
Wilcoxon rank-sum test. We assume that the difference is sig- 
nificant if the resulting P -value < 0.01. This is consistent with 

recent related works ( 10 , 49 , 58 , 59 , 77 ). 

Architecture of the hybridDBRpred 

Motivated by our empirical results that reveal that none of the 
current tools predicts accurately across the disorder-annotated 

and structure-annotated DNA-binding proteins, we design an 

innovative meta-predictor with the objective to significantly 
improve predictive performance. This meta-method utilizes a 
deep neural network to combine results generated by three 
complementary predictors of DBRs that include disorder- 
trained method (DisoRDPbind) and two structure-trained 

methods (DNAPred and DNAgenie). These methods produce 
accurate results for different proteins and different sequence 
regions (structure vs. disorder-trained), and so an effective 
way to combine their results requires identifying these dif- 
ferences using sequence-derived information. Consequently,
we utilize three groups of inputs: (i) amino acid-level predic- 
tions of DBRs; (ii) amino acid-level hallmarks of DBRs that 
can be derived from the sequence ( 11 ), such as polarizability,
charge, hydrophilicity, propensity for intrinsic disorder ( 90 ),
solvent accessibility that we predict with the quick and accu- 
rate ASAquick ( 91 ), and putative intrinsic disorder that we 
generate using popular and fast IUPred3 and (iii) aggregate 
features that target detection of IDRs by calculating propen- 
sity for disorder for sequence segments. We detail these inputs 
in the Suppl. Table S2. Altogether, we introduce four innova- 
tions to generate accurate meta-predictions. In particular, we 
(i) design feature group 3 that facilitates detection of IDRs 
since disorder-trained methods are biased to perform better 
for the disorder-annotated proteins while structure-trained 

proteins tend to be more accurate for the structure-annotated 

proteins; (ii) use a sliding window to present the amino acid- 
level feature in groups 1 and 2 to the model, which provides 
useful context for the selection of the best input prediction 

of DBRs; (iii) utilize modern transformer modules to imple- 
ment the deep neural network and (iv) train the transformer 
network using the binary cross-entropy loss function. 

We summarize the architecture of our deep meta-predictor 
in Figure 1 . First, we convert the protein sequence into the se- 
quence profile. This profile includes the input groups 1 and 

2, which total to 10 features that we process using a slid- 
ing window of size 15, and which we combine with 20 fea- 
tures from the input group 3 (light green box in Figure 1 ).
Next, we feed the sequence profile into a deep transformer 
network ( 92 ) that consists of three stacked transformer mod- 
ules (light yellow block in Figure 1 ). Each transformer includes 
a self-attention unit connected to a feedforward layer that is 

http://biomine.cs.vcu.edu/servers/hybridDBRpred


Nucleic Acids Research , 2024, Vol. 52, No. 2, e10 PAGE 5 OF 13 

Figure 1. The topology of the hybridDBRpred predictor. 
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ollowed by a normalization layer before feeding into the sub-
equent transformer. We pass the normalized output of the
ast transformer to the fully connected feed forward network
hat we use to reduce the multidimensional latent space pro-
uced by the transformers into the predicted DNA-binding
ropensity (light blue box in Figure 1 ). The feed forward net-
ork gradually reduces the latent space from 20, to 10, to
 and eventually to the one neuron which outputs the bind-
ng propensity. We train this architecture using Pytorch with
he popular Adam optimizer and the binary cross-entropy loss
unction. We set the learning rate and batch size to 0.0001
nd 128, respectively. We apply the binary cross-entropy loss
unction ( 93 ) instead of the default mean absolute error (L1),
hich is motivated by the use of the former function in several

ecent related studies ( 94–96 ). The binary cross-entropy loss
unction maximizes the likelihood of making correct predic-
ions, penalizes incorrect predictions (large differences from
he ground truth) more substantially than near-correct pre-
ictions, and converges faster. 

esults and discussion 

omparative assessment of predictive performance

e primarily focus on investigating the ability of disorder-
rained methods to make accurate predictions for the
tructure-annotated proteins and vice versa. The results are
ummarized in Table 2 , with the corresponding ROC curves
n Supplementary Figure S1 A (entire benchmark dataset), S1D
disorder-annotated proteins in the benchmark dataset) and
1G (structure-annotated proteins in the benchmark dataset).

For the structure-annotated proteins, Table 2 shows that
our of the five structure-trained methods produce predic-
ions with AUC > 0.74 and that DNAPred achieves the high-
st AUC = 0.81. These are relatively accurate predictions, as
uggested by the AULCratio values that range between 3.5
and 7.3 for these four tools. On the other hand, the disorder-
trained methods provide low-quality results, with AULCra-
tios ranging between 0.07 and 1.9, and DisoRDPbind pro-
ducing the highest AUC of 0.62. We observe the same trend
when using binary metrics. For instance, the four structure-
trained methods obtain sensitivity values at the 0.1 FPR be-
tween 0.32 and 0.51, while the best disorder-trained DisoR-
DPbind has sensitivity = 0.19. While the poor performance of
ANCHOR2, fMoRFpred and MoRFchibi can be attributed to
the fact that they were trained to predict disordered residues
that bind to proteins and peptides, DisoRDPbind and Deep-
DISObind target prediction of DBRs and still perform rather
poorly. This likely stems from the fact that their predictive
models that are trained from the disorder-annotated proteins
do not generalize into the structure-annotated protein–DNA
interactions. 

For the disorder-annotated proteins, we find that the two
disorder-trained predictors of DBRs outperform most of the
structure-trained methods, securing AUCs of 0.64 (Deep-
DISObind) and 0.63 (DisoRDPbind). The one exception is
the structure-trained DNAgenie that has AUC of 0.68 and
AULCratio of 3.8, and outperforms the disorder-trained meth-
ods. DNAgenie is a recently published tool that utilizes a
training dataset of DNA-binding proteins collected from PDB,
which are processed to map data from multiple protein–DNA
complexes onto the same protein, resulting in a more com-
plete set of binding annotations. It also uses disorder predic-
tions as an input, which facilitates identifying putative disor-
dered binding residues that undergo disorder-to-order tran-
sitions upon binding DNA ( 97 ). These factors can explain
DNAgenie’s ability to produce good results for the disorder-
annotated proteins. Overall, we find that while the disorder-
trained methods perform relatively well for the disorder-
annotated proteins, the best results are secured by DNAgenie.
These observations partly agree with the related recent studies
of predictions of protein-binding and RNA-binding residues

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1131#supplementary-data
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vides the most accurate results across both structure- and 
 77 ,78 ). While we similarly show that disorder-trained
ethods are outperformed by the structure-trained tools

or the structure-annotated proteins, we find that structure-
rained DNAgenie performs favorably on the disorder-
nnotated proteins. However, DNAgenie and the disorder-
rained methods are outperformed by the structure-trained
NAPred on the structure-annotated proteins. This means

hat a single predictor does not provide consistently best
esults for both structure-annotated and disorder-annotated
roteins. 
The evaluation on the full benchmark dataset provides fur-

her details. We find that the best results are produced by
he structure-trained DNAgenie (AUC of 0.70 and AULCra-
io of 3.6) and DNAPred (AUC of 0.66 and AULCratio of
.5). Their predictions are statistically significantly better than
he results of the other eight methods ( P -value < 0.01). The
est disorder-trained DisoRDPbind obtains AUC = 0.63 and
ULCratio = 2.3. The corresponding ROC curves are in

he Supplementary Figure S1 A. DNAgenie performs modestly
ell on the structure-annotated proteins (third-best AUC) and

ery well on the disorder-annotated proteins (best AUC, sta-
istically better than all other methods at P -value < 0.01).
NAPred is the best option for the structure-annotated pro-

eins (best AUC, statistically better than all other methods
t P -value < 0.01) but performs poorly for the disorder-
nnotated proteins. DisoRDPbind has the third-best AUC for
he disorder-annotated proteins and performs by far the best
mong the disorder-trained tools for the structure-annotated
roteins. The low-quality results produced by the disorder-
rained ANCHOR2, fMoRFpred and MoRFchibi are due to
he fact that these tools predict disordered protein and peptide
inding residues. The modest performance of the structure-
rained TargetS likely comes from the broad scope of this
odel, which predicts 12 different types of ligands. 
To summarize, we find that none of the current tools of-

ers results that are the most accurate across the two types of
nnotations. The best results for the structure-annotated pro-
eins are offered by the structure-trained DNAPred, for the
isorder-annotated proteins by the structure-trained DNAge-
ie, and DisoRDPbind is the best disorder-trained tool. 

nalysis of the cross-predictions and 

ver-predictions 

ecent studies demonstrate that some sequence-based pre-
ictors of binding residues suffer high cross-prediction rates,
hich means that they essentially predict binding residues in
 ligand-agnostic manner ( 49 , 53 , 56 , 58 , 77 , 79 , 80 , 85 ). Table 3
nalyses the false positives generated by the ten predictors to
uantify the cross-prediction errors (residues that bind non-
NA ligands predicted as DBRs) and over-prediction errors

non-binding residues predicted as DBRs). The correspond-
ng cross-prediction curves and over-prediction curves are in
he Supplementary Figure S1 . The AUCPC (area under the
ross-prediction curve) and AUOPC (area under the over-
rediction curve) of 0.5 correspond to random levels of per-
ormance while lower values indicate lower amounts of the
ross- and over-predictions. On the other hand, CPRratio and
PRratio quantify the rate of improvement over a random
redictor, where higher values denote more accurate results.
argetS, fMoRFpred, ANCHOR2 and MoRFchibi produce
igh amounts of cross-predictions and over-prediction with
UCPC > 0.4 and / or AUOPC > 0.4. This can be explained by
the fact that TargetS was designed to predict interactions with
multiple ligand types and since fMoRFpred, ANCHOR2 and
MoRFchibi predict disordered residues that bind proteins and
peptides. This means that the cross-predictions are expected
for these methods. We focus our analysis on the other six pre-
dictors. 

For the structure-annotated proteins, DeepDISObind per-
forms poorly with AUCPC and AUOPC > 0.4, which means
that it substantially overpredicts DBRs. The remaining meth-
ods perform relatively well with AUOPC on average at about
0.25 and AUCPC on average at about 0.33. The best structure-
trained method, DNAPred, secures AUCPC = 0.276 and
AUOPC = 0.180, demonstrating a good ability to selectively
and accurately predict DBRs for the structure-annotated pro-
teins. The same trends are reflected by the CPRratio and
OPRratio scores, where DNAPred obtains the best results and
high values of 3.0 and 5.3, respectively. The structure-trained
methods (TargetDNA, BindN+, DNAPred, and DNAgenie)
perform better than the disorder-trained DisoRDPbind, which
is expected for this protein set. Moreover, the cross-prediction
rates are higher than the over-predictions rates (i.e. OPRra-
tios > CPRratios), which suggests that these methods are bi-
ased to cross-predict between the ligand types. 

For the disorder-annotated proteins, the structure-trained
TargetDNA, BindN+, and DNAPred perform poorly with
A UCPC and A UOPC > 0.4. The disorder-trained DeepDIS-
Obind also makes substantial amounts of cross-predictions
(AUCPC = 0.45). The only two well-performing methods are
the structure-trained DNAgenie and the disorder-trained Dis-
oRDPbind. They obtain AUCPC and AUOPC at around 0.32
(DNAgenie) and 0.37 (DisoRDPbind), and are the only tools
with CPRratio and OPRratio > 2. 

Using the full benchmark dataset, we find that DeepDIS-
Obind and TargetDNA suffer high rates of cross-predictions
and over-predictions. Supplementary Figure S1 B and S1 C plot
the corresponding cross-prediction and the over-prediction
curves. DNAgenie is the best tool that secures AUCPC = 0.29,
AUOPC = 0.30, CPRratio = 3.0 and OPRratio = 3.3, which
suggests that it is at least three times better than a random
predictor. These results are also statistically better than the re-
sults of the other nine methods ( P -value < 0.01). DNAPred,
BindN+, and DisoRDPbind perform reasonably well, with
A UCPC and A UOPC ≤0.4 and CPRratio and OPRratio at
around or over 2. 

To sum up, the structure-trained DNAgenie produces over-
all the best, low and balanced amounts of cross-predictions
and over-predictions. The structure-trained DNAPred is bet-
ter than DNAgenie for the structure-annotated proteins but
makes excessively large amounts of cross-predictions for the
disorder-annotated proteins. The best disorder-trained DisoR-
DPbind generates modest amounts of both cross- and over-
predictions that are similar across the structure- and disorder-
annotated proteins. The other tools make large amounts of
errors, particularly in terms of the cross-predictions for the
disorder-annotated proteins. Their AUCPC values are around
0.5, which suggests that they effectively predict all binding
residues, irrespective of the ligand type. 

Comparative assessment of hybridDBRpred’s 

predictive performance 

Our analysis reveals that none of the ten methods pro-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1131#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1131#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1131#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1131#supplementary-data
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Table 3. T he e v aluation of cross-predictions and o v er-predictions f or the 10 str uct ure-trained and disorder-trained predictors of binding residues and the 
ne w h ybridDBRpred met a-predictor using the sampled test dat aset 

Dataset Type of methods Predictors 
CPRratio at 0.1 

FPR AUCPC 

OPRratio at 0.1 
FPR AUOPC 

Structure-annotated proteins from benchmark dataset 
Structure-trained TargetS 0.404 ± 0.125 + / + 0.570 ± 0.033 + / + 1.062 ± 0.354 + / + 0.341 ± 0.027 + / + 

TargetDNA 2.431 ± 0.406 + / + 0.328 ± 0.032 + / + 4.129 ± 0.531 + / + 0.245 ± 0.027 + / + 

BindN+ 2.218 ± 0.457 + / + 0.325 ± 0.034 + / + 3.587 ± 0.332 + / + 0.250 ± 0.018 + / + 

DNAPred 2.988 ± 0.525 / + 0.276 ± 0.030 / + 5.319 ± 0.540 / = 0.180 ± 0.020 / + 

DNAgenie 2.140 ± 0.781 + / + 0.330 ± 0.065 + / + 3.355 ± 0.633 + / + 0.249 ± 0.035 + / + 

Disorder-trained fMoRFpred 0.785 ± 0.180 + / + 0.556 ± 0.023 + / + 0.624 ± 0.105 + / + 0.569 ± 0.018 + / + 

ANCHOR2 1.531 ± 1.306 + / + 0.441 ± 0.063 + / + 0.288 ± 0.243 + / + 0.536 ± 0.033 + / + 

DeepDISObind 1.013 ± 0.904 + / + 0.404 ± 0.052 + / + 0.149 ± 0.149 + / + 0.515 ± 0.035 + / + 

MoRFchibi 1.199 ± 0.383 + / + 0.462 ± 0.039 + / + 1.240 ± 0.308 + / + 0.467 ± 0.027 + / + 

DisoRDPbind 2.420 ± 0.671 + / + 0.353 ± 0.036 + / + 1.879 ± 0.367 + / + 0.380 ± 0.031 + / + 

Baseline meta-predictors Average-based 3.178 ± 0.781 = / + 0.254 ± 0.033 –/ + 5.033 ± 0.486 –/ = 0.182 ± 0.017 = / + 

Logistic regression 3.259 ± 0.747 –/ + 0.274 ± 0.027 = / + 4.151 ± 0.548 + / + 0.218 ± 0.019 + / + 

Deep learning meta-predictor hybridDBRpred 4.004 ± 1.207 –/ 0.210 ± 0.038 –/ 5.156 ± 0.442 = / 0.172 ± 0.017 –/ 

Disorder- annotated proteins from benchmark dataset 
Structure-trained TargetS 1.447 ± 0.414 + / + 0.463 ± 0.046 + / + 1.927 ± 0.259 + / + 0.440 ± 0.029 + / + 

TargetDNA 1.204 ± 0.342 + / + 0.541 ± 0.037 + / + 1.882 ± 0.359 + / + 0.458 ± 0.031 + / + 

BindN+ 1.591 ± 0.505 + / + 0.475 ± 0.046 + / + 2.240 ± 0.426 + / + 0.427 ± 0.035 + / + 

DNAPred 1.586 ± 0.447 + / + 0.496 ± 0.040 + / + 1.999 ± 0.289 + / + 0.459 ± 0.031 + / + 

DNAgenie 3.077 ± 1.268 / + 0.323 ± 0.071 / + 3.415 ± 0.877 / + 0.316 ± 0.058 / + 

Disorder-trained fMoRFpred 0.947 ± 0.158 + / + 0.515 ± 0.020 + / + 1.255 ± 0.128 + / + 0.483 ± 0.016 + / + 

ANCHOR2 1.044 ± 0.568 + / + 0.571 ± 0.076 + / + 1.874 ± 0.675 + / + 0.386 ± 0.057 + / + 

DeepDISObind 2.615 ± 3.071 + / + 0.454 ± 0.085 + / + 1.794 ± 0.689 + / + 0.342 ± 0.067 + / + 

MoRFchibi 1.615 ± 0.515 + / + 0.428 ± 0.043 + / + 2.347 ± 0.395 + / + 0.362 ± 0.027 + / + 

DisoRDPbind 2.037 ± 0.587 + / + 0.389 ± 0.046 + / + 2.491 ± 0.398 + / + 0.364 ± 0.028 + / + 

Baseline meta-predictors Average-based 2.618 ± 0.843 + / + 0.371 ± 0.051 + / + 3.200 ± 0.526 = / + 0.341 ± 0.037 + / + 

Logistic regression 2.111 ± 0.734 + / + 0.354 ± 0.052 + / + 3.110 ± 0.457 + / + 0.309 ± 0.026 = / + 

Deep learning meta-predictor hybridDBRpred 4.864 ± 2.327 –/ 0.237 ± 0.064 –/ 3.979 ± 0.883 –/ 0.234 ± 0.049 –/ 

Entire from benchmark dataset 
Structure-trained TargetS 0.952 ± 0.207 + / + 0.469 ± 0.040 + / + 1.586 ± 0.236 + / + 0.401 ± 0.022 + / + 

TargetDNA 1.771 ± 0.366 + / + 0.448 ± 0.032 + / + 2.875 ± 0.340 + / + 0.361 ± 0.024 + / + 

BindN+ 1.926 ± 0.477 + / + 0.400 ± 0.038 + / + 2.827 ± 0.291 + / + 0.351 ± 0.024 + / + 

DNAPred 2.472 ± 0.533 + / + 0.387 ± 0.035 + / + 3.452 ± 0.338 + / + 0.336 ± 0.025 + / + 

DNAgenie 2.988 ± 1.003 / + 0.287 ± 0.053 / + 3.349 ± 0.483 / + 0.298 ± 0.036 / + 

Disorder-trained fMoRFpred 0.765 ± 0.137 + / + 0.548 ± 0.018 + / + 0.956 ± 0.103 + / + 0.520 ± 0.014 + / + 

ANCHOR2 0.660 ± 0.257 + / + 0.630 ± 0.046 + / + 1.754 ± 0.444 + / + 0.447 ± 0.033 + / + 

DeepDISObind 1.379 ± 0.762 + / + 0.578 ± 0.047 + / + 1.357 ± 0.422 + / + 0.417 ± 0.033 + / + 

MoRFchibi 1.424 ± 0.427 + / + 0.439 ± 0.035 + / + 1.687 ± 0.224 + / + 0.413 ± 0.021 + / + 

DisoRDPbind 1.844 ± 0.428 + / + 0.395 ± 0.037 + / + 2.212 ± 0.269 + / + 0.371 ± 0.021 + / + 

Baseline meta-predictors Average-based 3.242 ± 0.864 –/ + 0.293 ± 0.038 = / + 4.008 ± 0.338 –/ + 0.271 ± 0.022 –/ + 

Logistic regression 2.516 ± 0.772 + / + 0.315 ± 0.042 + / + 3.552 ± 0.350 –/ + 0.272 ± 0.017 –/ + 

Deep learning meta-predictor hybridDBRpred 5.413 ± 1.918 –/ 0.201 ± 0.042 –/ 4.275 ± 0.380 –/ 0.216 ± 0.023 –/ 

We report averages and the corresponding standard deviations over the 100 subsets (see ‘Assessment metrics and statistical analysis’ section for details). The best results for a given 
dataset and for each column are shown in bold font. We report results from the statistical significance test using superscript in the ‘x / y’ format where x indicates comparison against 
the current method with the highest AUC and y stands for the comparison against the new hybridDBRpred meta-predictor; +, = , and – denote that the best current predictor or 
hybridDBRpred is significantly better, not significantly different, significantly worse than another method at P -value < 0.01. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

disorder-annotated proteins. Some methods perform well on
the disorder-annotated proteins (DNAgenie and DisoRDP-
bind) or the structure-annotated proteins (DNAPred, Tar-
getDNA, and BindN+). Moreover, some methods suffer rel-
atively high cross-prediction rates. These findings are in line
with the results of recent works that investigated predictors
of protein-binding and RNA-binding residues and which de-
veloped new meta-predictors that overcome their limitations
( 77 ,78 ). Motivated by these studies and the trade-offs that we
uncovered, we investigate whether a meta-predictor that com-
bines well-performing structure-trained and intrinsic disorder-
trained predictors of DBRs would provide significant im-
provements in the predictive performance. Our hybridDBR-
pred meta-predictor relies on a modern deep transformer net-
work and sequence-derived inputs that provide useful con-
text to accurately combine predictions from the three arguably
best current tools: DisoRDPbind, DNAPred and DNAgenie. 

Table 2 compares hybridDBRpred against the ten predic-
tors. We find that hybridDBRpred produces the best predic-
tions on the full benchmark dataset, with AUC = 0.786,
AULCratio = 5.19, F1 = 0.26 and sensitivity = 0.43 at 0.1
FPR. These results are statistically higher than the predictions
of the current methods ( p -value ≤ 0.01). To compare, the best
scores generated by the current methods are AUC = 0.703 

(DNAgenie), AULCratio = 4.50 (DNAPred), F1 = 0.22 

(DNAPred), and sensitivity = 0.33 at 0.1 FPR (DNAPred).
More importantly, hybridDBRpred generates accurate pre- 
dictions for both the structure-annotated and the disorder- 
annotated proteins. It obtains the highest AUC = 0.827 

for the structure-annotated proteins and also the highest 
AUC = 0.766 for the disorder-annotated proteins. More- 
over, hybridDBRpred produces low amounts of the cross- 
prediction and over-prediction errors. Table 3 reveals that 
hybridDBRpred’s AUCPC that quantifies the level of cross- 
predictions is 0.201 for the entire test dataset, 0.210 for the 
structure-annotated test proteins, and 0.237 for the disorder- 
annotated test proteins, compared to the best (lowest) AUCPC 

values of the current tools that are 0.287 (DNAgenie), 0.276 

(DNAPred), and 0.323 (DNAgenie), respectively . Similarly ,
the hybridDBRpred’s over-predictions that we quantify with 

AUOPC are 0.216 on the full test set, 0.172 for the structure- 
trained proteins, and 0.234 for the disorder-trained pro- 
teins. These are all better (lower) than the results of the ex- 
isting tools that secure the best AUOPCs of 0.298 (DNA- 
genie), 0.180 (DNAPred), and 0.316 (DNAgenie), respec- 
tively. The improvements in AUCPC and AUOPC values when 



Nucleic Acids Research , 2024, Vol. 52, No. 2, e10 PAGE 9 OF 13 

c  

o  

t  

s  

b  

a  

c
 

p  

t  

p  

t  

p  

b  

d  

a  

s  

v  

v  

t  

t  

p  

p  

v  

v  

s  

r  

i  

t  

i

A

T  

n  

o  

p  

n  

f  

t  

i  

p  

m  

o  

a  

w  

m  

s  

t  

t  

p  

c  

p  

a  

s  

t  

(  

g  

a
 

p
F  

m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ontrasting hybridDBRpred against each of the ten meth-
ds are statistically significant ( P -value ≤ 0.01). In short,
he new deep learning-based hybridDBRpred meta-predictor
ubstantially improves over the ten current tools, provides
alanced quality of predictions for the disorder-annotated
nd structure-annotated proteins, and generates low levels of
ross-predictions. 

We also compare hybridDBRpred with two baseline meta-
redictors. The baselines include a logistic regression model
hat utilizes the same inputs as hybridDBRpred and a sim-
le meta-predictor that computes average of the propensi-
ies produced by the three tools that we use as hybridDBR-
red’ s inputs. W e detail these baselines in the supplement. Ta-
le 2 shows that the baselines secure similar levels of pre-
ictive performance with the AUC of 0.720 (average-based)
nd 0.726 (regression) on the entire test set, compared to the
tatistically better AUC of 0.786 from hybridDBRpred ( P -
alue < 0.01). Our deep transformer-based solution also pro-
ides statistically significant improvements in AUC for both
he structure-annotated and the disorder-annotated test pro-
eins ( P -value < 0.01; Table 2 ). Furthermore, hybridDBR-
red outperforms both baselines in the context of the cross-
redictions and over-predictions. It obtains AUCPC of 0.201
s. 0.293 and 0.315 for the baselines, and AUOPC of 0.216
ersus 0.271 and 0.272 for the baselines; these differences are
tatistically significant ( P -value < 0.01; Table 3 ). These results
eveal that the deep transformer-based model provides large
mprovements over simpler meta-predictors. Next, we inves-
igate contributions of specific elements of our model to these
mprovements. 

blation analysis 

he hybridDBRpred meta-predictor relies on four key in-
ovations: calculation of aggregate features for detection
f IDRs; application of the sliding window to collect in-
uts; use of the transformer modules to design the deep
etwork; and training with the binary cross-entropy loss
unction. We perform ablation analysis by removing one of
hese innovations at the time and measuring the difference
n the predictive performance when compared to the com-
lete hybridDBRpred model. Supplementary Figure S2 sum-
arizes these results on the test dataset by considering the
verall predictive performance measured with AUC and the
mount of cross-predictions and over-predictions quantified
ith AUCPC and AUOPC, respectively. We find that the re-
oval of each of the four innovations leads to a statistically

ignificant drop in predictive quality measured with each of
he three metrics ( P -values < 0.01). The features for the de-
ection of IDRs contribute the most to the reduction of cross-
redictions ( Supplementary Figure S2 B). The use of the binary
ross-entropy loss function helps with improving both cross-
redictions and over-predictions ( Supplementary Figure S2 B
nd C). The inclusion of the transformer modules and the
liding window has substantial impact on the overall predic-
ive quality and also reduces the cross- and over-predictions
 Supplementary Figure S2 A–C). Altogether, these results sug-
est that each of the four innovation contributes to the favor-
ble predictive performance of our deep meta-predictor. 

We also investigate contributions of each of the three in-
ut predictors of DBRs to our meta-predictor. Supplementary 
igure S3 compares results of the complete hybridDBRpred

odel with the three versions of that model where one of  
the input predictions is removed. This ablation experiment
demonstrates that the removal of any of the three inputs pro-
duces a statistically significant drop in the predictive quality
measured with A UC, A UCPC and A UOPC ( P -values < 0.01).
In particular, the AUC decreases from 0.786 (the complete hy-
bridDBRpred model) to 0.754, 0.748, and 0.737 when Diso-
DRPbind, DNAPred and DNAgenie is excluded, respectively.
While these values are still better than the AUCs of 0.726 and
0.720 for the baseline meta-predictors (Table 2 ), which is due
to the use of the above-mentioned innovations, they demon-
strate that the inclusion of each of the three predictions in
hybridDBRpred is warranted. 

HybridDBRpred web server 

The hybridDBRpred method is freely available as a con-
venient web server at http:// biomine.cs.vcu.edu/ servers/
hybridDBRpred/. It requires only the FASTA-formatted
protein sequence as input. It automates the entire predic-
tion process on the server side by running predictions by
DNAPred, DisoRDPbind and DNAgenie, generating the in-
puts to the deep learner, and processing predictions using the
transformer network. The server takes about 2 min to predict
an average size sequence with about 200 residues. Upon com-
pletion of the prediction, users can browse the color-coded
prediction results on the webpage and receive text-formatted
results to the email address that they (optionally) provide.
The outputs produced by the server include the putative
propensities from DNAPred, DNAgenie, and DisoRDPbind,
together with the predictions of hybridDBRpred. We archive
the results for at least three months. 

Analysis of the putative DNA-binding residues 

Native annotations of DBRs, particularly for the structure-
annotated proteins, rely on somehow subjective protocols.
Most of the methods assume that a given residue binds DNA
if at least one of its atoms is close enough to one of the
DNA’s atoms, using a few different distance thresholds includ-
ing 3.5 Å ( 25 , 34 , 37 , 49 ) and 4.5Å ( 36 ). BioLiP, which was used
to annotate data for DNAgenie, applies a more sophisticated
approach where the distance is computed as 0.5 Å plus the
sum of the Van der Waal’s radii of the closest protein atom
and DNA atom ( 87 ). These differences may result in different
annotations of native DBRs for the same protein. 

We study whether predictions from the best performing
methods, including DNAPred, DNAgenie, DisoRDPbind, the
two baseline meta-predictors, and hybridDBRpred, are sensi-
tive to these differences by investigating whether the false pos-
itives (incorrectly predicted DBRs) are biased to localize close
to the native DBRs. Figure 2 analyses the presence of putative
DBRs nearby the native DBRs in the sequence; we cannot per-
form this analysis using proximity in the structure since some
annotations concern disordered regions. The x -axis quantifies
the number of positions between the residues that we analyze
and the nearest native DBRs, while the y -axis gives TPR val-
ues when assuming that the putative DBRs within the distance
defined by the x -axis are correct. In other words, we count
predicted DBRs that are within x = {1, 2, 3, 4, 5} positions
from the native DBRs as true positives (solid lines in Figure
2 ). We compare these results against baselines where DNA-
binding residues are predicted at random in the same propor-
tions as the putative binding residues generated by the consid-
ered predictors (dotted lines in Figure 2 that are color-coded

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1131#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1131#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1131#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1131#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1131#supplementary-data
http://biomine.cs.vcu.edu/servers/hybridDBRpred/
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Figure 2. TPR values ( y -axis) computed in the function of the number of positions in the sequence between the evaluated residues and the nearest 
native DBRs ( x -axis). We consider the four best performing methods from Table 2 and perform this test on the test dataset. We compute the TPR values 
by assuming that putative DBRs that are within a given number of positions away from the native DBR are correct. Solid lines report results based on 
the predictions from the four methods while the color-coded dotted lines represent corresponding baselines where DNA-binding residues are predicted 
at random in the same proportions as the putative binding residues generated by the predictors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for the corresponding predictors). We find that disproportion-
ally higher numbers of putative DBRs are located immediately
adjacent to a native DBR. This can be measured by compar-
ing the increase in TPRs between x = 0 and x = 1 and the
subsequent positions with the corresponding baseline results.
For instance, TPR of hybridDBRpred grows from 0.49 to 0.59
((0.59–0.49) / 0.49 = 20% increase) between x of 0 and 1, and
further to 0.66 between x of 1 and 2 ((0.66–0.59) / 0.59 = 12%
increase). The corresponding baseline grows from 0.49 for
x = 0 to 0.53 for x = 1 (8% increase), and to 0.56 for x = 2
(6% increase). We observe higher growth for lower values of x
for the predictions and substantially larger values when com-
paring predictions against the baselines. These observations
are true for all other methods (Figure 2 ), e.g. 0.12 ( x = 0 to
x = 1) vs. 0.06 ( x = 1 to x = 3) increases for DNAPred; 0.09
vs. 0.04 for DNAgenie; 0.12 vs. 0.06 for the average-based
baseline meta-predictor; they are all coupled with substan-
tially lower values for the baselines. Overall, Figure 2 shows
diminishing slopes for each of the six curves that reveals that
false positives are concentrated around the positions of the
native DBRs. This implies that DBRs predicted for the amino
acids adjacent to the native DBRs in the sequence could be
driven by the threshold-dependent nature of annotations, and
perhaps should not be treated as mistakes. That suggests that
the predictive performance that we calculate for these tools
might underestimate their actual performance. These findings
agree with recent studies that similarly identify an increase in
the ‘false positives’ near the positions of native protein- and
nucleic acids-binding residues ( 49 ,85 ). 

Summary and conclusions 

Current sequence-based predictors of DBRs belong to two dis-
tinct groups, those trained on the structure-annotated proteins
vs. the disorder-annotated proteins. We identify and summa-
rize a comprehensive collection of 34 predictors. We select a 
representative set of 10 predictors, which include 7 predic- 
tors of DBRs and 3 predictors of disordered binding regions.
We use them to perform a first-of-its-kind empirical analysis 
of their ability to accurately predict DBRs using novel and 

low-similarity benchmark dataset composed of the structure- 
annotated and the disorder-annotated proteins. The most ac- 
curate predictions for the structure-annotated proteins are of- 
fered by the structure-trained predictors, including the best 
DNAPred, while the disorder-trained methods perform poorly 
for these proteins. Moreover, the structure-trained DNAgenie 
performs well for the disorder-annotated proteins and DisoR- 
DPbind is the best disorder-trained tool. These observations 
complement results of recent studies that focus on the evalu- 
ation of the predictions of protein-binding and RNA-binding 
residues ( 77 ,78 ). Analysis of false positives reveals that they 
are disproportionally concentrated in the vicinity of the native 
DBRs. This likely stems from a somewhat arbitrary nature of 
the native annotations of DBRs and suggests that we could 

be underestimating the actual predictive performance. More- 
over, we suggest that more accurate disorder-trained tools 
are needed due to modest levels of predictive performance of 
the current tools. We also study the cross-predictions, where 
residues that bind other / non-DNA ligand types are predicted 

as DBRs. Except for DNAgenie and DisoRDPbind, the other 
considered methods make excessive amounts of cross predic- 
tions for the disorder-annotated proteins, effectively making 
ligand-agnostic predictions of all binding residues. Further- 
more, we find that TargetDNA, BindN+, DNAPred, DNA- 
genie, and DisoRDPbind produce relatively low amount of 
cross-predictions for the structure-annotated proteins. 

Most importantly, our empirical results suggest that none of 
the considered tools offer predictions that are highly accurate 
across the disorder-annotated and structure-annotated pro- 
teins, motivating the development of a novel meta-predictor.
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e conceptualize, design, implement, empirically validate
nd deploy the hybridDBRpred meta-model that combines
redictions generated by three arguably most accurate cur-
ent predictors. Our solution uses a well-designed collec-
ion of sequence-derived features and the deep transformer
etwork that we train with an advanced loss function to
roduce accurate predictions of DBRs. We demonstrate em-
irically that these innovative design choices produce sub-
tantial improvements to the predictive quality of hybrid-
BRpred. Overall, hybridDBRpred provides balanced and
igh levels of predictive quality across the two annotation
ypes and generates relatively low levels of cross-predictions
nd over-predictions. We also show that our deep learning-
ased meta-predictor is statistically more accurate than the
esults produced by each of the ten tools as well as base-
ine meta-predictors that rely on simple averaging and lo-
istic regression. We implement hybridDBRpred as a conve-
ient web server that is freely available at http://biomine.cs.
cu.edu/ servers/ hybridDBRpred/ . We also provide the corre-
ponding source code at https:// github.com/ jianzhang-xynu/
ybridDBRpred . 

ata availability 

ybridDBRpred is freely available at http://biomine.cs.vcu.
du/ servers/ hybridDBRpred/ . The corresponding source
ode is available at https:// github.com/ jianzhang-xynu/
ybridDBRpred and https:// zenodo.org/ doi/ 10.5281/ zenodo.
0081016 . 

upplementary data 

upplementary Data are available at NAR Online. 
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