Skip to main content
. 2023 Dec 4;52(2):e10. doi: 10.1093/nar/gkad1131

Table 3.

The evaluation of cross-predictions and over-predictions for the 10 structure-trained and disorder-trained predictors of binding residues and the new hybridDBRpred meta-predictor using the sampled test dataset

Dataset Type of methods Predictors CPRratio at 0.1 FPR AUCPC OPRratio at 0.1 FPR AUOPC
Structure-annotated proteins from benchmark dataset
Structure-trained TargetS 0.404 ± 0.125+/+ 0.570 ± 0.033+/+ 1.062 ± 0.354+/+ 0.341 ± 0.027+/+
TargetDNA 2.431 ± 0.406+/+ 0.328 ± 0.032+/+ 4.129 ± 0.531+/+ 0.245 ± 0.027+/+
BindN+ 2.218 ± 0.457+/+ 0.325 ± 0.034+/+ 3.587 ± 0.332+/+ 0.250 ± 0.018+/+
DNAPred 2.988 ± 0.525 /+ 0.276 ± 0.030 /+ 5.319 ± 0.540 / = 0.180 ± 0.020 /+
DNAgenie 2.140 ± 0.781+/+ 0.330 ± 0.065+/+ 3.355 ± 0.633+/+ 0.249 ± 0.035+/+
Disorder-trained fMoRFpred 0.785 ± 0.180+/+ 0.556 ± 0.023+/+ 0.624 ± 0.105+/+ 0.569 ± 0.018+/+
ANCHOR2 1.531 ± 1.306+/+ 0.441 ± 0.063+/+ 0.288 ± 0.243+/+ 0.536 ± 0.033+/+
DeepDISObind 1.013 ± 0.904+/+ 0.404 ± 0.052+/+ 0.149 ± 0.149+/+ 0.515 ± 0.035+/+
MoRFchibi 1.199 ± 0.383+/+ 0.462 ± 0.039+/+ 1.240 ± 0.308+/+ 0.467 ± 0.027+/+
DisoRDPbind 2.420 ± 0.671+/+ 0.353 ± 0.036+/+ 1.879 ± 0.367+/+ 0.380 ± 0.031+/+
Baseline meta-predictors Average-based 3.178 ± 0.781=/+ 0.254 ± 0.033–/+ 5.033 ± 0.486–/= 0.182 ± 0.017=/+
Logistic regression 3.259 ± 0.747–/+ 0.274 ± 0.027=/+ 4.151 ± 0.548+/+ 0.218 ± 0.019+/+
Deep learning meta-predictor hybridDBRpred 4.004 ± 1.207–/ 0.210 ± 0.038–/ 5.156 ± 0.442=/ 0.172 ± 0.017–/
Disorder- annotated proteins from benchmark dataset
Structure-trained TargetS 1.447 ± 0.414+/+ 0.463 ± 0.046+/+ 1.927 ± 0.259+/+ 0.440 ± 0.029+/+
TargetDNA 1.204 ± 0.342+/+ 0.541 ± 0.037+/+ 1.882 ± 0.359+/+ 0.458 ± 0.031+/+
BindN+ 1.591 ± 0.505+/+ 0.475 ± 0.046+/+ 2.240 ± 0.426+/+ 0.427 ± 0.035+/+
DNAPred 1.586 ± 0.447+/+ 0.496 ± 0.040+/+ 1.999 ± 0.289+/+ 0.459 ± 0.031+/+
DNAgenie 3.077 ± 1.268 /+ 0.323 ± 0.071 /+ 3.415 ± 0.877 /+ 0.316 ± 0.058 /+
Disorder-trained fMoRFpred 0.947 ± 0.158+/+ 0.515 ± 0.020+/+ 1.255 ± 0.128+/+ 0.483 ± 0.016+/+
ANCHOR2 1.044 ± 0.568+/+ 0.571 ± 0.076+/+ 1.874 ± 0.675+/+ 0.386 ± 0.057+/+
DeepDISObind 2.615 ± 3.071+/+ 0.454 ± 0.085+/+ 1.794 ± 0.689+/+ 0.342 ± 0.067+/+
MoRFchibi 1.615 ± 0.515+/+ 0.428 ± 0.043+/+ 2.347 ± 0.395+/+ 0.362 ± 0.027+/+
DisoRDPbind 2.037 ± 0.587+/+ 0.389 ± 0.046+/+ 2.491 ± 0.398+/+ 0.364 ± 0.028+/+
Baseline meta-predictors Average-based 2.618 ± 0.843+/+ 0.371 ± 0.051+/+ 3.200 ± 0.526=/+ 0.341 ± 0.037+/+
Logistic regression 2.111 ± 0.734+/+ 0.354 ± 0.052+/+ 3.110 ± 0.457+/+ 0.309 ± 0.026=/+
Deep learning meta-predictor hybridDBRpred 4.864 ± 2.327–/ 0.237 ± 0.064–/ 3.979 ± 0.883–/ 0.234 ± 0.049–/
Entire from benchmark dataset
Structure-trained TargetS 0.952 ± 0.207+/+ 0.469 ± 0.040+/+ 1.586 ± 0.236+/+ 0.401 ± 0.022+/+
TargetDNA 1.771 ± 0.366+/+ 0.448 ± 0.032+/+ 2.875 ± 0.340+/+ 0.361 ± 0.024+/+
BindN+ 1.926 ± 0.477+/+ 0.400 ± 0.038+/+ 2.827 ± 0.291+/+ 0.351 ± 0.024+/+
DNAPred 2.472 ± 0.533+/+ 0.387 ± 0.035+/+ 3.452 ± 0.338+/+ 0.336 ± 0.025+/+
DNAgenie 2.988 ± 1.003 /+ 0.287 ± 0.053 /+ 3.349 ± 0.483 /+ 0.298 ± 0.036 /+
Disorder-trained fMoRFpred 0.765 ± 0.137+/+ 0.548 ± 0.018+/+ 0.956 ± 0.103+/+ 0.520 ± 0.014+/+
ANCHOR2 0.660 ± 0.257+/+ 0.630 ± 0.046+/+ 1.754 ± 0.444+/+ 0.447 ± 0.033+/+
DeepDISObind 1.379 ± 0.762+/+ 0.578 ± 0.047+/+ 1.357 ± 0.422+/+ 0.417 ± 0.033+/+
MoRFchibi 1.424 ± 0.427+/+ 0.439 ± 0.035+/+ 1.687 ± 0.224+/+ 0.413 ± 0.021+/+
DisoRDPbind 1.844 ± 0.428+/+ 0.395 ± 0.037+/+ 2.212 ± 0.269+/+ 0.371 ± 0.021+/+
Baseline meta-predictors Average-based 3.242 ± 0.864–/+ 0.293 ± 0.038=/+ 4.008 ± 0.338–/+ 0.271 ± 0.022–/+
Logistic regression 2.516 ± 0.772+/+ 0.315 ± 0.042+/+ 3.552 ± 0.350–/+ 0.272 ± 0.017–/+
Deep learning meta-predictor hybridDBRpred 5.413 ± 1.918–/ 0.201 ± 0.042–/ 4.275 ± 0.380–/ 0.216 ± 0.023–/

We report averages and the corresponding standard deviations over the 100 subsets (see ‘Assessment metrics and statistical analysis’ section for details). The best results for a given dataset and for each column are shown in bold font. We report results from the statistical significance test using superscript in the ‘x/y’ format where x indicates comparison against the current method with the highest AUC and y stands for the comparison against the new hybridDBRpred meta-predictor; +, =, and – denote that the best current predictor or hybridDBRpred is significantly better, not significantly different, significantly worse than another method at P-value < 0.01.