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ABSTRACT

The complete coding sequence for the trichodiene synthase
gene from Fusarium sporotrichioides was introduced into tobacco
(Nicotiana tabacum) under the regulation of the cauliflower mo-
siac virus 35S promoter. Expression of trichodiene synthase was
demonstrated in the leaves of transformed plants. Leaf homog-
enates incubated with [3H]famesyl pyrophosphate produced tri-
chodiene as a major product. Trichodiene was detected in the
leaves of a transformed plant at a level of 5 to 10 nanograms per
gram fresh weight. The introduction of a fungal sesquiterpene
cyclase gene into tobacco has resulted in the expression of an
active enzyme and the accumulation of low levels of its sesqui-
terpenoid product.

Sesquiterpene cyclases participate in the biosynthesis of
most sesquiterpenoids. This group of enzymes converts the
isoprenoid pathway intermediate, FPP,2 into an estimated
100 to 200 different cyclic sesquiterpenoids (2). Information
concerning the properties of sesquiterpene cyclases has been
reported for isolated or partially purified enzyme preparations
from plants (4, 13), fungi (9, 11), and a streptomycete (1).
Comparisons among these enzymes indicate that they are
mechanistically similar but differ with respect to properties
such as molecular weight and subunit composition.

Plants, fungi, insects, and marine invertebrates all produce
large numbers of structurally distinct sesquiterpenoids. In
many cases, distantly related organisms accumulate the same
sesquiterpene cyclase product or produce sesquiterpenoids
derived from the same parent compound. This means that
genes coding for any particular sesquiterpene cyclase might
be available from several sources.

The modification of plant sesquiterpenoid biosynthesis
could result in altered resistance to disease and insect pests.
Potential targets of such efforts include the production of
sesquiterpenoid phytoalexins within the Solanaceae (16) and
allelopathic agents produced by a variety of plants (5). Addi-
tional targets could include sesquiterpenoids that regulate
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2Abbreviation: FPP, famesyl pyrophosphate.

insect behavior. A number of insect hormones and phero-
mones have been identified as sesquiterpenoids. Tobacco
produces at least eight different sesquiterpenoids in response
to invading pathogens (6). One of these, capsidiol, accumu-
lates to high levels in tobacco cell cultures that have been
treated with an elicitor (21). Studies in which cell cultures
were used have resulted in the identification of (+)5-epi-
aristolochene as the parent compound of capsidiol and deb-
neyol (22), and the purification of the sesquiterpene cyclase,
5-epi-aristolochene synthase (19).

Trichodiene is the parent compound for the trichothecene
family of toxic sesquiterpenoids. Trichothecenes have been
implicated in outbreaks of mycotoxicoses resulting from con-
taminated agricultural products (17). Both trichodiene and
trichothecene biosynthesis appear to be limited to several
genera of fungi and possibly some Baccharis species (12).
Trichodiene synthase is the enzyme involved in trichodiene
biosynthesis. A gene encoding trichodiene synthase has been
isolated from Fusarium sporotrichioides (8) and expressed in
Escherichia coli. Expression of trichodiene synthase in E. coli
resulted in the production of active enzyme and in the accu-
mulation of trichodiene (10).
The expression of foreign sesquiterpene cyclase genes in

plants represents one possible approach for altering sesquiter-
penoid biosynthesis. To determine the feasibility of this ap-
proach, we introduced the trichodiene synthase gene into
tobacco. Expression in tobacco may provide insights into
both the regulation of sesquiterpenoid biosynthesis and the
role of these compounds in disease resistance.

MATERIALS AND METHODS

Transformation of Tobacco

The BamHI fragment from pTS37-4A(470-529), contain-
ing the complete coding sequence for the trichodiene synthase
gene of Fusarium sporotrichioides (10), was inserted into the
plasmid, pBI221 (Clontech3), from which the ,B-glucuroni-
dase-coding sequence had been deleted (SmaI-SstI fragment).
This vector contains a HindIII-EcoRI fragment upon which
resides an expression cassette consisting of the cauliflower

3The mention of firm names or trade products does not imply
that they are endorsed or recommended by the U.S. Department of
Agriculture over other firms or similar products not mentioned.

460



EXPRESSION OF TRICHODIENE SYNTHASE IN TOBACCO

mosaic virus 35S promoter, a unique BamHI site and the
nopaline synthase transcription terminator. The HindIII-
EcoRI fragment from the newly constructed expression unit,
containing the trichodiene synthase-coding region in the cor-
rect orientation behind the 35S promoter, was cloned into
the binary expression vector, pBI 121 (Clontech), to yield
pTH70- 1. This construct was subsequently used to transform
tobacco leafdiscs (Nicotiana tabacum, cv Petite Havana) from
which kanamycin-resistant plants were regenerated (15).

Measurements of Trichodiene Synthase in Transgenic
Tobacco

Transformed tobacco (N. tabacum) plants were grown in a
greenhouse under ambient lighting conditions. After the trans-
formants were transferred to potting soil (20-40 d), leaves
were collected, frozen in liquid N2, and stored at -70TC. Leaf
tissue (0.2 g) was homogenized in 2 mL of 80 mm potassium
phosphate buffer (pH 7.0), 20% glycerol, 10 mm sodium
bisulfite, 10 mm sodium ascorbate, 15 mm magnesium chlo-
ride, 5 mm DTT containing 0.10 g polyvinylpolypyrrolidone
(18). After 1 g of Amberlite XAD-4 was added, the mixture
was incubated in an ice bath for 5 min and then centrifuged
at l0,OOOg, at 4C, for 10 min. The supernatant was recovered
and centrifuged at 1 30,000g, at 4C, for 60 min. The resulting
supernatant was assayed for sesquiterpene cyclase activity as
previously described (11). Trichodiene was identified as a
major product of the reaction by GC/MS analysis (9). The
protein concentration of homogenates was determined by a
modified Coomassie blue G dye-binding assay (14) with bo-
vine y-globulin as the standard. Leaf tissue (100 mg) was
macerated in microfuge tubes with 100 ,L of SDS-polyacryl-
amide gel sample buffer and then incubated at 100°C for 3
min. Samples were run on an SDS-polyacrylamide gel (10%
acrylamide) and immunoblotted as previously described (7).

Analysis of Transformed Plants for Trichodiene

The extraction of trichodiene from leaf tissue (0.5 g) was
accomplished by homogenization in 2.5 mL of hexane:ether
(49:1). After the supernatant was decanted, homogenization
was continued in an additional 2.0 mL of hexane:ether. The
supernatants were pooled, and a 1.0-mL sample was applied
to a Prepsep silica gel column (Fisher, 1.0 g silica gel). Elution
was continued with hexane:ether until the yellow-orange ca-
rotenoid band reached the column bed support. All of the
material eluted from the column was collected (2.0 mL), and
the volume was reduced to 50 1L under a gentle stream of N2
at 23°C. The sample was analyzed for trichodiene by GC/MS
as described (4).

RESULTS AND DISCUSSION

Expression of Trichodiene Synthase in Transgenic Plants

Transformed plants appeared normal with respect to
growth and gross morphology. To confirm the expression of
trichodiene synthase in transformants, leaf homogenates were
analyzed by immumoblotting (Fig. 1). Leaves from three
different transformed plants were found to contain a unique
immunodetectable polypeptide that comigrated with the tri-

Transformant No.
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Figure 1. Immunoblot analysis of leaf homogenates from trans-
formed tobacco plants. The blot was incubated with antiserum
against purified trichodiene synthase. WT, untransformed plant; TS,
purified trichodiene synthase. The migration of protein standards is
indicated.

chodiene synthase of F. sporotrichioides (Mr 45,000). The
trichodiene synthase antiserum used does not cross-react with
5-epi-aristolochene synthase (T. M. Hohn and J. Chappell,
unpublished).
Leaf homogenates were assayed for sesquiterpene cyclase

activity. Transformed plants had enzyme activity levels in the
range of 2 to 3 nmol * mg protein . h. These levels are similar
to those reported for induced cell cultures of tobacco (18).
Sesquiterpene cyclase activity was undetectable in homoge-
nates from an untransformed plant. Although the level of
sesquiterpene cyclase activity in tobacco plants has not been
reported previously, this result is consistent with the obser-
vation that the accumulation of sesquiterpenoids occurs in
response to specific elicitors and that uninduced tobacco cell
cultures have undetectable levels of sesquiterpene cyclase
activity (18). Analysis of the sesquiterpene cyclase reaction
products by GC/MS revealed that trichodiene accounted for
at least 30% of the labeled product.

Analysis of Transformed Plants for Tnchodiene

The above results demonstrate that plants transformed with
a fungal sesquiterpene cyclase gene express that enzyme in an
active form. The successful expression oftrichodiene synthase
in tobacco raises the question of whether its product, tricho-
diene, is synthesized. Leaf extracts from transformant TH 1
were analyzed for trichodiene by GC/MS. Trichodiene was
detected at a level of approximately 5 to 10 ng/g fresh weight
of tissue. Trichodiene recoveries for the method used were
determined by adding 57 ng of [3H]trichodiene (420,000 dpm)
to a homogenized leaf sample and analyzing fractions after
each step in the procedure. Extracted trichodiene (39%) was
recovered in the samples analyzed by GC/MS analysis. To
determine whether interference by contaminating materials
had occurred, GC/MS analysis was performed in the presence
and absence of nanogram amounts of unlabeled trichodiene.
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Sesquiterpenoid biosynthesis is highly regulated in tobacco.
After treatment with a suitable elicitor, sesquiterpenoids in-
crease from undetectable to relatively high levels over a period
of 6 to 24 h and then decrease to preinduction levels. The
treatment of cell cultures with an elicitor has been shown to
result in the accumulation of capsidiol to peak levels within
15 h. Following induction, cell cultures also have increased
levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase
activity and decreased levels of sterol biosynthesis (18). Elici-
tor-mediated induction of 5-epi-aristolochene synthase re-
cently has been shown to be transcriptionally regulated (20).
Apparently, the accumulation of capsidiol is accompanied by
significant alterations in several steps of isoprenoid metabo-
lism, and foreign sesquiterpene cyclase expression alone might
not be sufficient for the production of high levels of
sesquiterpenoids.
Some potentially useful applications may require that trans-

genic plants constitutively produce low levels of novel sesqui-
terpenoids. These include the production of sesquiterpenoids
that alter insect behaviors, many of which are active at very
low levels. Foreign sesquiterpene cyclase expression could
result in low levels of novel sesquiterpenoids being produced,
because FPP is an essential metabolite that participates in the
biosynthesis of a number of isoprenoids. Both sesquiterpene
cyclases and FPP synthetase are located in the cytosol of plant
and fungal cells (2, 3), suggesting that cytoplasmic pools of
FPP may be accessible to foreign sesquiterpene cyclases. How-
ever, factors such as the sequestration and/or channeling of
FPP to specific enzymes and competition with other enzymes
could limit the amount of FPP available to these enzymes. In
addition, the levels of novel sesquiterpenoids produced will
depend on the extent to which these compounds are further
metabolized. The low levels of trichodiene observed could be
due to its metabolism in transgenic plants. Although native
sesquiterpenoids are efficiently metabolized, the fate of tricho-
diene synthesized by tobacco is unknown.

In future investigations of trichodiene metabolism in the
transgenic plants, tissues treated with an elicitor should be
used. Induced tissues are likely to present the most favorable
conditions for trichodiene synthesis. Expression oftrichodiene
synthase may perturb sesquiterpenoid biosynthesis in trans-
genic plants even if trichodiene metabolites do not accumu-
late. If this occurs, then transgenic plants could provide a
unique opportunity for studying the role of these compounds
in disease resistance.
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