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Abstract

Ensemble perception is a process by which we summarize complex scenes. Despite the importance 

of ensemble perception to everyday cognition, there are few computational models that provide 

a formal account of this process. Here we develop and test a model in which ensemble 

representations reflect the global sum of activation signals across all individual items. We leverage 

this set of minimal assumptions to formally connect a model of memory for individual items 

to ensembles. We compare our ensemble model against a set of alternative models in five 

experiments. Our approach uses performance on a visual memory task for individual items 

to generate zero-free-parameter predictions of interindividual and intraindividual differences in 

performance on an ensemble continuous-report task. Our top-down modelling approach formally 

unifies models of memory for individual items and ensembles and opens a venue for building and 

comparing models of distinct memory processes and representations.

Human perception and cognition are grounded in a capacity-limited system1–4. A basic 

question across research areas in the behavioural sciences is how people effectively 

represent an environment that should far exceed their processing capabilities5. One widely 

accepted answer to this question is that perceptual and cognitive systems take advantage of 

redundancies in the environment by forming a condensed summary or gist6–8. In the visual 

domain, the ability of people to extract summaries in this way is commonly referred to as 

ensemble perception9.
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In a standard laboratory ensemble task, participants are shown a set of stimuli that share 

properties in a specific feature dimension, such as colour, and are instructed to report on 

their average along that dimension. Figure 1 depicts two example ensemble tasks with 

colours and shapes. People are remarkably accurate at these tasks and often notably better 

at reporting the average of the set than at reporting on any individual item10. Extensive 

empirical and theoretical work suggests that ensemble processing partially underlies our 

ability to create more robust representations of simple scenes10,11, categorize objects12 

and guide our attention13. Such tasks may also lead to critical insights into the limits of 

conscious perception. For example, preserved ensemble information in the relative absence 

of information about individuals is thought to show that ‘phenomenal’ consciousness 

overflows conscious access14,15.

Given the fundamental role of ensemble processing, there is immense value in developing 

process-based models that explain the mechanisms of ensemble extraction. However, so far, 

mainstream theories of ensemble extraction are largely grounded in verbal descriptions9. 

A known limitation of verbal theories is that they may lack the precision of mathematical 

models, which is requisite for delineating hypothetical constructs and adjudicating between 

competing theoretical accounts16–19.

The goal of the current work is to attempt to fill this gap. We present a theoretical framework 

and quantitative models of ensemble memory, and compare these models in different 

experiments to test core process-based hypotheses of how ensembles are computed and 

represented. We report consistent evidence for a Perceptual Summation model of ensemble 

memory. According to this model, stimuli evoke distributed patterns of activity over feature 

values, and ensemble representations reflect the global sum of these activations. We find that 

this model captures a range of phenomena in the ensemble and gist-memory literature.

A major aspect of our modelling framework is that rather than deriving a ‘best fit’ to 

ensemble data alone, we instead formally link a model of memory for individual items 

with ensembles. Accordingly, we use our framework to predict performance in a wide 

range of ensemble tasks, which differ in both stimuli and presentation format, from tasks 

that involve processing of individual items. This modelling thus involves generalizing 

across different cognitive tasks rather than simply fitting the data of a particular task20–22. 

The proposed model also provides a high-precision account of human performance 

by capturing complete distributions of errors in continuous-report tasks. Finally, this 

framework postulates probabilistic mental representations, making it broadly consistent with 

contemporary population coding models of perception and cognition23. Next, we review 

relevant theoretical work on ensemble perception, placing a special focus on dichotomies 

that highlight core questions researchers may want a model of ensemble processing to 

answer.

Existing theories of ensemble perception are foundational for stimulating hypotheses of 

ensemble perception and memory9,24. We use these theories to outline three relevant 

dichotomies, which highlight core desiderata for a quantitative process model of ensembles.
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The first dichotomy is between views that ensemble processing does versus does not involve 

operating over representations of individual items24. This is a core dichotomy because it 

speaks to how ensemble representations are computed. It also bears on the extent to which 

ensembles are possible to compute when item information is unavailable to memory, which 

is critical for theories about the role of ensembles in consciousness15,25.

One class of views posit that ensemble processing involves pooling over already-processed 

representations of individual items10,26–28. According to this view, people have complete 

representations of individual items and pool them to compute an ensemble. In contrast, other 

views suggest that ensemble processing involves automatically extracting an average without 

first representing each individual on its own6,25. Researchers have also proposed that 

ensemble extraction involves dividing the total amount of activation elicited by perceived 

items by their number, without explicitly representing individual items29.

Much of the work that seeks to address how representations of individual items relate 

to ensembles is non-quantitative, which can make the connection between individual and 

ensemble representations difficult to explain. For example, some researchers report that 

representations of ensembles are present even when memory for individual items is at 

chance, implying distinct representations for both10. However, these authors also report that 

pooling noisy information about individual items can predict ensemble data27. The question 

of how representations of individual items relate to ensembles thus remains an important 

puzzle in the ensemble literature.

The second relevant dichotomy is between views that noise accrues during an ‘early’ versus 

‘late’ stage of ensemble processing30. We make two distinctions between possible types 

of early and late noise in ensemble processing. The first is between perceptual and post-

perceptual noise—that is, noise that accrues during perception without memory demands 

versus noise that accrues during memory-based processes, such as active maintenance. The 

second distinction is between presummarization and postsummarization noise31, which is 

noise that accrues before versus after ensemble representations are computed.

We distinguish between these two kinds of early and late noise because it is conceptually 

possible, and is in fact an assumption of the model we propose, that patterns of activation 

elicited by individual items are corrupted by perceptual noise (consistent with early 

perceptual noise accrual) but that post-perceptual noise accrues after rather than before 

ensembles are computed (consistent with late postsummarization noise accrual). This view 

entails that ensemble computation operates over item representations that are corrupted 

by perceptual but not post-perceptual noise. This contrasts to some subsampling accounts, 

according to which only a few items are used to create ensemble representations. Current 

subsampling models are more aligned with the view that ensembles are computed after 

post-perceptual noise accrues over representations of individual items, which are then used 

to compute an ensemble when memory is tested28. Broadly, these dichotomies between 

variants of early and late theories of noise provide insight into the time course of ensemble 

extraction.
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The last relevant dichotomy is between views that ensemble representations are probabilistic 

versus point estimates. For instance, some researchers examined the content of ensemble-

like representations in a visual search task32. These authors reported evidence that people 

are sensitive to the entire underlying (uniform or Gaussian) distribution of features in the 

external environment, rather than simply an estimate of the average and variance of those 

features. This claim is consistent with people storing entire probability distributions over 

visual features, at least in the kind of implicit tasks used in that work33. This probabilistic 

representation view contrasts with an alternative view that people represent a point estimate 

of the ensemble, such as an average in feature space of each individual item10,24. This 

dichotomy speaks to the richness of ‘summaries’ computed in ensemble tasks.

The current model posits that ensemble processing involves pooling over individual item 

representations. It also postulates that representations of individual items are corrupted by 

noise at an early perceptual stage, but that post-perceptual noise accrues after ensembles 

are computed. This aligns with the view that ensemble perception is distinct from simply 

actively maintaining individual items in working memory and then summarizing them 

when ensemble memory is probed. Finally, the model posits probabilistic representations, 

according to which each individual item as well as the ensemble is represented as a 

distribution of activity over the entire feature space. We next describe the quantitative 

framework that serves as the conceptual and mathematical basis for the current ensemble 

model.

We took a top-down strategy for developing a computational model of ensemble 

processing34. We used an existing quantitative framework of memory and carved out a 

set of plausible constraints on the algorithms that underlie ensemble perception and memory 

for them. We formalized these constraints using a set of computational models.

We conceived of the current ensemble model using the target confusability competition 

(TCC) theory of memory35. In a set of more than a dozen experiments, TCC outperformed 

mainstream models of visual memory in terms of both fit to data and ability to predict 

data across distinct visual working and long-term memory tasks. The TCC model combines 

two fundamental ideas shared by a broad range of cognitive computational models (Fig. 

2a), which are that memory-based decisions are made under uncertainty36,37 and that 

information in the world is processed on the basis of its psychophysical rather than physical 

similarity structure38–40.

The first premise of TCC is that memory representations are intrinsically probabilistic and 

vary in strength, a core principle of signal detection theory37,41,42 and, broadly, Bayesian 

models of cognition43–46. For instance, a remembered item is assumed to be neither 

completely forgotten nor completely remembered. Instead, there is a probability distribution 

over how well the item is remembered, such that sometimes it is remembered with high 

fidelity and elicits a strong familiarity signal, and other times it is remembered with 

lower fidelity and elicits a weaker familiarity signal. In signal detection theory and TCC, 

the strength of each memory’s familiarity signal is captured with the signal-to-noise-ratio 

parameter, d′.
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The second premise of TCC is that familiarity spreads across feature space according to 

the stimulus’s psychophysical properties, an assumption shared with other foundational 

models of memory47–51. Specifically, the familiarity of a given stimulus is a function of the 

psychophysical similarity between this stimulus and contents of memory, which can also 

be thought of as distributed patterns of activation in neural populations that are selective to 

remembered feature values52,53. This assumption entails that stimuli will elicit a stronger 

familiarity signal if they are more psychophysically similar to contents in memory. For 

instance, if the remembered item is a purple square, the colour purple will elicit a very 

strong familiarity signal, as will colours that are nearly perceptually indistinguishable from 

purple. Colours that are somewhat similar to purple, such as magenta, will also elicit 

a familiarity signal, which will be stronger than those elicited by relatively dissimilar 

colours, such as green. This latent psychophysical similarity function and the corresponding 

distribution of memory signals is approximately exponential in form, in line with previous 

theories of memory and generalization39,40,54,55.

To summarize, TCC is a model that formally combines two fundamental views about 

memory processes in a way that permits generalization across memory tasks with a single 

free parameter, d′. The generalizability and parsimony of TCC, as well as its basis on 

probabilistic models of cognition and psychophysical scaling, make it a powerful framework 

for building cognitive architectures. We used TCC to derive the Perceptual Summation 

model as well as a set of contending models, with which we tested hypotheses of how 

ensembles are computed and represented. We also derived and tested a set of alternative, 

non-TCC-based models that make different processing assumptions. Next, we describe the 

TCC working-memory model for individual items and explain how we extended it to models 

of ensemble memory and formally linked these models.

Figure 2b (left) shows a schematic of a typical trial in a visual working memory task 

for individual items, which requires memorizing three coloured circles and their spatial 

locations. The TCC model postulates that each item elicits some location-dependent pattern 

of activity, which causes an increase in familiarity for its respective colour but also for 

similar colours. These levels of activation are each corrupted by perceptual noise, which 

makes it more difficult to distinguish highly similar feature values from one another. 

Throughout our modelling, we assumed that perceptual noise affects individual item 

activations in the same way in both working memory and ensemble tasks (see Methods 

for how perceptual noise was measured and modelled).

After individual item representations are perceived, their pattern of activity is corrupted by 

attention-based and memory-based noise. These effects of post-perceptual noise are captured 

with a single free parameter, d′, which quantifies the signal-to-noise ratio of each individual 

representation. The signal-to-noise ratio is affected by key experimental variables, such as 

memory load, encoding time and the retention interval, each of which affects how well the 

items are initially encoded and how much noise accumulates during memory maintenance. 

At the end of the trial, the probed item’s location is queried, and the participants report on 

the colour channel that generates the maximum familiarity signal.

Formally, the TCC model for individual items is given by the following equation:
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ri, VWM = argmax f x id′ + σnoise .

(1)

The index i denotes the probed item, ri, VWM is the predicted response on the continuous-report 

visual working memory task for that item, f x  is the measured similarity of each colour x 
with respect to item i, σnoise is a fixed amount of post-perceptual noise (set to one standard 

deviation with no loss in generality) and argmax denotes the decision rule that memory 

reports are based on the feature that generates the maximum familiarity signal.

We developed the Perceptual Summation ensemble model from the TCC model for 

individual items, as well as constraints based on prior evidence from the ensemble literature. 

These constraints include seemingly contradictory evidence that memory for individual 

items can predict memory for ensembles, but that memory for ensembles is more robust than 

memory for individual items10.

Like the model for individual items, the Perceptual Summation model postulates that each 

item in the memory array elicits patterns of activity over feature values, each of which is 

corrupted by perceptual noise (Fig. 2b, right). However, the Perceptual Summation model 

postulates that the ensemble is extracted during encoding, before memory-based noise 

accrues over representations of individual items. The model thus postulates that memory-

based noise accumulates over the ensemble instead of over representations of each item 

in the array. When probed on the average, participants report on the colour channel that 

generates the maximum familiarity signal. The equation for the Perceptual Summation 

model is the following:

rENS = argmax ∑
i = 1

N
f(x)id′ + σnoise .

(2)

Note that equations (1) and (2) are nearly identical, except that self-reports on the visual 

working memory task ri, VWM  are determined by levels of activation elicited by a single 

probed item (i), whereas self-reports on the ensemble task (rENS) are determined by the 

summed levels of activation of all N items.

With this framework, we connected the models for individual items and ensembles. We 

postulated that the patterns of activation elicited by each item in the memory array are the 

same in both working memory and ensemble tasks, and are pooled via summation in the 

early perceptual stage of ensemble extraction. Like in the model for individual items, this 

pattern of activation is measured with a psychophysical similarity function (which captures 

how familiarity signals are distributed across feature values for each item) and a single free 

parameter d′ (which measures the signal-to-noise ratio that scales these patterns of activation 

on the basis of the demands of the memory task). We formally linked memory for individual 

items and ensembles by estimating the signal-to-noise ratio (d′) of each individual item from 

a visual working memory task for individual items, and substituting this signal-to-noise ratio 
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into the Perceptual Summation model to compute the predicted summed pattern of activation 

of the ensemble. With this approach, we predicted entire distributions of memory errors in 

continuous-report ensemble tasks with zero free parameters.

To summarize, the difference between representations of individual items and ensembles 

is that in ensemble tasks patterns of activation elicited by individual items are pooled via 

summation before post-perceptual noise accrual. This entails that the signal-to-noise ratio 

of the post-summation ensemble representation will be larger than it is for individual items 

when there is overlap in feature values or redundancies between items in the ensemble array. 

Through the lens of likelihood signal detection theory41, this pooling mechanism can be 

seen as an optimal way of combining the likelihood elicited by each item into a more robust 

ensemble memory representation, or gist, as opposed to treating the evidence elicited by 

each item separately.

The Perceptual Summation model’s pooling mechanism can be seen as a cognitive-level 

approximation of processes described in neural population coding models. Very generally, 

some evidence suggests that increased population size may increase the amount of 

information embedded in populations of neurons56. Although the relationship between 

population size and readout accuracy is extremely complex and an active topic of 

investigation56–59, this framework provides one neurally plausible instantiation for the 

computations postulated in the Perceptual Summation model.

To test the predictions of the Perceptual Summation model, we compared it with a set 

of alternative models. The first prediction we considered is the time course of ensemble 

extraction. The Perceptual Summation model’s ‘early pooling’ prediction contrasts with 

an alternative view that individual items are held in working memory until ensemble 

memory is probed, at which point they are pooled to compute an ensemble. This alternative 

view is informally embodied in some subsampling theories of ensemble processing28. We 

formalized this prediction within the TCC framework with the Post-perceptual Summation 

model.

The Post-perceptual Summation model predicts that people maintain location-dependent 

representations of each item in memory—as they would in a standard working memory 

task for individual items—until they are probed on their memory for the ensemble. Thus, 

according to this model, ensemble representations are computed at a relatively late stage, 

and each item therefore accrues memory-based noise separately, before the ensemble is 

pooled. The equation for the Post-perceptual Summation model is the following:

rENS = argmax ∑
i = 1

N
f(x)id′ + σnolse .

(3)

Note that the terms in the Post-perceptual (equation (3)) and Perceptual Summation 

(equation (2)) models are nearly identical, with the difference that summation occurs over 

individual items that have already accrued post-perceptual noise (equation (3)) versus before 

representations of individual items have accrued post-perceptual noise (equation (2)). To 
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summarize, these two models can mimic each other if d′ is allowed to freely vary; however, 

because we use a generalization approach, d′ is constrained across tasks, allowing us to 

differentiate these models (see Supplementary Information for extended discussion of these 

issues).

Finally, we considered an ensemble model that follows from theories that ensemble averages 

are extracted automatically, without processing of individual items6,25, which we refer 

to as the Automatic Averaging model. Although still nested within the TCC framework, 

this model differs from the Perceptual and Post-perceptual Summation models because it 

postulates that individual items in ensemble tasks automatically elicit distributed patterns 

of activation around the average feature value in ensemble array, rather than eliciting 

item-specific patterns of activation that are pooled via summation. This representation of 

the average is also probabilistic and scaled by the signal-to-noise ratio of a single memory 

representation. We also consider alternative assumptions about the signal-to-noise ratio for 

this model in the Supplementary Information. To summarize, this model is equivalent to 

assuming that the ‘average’ is directly perceptually available to people in the same way as an 

item that is physically present. As shown in equation (4), this model postulates that people 

extract a single probability distribution over the mean feature, which is also corrupted by 

noise:

rENS = argmax f x meand′ + σnolse .

(4)

Note that equation (4) is nearly identical to equation (1) except that the similarity function 

is centred on the average feature value instead of the value of an individual item. Figure 3 

depicts each of these TCC ensemble models.

So far, these ensemble models posit that, on average, each item is weighted equally when 

computing an ensemble. This is tenable under conditions that do not lead to disproportionate 

prioritization of a specific item or subset of items60,61.

However, it is known that some conditions do elicit unequal weighting of items in memory. 

For instance, items that were shown more recently tend to be remembered better than items 

shown less recently, and such recency effects affect ensemble representations as well62. To 

evaluate the generalizability of our modelling, we extended it to conditions in which items 

receive unequal prioritization in memory. Furthermore, the summation account becomes 

more distinct from other possible accounts when items vary in strength; therefore, this 

analysis also provides a stronger test of the view that ensemble representations reflect a sum 

of local patterns of activation. Finally, this analysis helps demonstrate that we can predict 

both interindividual and intraindividual variations in ensemble processing.

To this end, in one of our experiments we used a sequential presentation ensemble paradigm. 

One way to generalize the TCC-based models to this situation is to simply obtain separate 

d′ estimates for each item in the sequence and use these estimates to compute ensemble 

predictions. However, we can also use a temporal model that captures memory changes as 

a function of the sequential presentation with fewer parameters. We used prior modelling 
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work62 to extend our modelling in this way (Methods). As expected, we found the same 

pattern of results using both types of models. Next, we describe a few alternative, non-TCC 

models of ensemble perception.

Currently, there are no computational models of ensemble processing that fully capture 

distributions of errors in a continuous self-report task and that can account for data 

across a range of ensemble manipulations. However, to bolster the interpretability of our 

modelling, we derived a set of alternative models that serve as conceptual foils to the 

TCC ensemble models. Some of these models are baseline models that make extremely 

simplistic assumptions about ensemble processing, which we use to check the tenability of 

our TCC models. Other models link memory performance for individual items to memory 

for ensembles while postulating different assumptions about memory processes, such as that 

there are true ‘guessing states’63. Each of these models is depicted schematically in Fig. 4. 

Because we did not find that these are best-performing models, for ease of exposition, we 

include a conceptual description of these models in the Methods.

We ran five experiments to evaluate the predictive accuracy of each ensemble model, 

with the goal of assessing the generalizability of our modelling results across different 

ensemble tasks. As previewed, each experiment had the same structure, meaning that the 

participants completed one block of a visual working memory task and one block of an 

ensemble task (presented in random order across participants). This allowed us to measure 

d′ in the visual working memory task and use it to predict performance in the ensemble 

task. In Experiments 1 and 2, we examined people’s memory for colour (Fig. 5a) and 

manipulated set size and the range of colour values in the ensemble task, respectively. In 

Experiments 3 and 4, we evaluated the generalizability of these results for a higher-level 

shape feature space (Fig. 5b), where we also manipulated set size and varied the range of 

shapes, respectively. Finally, in Experiment 5, we used a sequential presentation task (Fig. 

5c) to test models when memory representations receive different priority.

Results

Our goal was to evaluate the ability of the Perceptual Summation ensemble model to 

generalize performance from the visual working memory task to the ensemble task. We 

formally compared the predictive accuracy of this model with that of other models using the 

predicted negative log likelihood (PNLL) between it and the contending models. PNLL is 

a predictive model comparison metric because we assess the models on the basis of their 

capacity to generalize across tasks—that is, make zero-free-parameter predictions on new 

data in a different task. However, we do note that all TCC models also yield good fit to 

the data (R2 ≥ 0.9 across all experiments; Supplementary Information). Because PNLL is 

a negative log likelihood, lower scores reflect less deviance and better model predictions. 

PNLL naturally accounts for model complexity because it captures predictive accuracy 

rather than goodness of fit (for an elaborated discussion of this point, see the Supplementary 

Information).

For our main analysis with TCC ensemble models, we fit the TCC visual working memory 

model to the data and substituted d′ estimates from these fits into the ensemble models 
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to predict the ensemble data. To ensure the robustness of our models’ performance, we 

also implemented a reverse inference analysis in which we fit the ensemble models to the 

ensemble data and then used the best-fitting parameters from the ensemble task to predict 

the working memory data (Supplementary Information). We found that our results are robust 

across these different methods of prediction.

We implemented analyses at the level of individual participants. Specifically, we compared 

the observed PNLL between each model and the best-performing model using a paired 

t-test. The data distribution was assumed to be normal, but this was not formally tested. 

We report the observed effect size (dz) and the lower and upper bounds of a confidence 

interval for the mean difference (CIL and CIU, respectively). We used a conservative 

Bonferroni correction63 to control for multiple comparisons. For our main comparisons 

in Experiments 1–4 and Experiment 5, there were six and eight family-wise comparisons 

(m), respectively, and the adjusted significance threshold (αA = α/m = 0.05/m) was 0.008 

and 0.006, respectively. For our reverse inference comparisons, there were two family-wise 

comparisons in each experiment, and αA = 0.025. We found that each central comparison 

was statistically significant when adjusting for multiple comparisons.

Ensemble memory for colour with different set sizes

In Experiment 1, the participants completed a visual working memory and ensemble task 

that used colour as the stimulus and manipulated set size to assess how each model captures 

changes as a function of memory load. We found that the Perceptual Summation model was 

the best-performing model (the PNLL of the Perceptual Summation model was statistically 

lower than for all alternative models; all P < 0.001). Figure 6 shows the difference in PNLL 

between the Perceptual Summation and competing models, along with descriptive and 

inferential statistics. Figure 7 shows the fits of the TCC models to aggregate and example 

individual data.

Ensemble memory for colour with different ranges

In Experiment 2, the participants performed a colour task, and we manipulated the range 

of the colours in the ensemble task—that is, how distinct they were from each other. We 

found that the Perceptual Summation model was the best-performing model (the PNLL of 

the Perceptual Summation model was statistically lower than for all alternative models; all 

P < 0.001). Figure 8 shows the difference in PNLL between the Perceptual Summation and 

competing models, along with descriptive and inferential statistics. Extended Data Fig. 1 

shows the fits of the TCC models to the aggregate and individual data.

Ensemble memory for shapes with different set sizes

In Experiment 3, we manipulated set size and had the participants remember shapes instead 

of colours. We found that the Perceptual Summation model was the best-performing model 

(the PNLL of the Perceptual Summation model was statistically lower than for all alternative 

models; all P < 0.001). Extended Data Fig. 2 shows the difference in PNLL between the 

Perceptual Summation and competing models, as well as fit statistics. Extended Data Fig. 3 

shows the fits of the TCC models to the aggregate and individual data.
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Ensemble memory for shapes with different ranges

In Experiment 4, we manipulated the range of shapes in the ensemble task. We found 

that the Perceptual Summation model was the best-performing model (the PNLL of the 

Perceptual Summation model was statistically lower than for all alternative models; all 

P < 0.001). Extended Data Fig. 4 shows the difference in PNLL between the Perceptual 

Summation and competing models, along with descriptive and inferential statistics. 

Extended Data Fig. 5 shows the fits of the TCC models to the aggregate and individual 

data.

Ensemble memory for sequentially presented stimuli

In Experiment 5, we presented stimuli sequentially, introducing variation in the strength of 

the items. We found that the Recency Perceptual Summation model was the best-performing 

model (the PNLL of the Perceptual Summation model was statistically lower than for each 

of the competing models; all P < 0.001). As expected, this model performed comparably to 

a model where we measured a separate d′ for each item in the sequence. Extended Data Fig. 

6 shows the difference in PNLL and statistical comparisons. Extended Data Fig. 7 shows the 

fits of the TCC models to the aggregate and individual data.

Discussion

Across five experiments, we found support for a Perceptual Summation ensemble model that 

postulates that ensemble representations are a sum of activations elicited by individual items 

in the memory array, which are pooled at a relatively early encoding stage of processing. 

We used the TCC framework to formally link a working memory model for individual items 

with this ensemble model. The Perceptual Summation model yields zero-free-parameter 

predictions of the full distribution of errors in ensemble tasks, using parameters obtained 

from a matched visual working memory task for individual items. It is a general process 

model of ensembles, developed on the basis of an existing theory of memory for individual 

items to make predictions for any ensemble task. Our modelling demonstrates that it can 

make predictions for ensemble tasks that use different stimuli spaces and presentation 

formats. In the Supplementary Information, we report simulations that demonstrate how the 

model can be extended to other tasks.

We compared our Perceptual Summation model of ensembles to a suite of contending 

models to adjudicate between competing hypotheses regarding how ensembles are extracted. 

The first critical comparison is between the Perceptual and Post-perceptual Summation 

models, which provides insight into the time course of ensemble extraction. The Perceptual 

Summation model entails that people pool over individual item representations relatively 

early at the perceptual/encoding stage of ensemble extraction. In contrast, the Post-

perceptual Summation model entails that people pool at a later processing stage, after 

individual items are encoded and consolidated in working memory28. We found that 

the Perceptual Summation model outperformed the Post-perceptual Summation model, 

indicating that ensemble processing in these settings is more akin to a perceptual process 

rather than a complex deliberate process, in which people calculate a pooled representation 

using individual memory representations when their ensemble memory is probed.
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Second, we found that the Perceptual Summation model outperformed the Automatic 

Averaging model. The Automatic Averaging model aligns with prior proposals6 that people 

extract an average without maintaining representations of individual items; it serves as a 

logical foil to the Perceptual and Post-perceptual Summation models, which both predict 

that ensembles are constructed from representations of individual items. Across all studies, 

we found that the Perceptual Summation model outperformed the Automatic Averaging 

model, suggesting that people use representations of individual items to extract ensembles 

rather than automatically extracting an average.

We also compared the Perceptual Summation model with four non-TCC models, 

which elucidates how to characterize ensemble representations. We found that the fully 

probabilistic TCC models outperform point estimate and partial distribution models. We 

clarify here that when we refer to representations as ‘probabilistic’ we do not assume 

that they must conform to classic probability axioms64. Rather, we assume that memory 

representations preserve uncertainty information for the full distribution of feature values 

and that performance in memory tasks reflects a readout of these uncertainties over feature 

values. These results are broadly consistent with neural population coding models of 

memory, according to which memory representations are grounded in distributed neural 

patterns of activation across feature values53,65,66.

We conclude this section by noting that, like in all model comparisons, our inferences 

are qualified by the set of models we consider. For instance, we do not make the strong 

claim that there are no alternative Automatic Averaging or Point Estimate models that could 

provide a better account of the data in principle. Our goal was to develop a broad range 

of alternative models within and outside of the TCC framework, with varying assumptions, 

and implement them as fairly to each theoretical position as possible. In the Supplementary 

Information, we discuss how our model connects to and differs from existing models of 

ensemble processing. We anticipate that future modelling work may provide a new suite of 

alternatives. We believe it is critical that such work focuses on developing models that can 

account for performance across a range of ensemble tasks, have the potential to generalize 

across task structures, and make high-precision predictions of performance.

The Perceptual Summation model has relevance for theories of gist memory. Gist memory is 

broadly defined as memory for ‘generalities’ across multiple items, as opposed to memory 

for individual items, and, as such, both gist and ensemble processes involve abstracting 

regularities from multiple items24,67. Our model of ensembles cannot speak to how memory 

for gist and memory for individual items interact during short-term or long-term memory 

retrieval. However, it provides a candidate explanation for how gist memory representations 

are computed. According to this model, the bottleneck during the encoding of individual 

items is the same across visual working memory tasks for individual items and the extraction 

of a pooled representation. Furthermore, the model proposes that memory-based noise 

accrues in the same way regardless of whether people are instructed to remember a single 

item or an ensemble. Critically, it postulates that representations are pooled at a relatively 

early processing stage, prior to post-perceptual noise accrual. Altogether, the Perceptual 

Summation model provides a parsimonious and precise account of how gist representations 
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may arise from representations of individual items, while still being more robust than 

representations of individual items.

This model also provides an unambiguous account of how the processing of individual 

items differs from the processing of gist68. That is, instead of using theoretically 

underspecified constructs69 (such as focused versus diffuse attention30,70 or preattentive and 

attentive modes of processing71,72), it describes how different computations over the same 

representations can give rise to distinct types of memories. We believe that such an approach 

has great promise for building precise and testable models of gist memory, hierarchical 

representations and reconstructive memory processes in the visual domain.

We conclude by discussing a few potential limitations and venues for future research. In 

the current modelling approach, we use a single parameter, d′, to measure a potentially 

diverse set of processes. In line with standard signal detection models, d′ quantifies the 

signal-to-noise ratio of each memory representation, and different processes at encoding, 

maintenance and retrieval are built into this measure. However, signal-detection-based 

accounts are fully compatible with the view that processes and memory representations are 

multidimensional41. Our measure of memory with d′ simply captures how people combine 

multidimensional processes and memory representations into a single decision variable, 

which they use to make memory judgements when their memory is probed73. Naturally, 

this measure can be complemented with other modelling frameworks that unpack these 

processes. We elaborate and clarify related aspects of signal detection theory, TCC and our 

generalization approach in the Supplementary Information.

Another limitation is that we did not model all possible phenomena in the ensemble 

literature. This is because our goal was to formally establish a link between two different 

processing models, and, to this end, we focused on a set of mainstream ensemble tasks 

where the patterns of effects are robust. In the Supplementary Information, we report 

simulations to demonstrate that our model can, in principle, capture both outlier discounting 

and increased weighting of outliers. We also report simulations to show how the model 

accounts for differential effects of set size on the fidelity of ensemble representations and for 

the effects of various distributions of stimuli in the ensemble array. Our overall aim is to lay 

out a theoretical and methodological framework for future modelling research of ensemble 

and gist memory.

Methods

The study was completed online through the university’s SONA system and approved by 

the Institutional Review Board (IRB approval code: 151663; expiration 1 January 2023). 

All participants were at least 18 years old, provided informed consent and reported normal 

or corrected-to-normal vision. The participants were from the University of California, San 

Diego, community and participated in exchange for course credit. The participants were 

blind to the hypotheses of the study. In each experiment, we collected data until our final 

sample size was n = 50, which affords 99% power for a medium effect size (dz = 0.5) 

for a paired t-test at α = 0.05. We did not analyse the data of participants who failed to 

complete the study. We also excluded data from participants if their d′ estimates in any of the 
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visual working memory task conditions (and for the last item in the sequential presentation 

task) were more than 1.5 standard deviations below the group mean. All data and code are 

available in the Open Science Framework repository (osf.io/mt29p/).

Experiment 1: memory for colour with manipulation of set size

The participants completed a block of a visual working memory task and an ensemble task 

(the order of blocks was randomized across participants). At the beginning of every trial in 

both the visual working memory and ensemble tasks, the participants were shown a written 

prompt with the current trial number and the total number of trials in that block (1,000 

ms). After the prompt offset, the participants were shown a fixation cross in the centre of 

the screen and six placeholders (1,000 ms). Next, the participants were briefly presented 

with the memory array (350 ms). We manipulated memory load (randomly across trials) 

in the visual working memory and ensemble tasks; thus, the participants were instructed to 

remember six (50% of trials) or eight items in both tasks. The colour of each circle was 

randomly sampled from the CIELAB colour space of Schurgin et al.35 with the constraint 

that each colour had to be at least 30° away from the other colours in the array. In the 

ensemble block, the memory array also consisted either of six (50% of trials) or eight 

coloured circles. The step size between colours in the ensemble task was fixed to 15° for 

both set sizes. There were 150 trials in the visual working memory block and 150 trials in 

the ensemble block (75 trials per memory load condition in each of the tasks).

The memory array in both blocks was followed by a retention interval (900 ms) and the 

memory probe. In the visual working memory task, the participants were shown a black 

outline around one of the placeholders, which cued them to report on the colour of the circle 

shown in that spatial location. In the ensemble task, the participants were instructed to report 

on the average colour. In both tasks, the participants reported on the colour using a colour 

wheel.

Experiment 2: memory for colour with manipulation of range in the ensemble task

The procedure of Experiment 2 was identical to the procedure of Experiment 1 with the 

following exceptions. First, in both the visual working memory and ensemble memory 

blocks, the memory array always consisted of six coloured circles. Second, in the ensemble 

task, the step size between colours in each condition was constrained to be 10° (60° range 

condition), 15° (90° range condition) or 20° (120° range condition). There were 75 trials of 

the visual working memory task and 225 trials of the ensemble task (75 trials in each of the 

three range conditions).

Experiment 3: memory for shape with manipulation of set size

Experiment 3 was identical to Experiment 1, except that the participants were shown shapes 

instead of colours, and we changed the encoding time to 1,000 ms and the retention interval 

to 800 ms because the shape task is more difficult than the colour task. The shape stimuli 

were taken from Li et al.74.
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Experiment 4: memory for shape with manipulation of range in the ensemble task

Experiment 4 was identical to Experiment 2, except that the participants were shown shapes 

instead of colours, and we changed the encoding time to 1,000 ms and the retention interval 

to 800 ms.

Experiment 5: memory for sequentially presented colours

The goal of Experiment 5 was to model data from a sequential instead of simultaneous 

presentation paradigm. Therefore, in this experiment the participants were instructed to 

remember the colours of coloured pictures of real-world objects43. We used pictures of 

real-world objects instead of uniform stimuli (for example, circles) because this allowed us 

to easily probe an item’s serial position in the sequential visual working memory task for 

individual items by showing the participants a greyscale photo of one of the objects in the 

sequence and probing them on that object’s colour.

As before, all participants completed a block of the visual working memory and ensemble 

tasks. In both tasks, the participants self-advanced each trial by mouse-clicking on a fixation 

cross in the centre of the screen. The mouse-click was followed by a brief delay (1,000 

ms), after which they were shown a sequence of six objects, each presented one at a time 

in the centre of the computer screen. In both tasks, each object was presented for 600 ms 

and followed by a 450 ms interstimulus interval. In the visual working memory task, on each 

trial, each object in the sequence was unique, and the colour of each object was constrained 

to be at least 30° away from the colours of the remaining objects. In the ensemble task, 

on each trial, each object in the sequence was the same (though different objects were 

presented across trials), and the step size between colours was 20°. To measure the effects 

of recency in the ensemble task, we adapted a manipulation from prior work62. Specifically, 

on half of the trials, the first (or last) three objects in the sequence had colours that were 

counterclockwise from the mean colour, whereas the last (or first) three objects had colours 

that were clockwise from the mean colour in colour space.

In both tasks, the last object in the sequence was followed by a 900 ms delay. Within the 

delay period, the participants were shown a dynamic visual mask, which was displayed for 

100 ms, 100 ms after the last object offset. The mask was used to reduce potential effects of 

iconic memory on recency effects in the sequential presentation design. After the retention 

interval, the participants were probed on their memory with a continuous report. In the 

visual working memory task, the participants were shown a greyscale version of one of the 

six objects in the sequence and instructed to adjust its colour to its colour on that trial. In the 

ensemble task, the participants were shown a greyscale version of the object from that trial 

and instructed to adjust its colour to the average colour on that trial. There were 120 trials in 

the visual working memory task, and each object in the sequence was probed equiprobably 

(on 20 trials) across the experimental block. There were 96 trials in the ensemble task, with 

48 trials each in the counterclockwise and clockwise conditions.

Generating predictions from TCC ensemble models

The models were fit separately to each participant’s visual working trial-level memory data. 

The best-fitting parameter estimates from these fits were used to predict the same person’s 
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data on the ensemble task. In Experiments 1–4, we fit the standard TCC model for single 

items to the visual working memory data. The formula for this model is given in equation 

(1). After obtaining a d′ estimate from fitting models to the visual working memory data, 

we substituted this parameter into equations (2)–(4) of the Perceptual and Post-perceptual 

Summation and Automatic Averaging models to predict the ensemble data. Note that each 

equation includes information about the similarity gradient with respect to each item in the 

ensemble memory array. Therefore, for instance, in experiments where we manipulated the 

range of colours or shapes, the range of activations elicited by items in the memory array is 

captured by summing these patterns of activations in the model (if an array has items that 

are further apart in feature space, this will also spread out the pooled activation function 

of the ensemble). In Experiment 5, we fit the sequential version of the visual working 

memory model (equation (5)) and substituted both the d′ and rate parameters into equations 

(6) and (7) to predict the ensemble data using the Recency variants of the Perceptual and 

Post-perceptual Summation models for ensembles, respectively. As noted, the Automatic 

Averaging model postulates that people extract a single representation of the mean without 

building it up from representations of individual items; therefore, for this model we used 

only a single d′ estimate to make predictions.

Generating predictions from non-TCC ensemble models

The first alternative non-TCC ensemble model is the Noise-Free Point Estimate model, 

according to which people automatically extract a noise-free point estimate of the mean 

feature, which is corrupted by motor noise only. In other words, the Noise-Free Point 

Estimate model simply predicts that self-reports on the ensemble task are the true mean. 

This model is unlikely to perform well since it cannot capture the full distribution of errors 

in a delayed estimation task, but we include it because it serves as a logical reference point 

against which to compare the assumptions of TCC ensemble models (such as that ensemble 

representations are probabilistic).

To generate predictions from the Noise-Free Point Estimate model, we calculated an equally 

weighted average value of the ensemble (like in the Automatic Averaging model). We then 

added a small amount of jitter to this estimate to simulate small effects of motor noise. To 

simulate motor noise, we used the built-in randn function in MATLAB, which generates 

random samples from a standard Gaussian distribution.

The second non-TCC model is the Noisy Point Estimate model, a more plausible extension 

of the Noise-Free Point Estimate model. According to this model, people automatically 

extract a point estimate of the mean feature along with an uncertainty interval around this 

value. More precisely, we make the simplifying assumption that people represent a fixed 

uniform uncertainty interval around the true mean value64. This model provides a simple 

way of capturing the idea that people represent a noisy representation of the ensemble. To 

generate predictions from the Noisy Point Estimate model, we drew random samples of data 

from a uniform distribution, which had a range of 60° and was centred on the true value of 

the average—that is, the samples were drawn from −30° to 30° around the mean value. The 

assumption behind this model is that people represent a uniform uncertainty interval around 
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the true mean value; thus, the number of samples was based on the number of trials in each 

ensemble condition.

So far, neither of the first two Point Estimate models formally links memory for individual 

items to memory for ensembles. We therefore considered two additional models, which do 

link processing across the working memory and ensemble tasks and make more tenable 

assumptions about processing on ensemble tasks. The first of these models we refer to as 

the Average Item Point Estimate model, according to which people compute ensembles by 

averaging over point estimates of individual item representations, a model closely related to 

the averaging view6,10,24.

The second of these models is the Precision Ensemble model, according to which people 

maintain a point estimate of the mean, which has a Gaussian rather than uniform uncertainty 

interval around it. Rather than using a fixed interval for all subjects as we did for the Noisy 

Point Estimate model, we calibrated this interval for each individual by obtaining a standard 

deviation estimate from their working memory data using the popular standard mixture 

model (inspired by Zhang and Luck75). Therefore, this model also inherits a fundamentally 

different processing assumption about memory than the TCC ensemble models, which is 

that there are true ‘guessing states’ in memory, such that there is no evidence that can be 

used to report on memory. To generate predictions for the Average Item Point Estimate 

model, we used people’s working memory data to sample n point estimates (measured in 

degrees of error) for each item in the array and then averaged across these estimates. For 

instance, if people had to remember six items on the visual working memory and ensemble 

tasks, we drew (with replacement) six samples of their self-report data (converted to error in 

degrees) on the visual working memory task and averaged across these. This was repeated 

for each trial to generate the predicted distribution of errors on the ensemble task.

To summarize, neither the Noise-Free Point Estimate nor the Item Average Point Estimate 

model postulates probabilistic representations. The Noisy Point Estimate and Precision 

Ensemble models postulate partially probabilistic representations because there is an 

uncertainty interval around the mean, but not a full probability distribution over feature 

values64. Note that we do not presume that these point-estimate models capture all possible 

ways in which point-estimate or partially probabilistic models could account for the data. 

However, in the absence of other quantitative models in the literature that can apply to 

such ensemble perception tasks, we created models that spanned a wide range of plausible 

assumptions regarding the nature of ensemble extraction and the properties of ensemble 

representations. We also address this point in the Discussion.

The Precision Ensemble model was implemented by fitting a standard mixture model75 to 

each individual’s visual working memory data and using the standard deviation estimate 

from this model to compute an uncertainty interval around the true average. The latter was 

implemented by sampling random samples of data (based on the number of trials in the 

ensemble task), from a normal distribution with mean zero and the standard deviation set to 

the standard deviation (inverse of precision) estimate from the mixture model.
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Recency TCC ensemble models

The Recency TCC model quantifies recency weights using an exponential function (without 

base e) over the serial position of each stimulus in the sequence. The recency model for 

individual items is given by the following equation:

ri, VWM = argmax f x
i
d′ratej + σnoise ,

(5)

where all terms are identical to those given in equation (1), except a second parameter, rate, 

which has the item position of item j in the exponent (where j = 1 is the most recent item in 

the sequence). The rate parameter is a free parameter bounded between 0 and 1 that captures 

the effects of memory decay on memory, with smaller values (of the parameter) indicating 

stronger decay effects and therefore relatively higher weighting of more recent items in 

the ensemble (and relatively better performance for them in the visual working memory 

task). The equations for the Perceptual and Post-perceptual Summation ensemble models are 

extended in a similar way, as shown below (equations (6) and (7), respectively):

rENS = argmax ∑
i = 1

N
f(x)id′ratej + σnoise ,

(6)

rENS = argmax ∑
i = 1

N
f(x)id′ratej + σnoise .

(7)

Note that the Automatic Averaging model is unchanged because it postulates that 

people automatically extract a single representation of the mean without building up this 

representation from individual items. We treat this model as being conceptually equivalent to 

a prototype model that entails an equally weighted average76.

Model fitting

All models were fit to visual working memory trial-level data (that is, the full distribution 

of memory errors on each trial) in MATLAB 2021b using maximum likelihood estimation 

by minimizing the negative log likelihood. Minimization was implemented with the fmincon 

algorithm in the Optimization Toolbox as well as basic iterative search. The predictive 

accuracy of each model was measured using the PNLL. For the main analyses, we 

substituted the best-fitting parameters from the visual working memory task into equations 

for each of the ensemble models to predict the data on the ensemble task, and we calculated 

the PNLL using data from the ensemble task conditions.
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Psychophysical similarity function and perceptual noise

The psychophysical similarity functions in our colour experiments were estimated in prior 

work using a Likert task and verified using a ‘triad’ task, a mainstream method for obtaining 

psychophysically scaled similarity data35. Perceptual noise was measured with a perceptual 

matching task, also a mainstream task for quantifying perceptual confusability of visual 

stimuli. In this task, the participants were shown a colour and asked to match it to one of 

60 colours (6° apart) presented simultaneously on the computer screen. This task provides 

insight into how perceptual noise affects the perceptual confusability of stimuli. These 

perceptual matching data were converted to a covariance matrix, which was convolved 

with the psychophysical similarity function35. We note that the resulting psychophysical 

similarity signal detection model is a simulation-based approximation of a correlated noise 

signal detection model77.

The same tasks were applied to the shape data. The shape wheel was created and validated 

as a circular space in prior work74. We collected Likert similarity data and perceptual 

confusion data for this wheel using the same methods as used for the colour data.
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Extended Data

Extended Data Fig. 1 |. The Perceptual Summation model predicts ensemble memory for color 
with a range manipulation.
Graphical representation of TCC models’ fit and prediction of data in Experiment 2. In this 

experiment participants had to remember colors of simultaneously presented circles, and the 

range of colors was manipulated in the ensemble task. The top row of panel A shows the fits 

of the TCC model for individual items to aggregate data from the visual working memory 

task for six items. The bottom row of panel A shows results from the predictive analysis 

in which d’ estimates from the visual working memory task were substituted into the 

TCC Perceptual Summation (blue), Post-perceptual (red) and Automatic Averaging (green) 

models to predict the ensemble data. The bottom panel (B) shows model predictions for a 

few example participants. Schurgin et al.35).
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Extended Data Fig. 2 |. Comparison in predictive accuracy between Perceptual Summation 
model and competing models of ensemble memory for shape with the set size manipulation.
The top panel shows violin plots for the difference in predicted negative log likelihood 

scores between each of the six alternative competing models (PNLLAlt) and the main 

Perceptual Summation model (PNLLPerSum) for Experiment 3 (n = 50 participants). Lower 

values of PNLL indicate higher predictive accuracy, therefore, PNLL difference scores 

higher (or lower) than zero indicate support for the Perceptual Summation (or a competing) 

model. In both experiments, the vast majority of participants are better predicted by the 

Perceptual Summation model than any of the alternatives. The bottom panel shows a table 

with a summary of descriptive and inferential statistics from all comparisons in Experiment 

3, including the mean and standard error of the mean across participants. PNLL values were 

compared with a paired two-tailed t-test, corrected for multiple comparisons and all p-values 

were statistically significant (p < 0.001).
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Extended Data Fig. 3 |. The Perceptual Summation model predicts ensemble memory for shape 
with a set size manipulation.
Graphical representation of the TCC models’ fit and prediction of data in Experiment 3. In 

this experiment participants had to remember different shapes, and the number of shapes 

was manipulated in the working memory and ensemble task. The top row of panel A shows 

the fits of the TCC model for individual items to aggregate data from the visual working 

memory task for six items and the second row of panel A shows results from the predictive 

analysis in which d’ estimates from the visual working memory task were substituted into 

the TCC Perceptual Summation (blue), Post-perceptual (red) and Automatic Averaging 
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(green) models to predict the ensemble data. Panel B shows data and model predictions for a 

few example participants.

Extended Data Fig. 4 |. Comparison in predictive accuracy between Perceptual Summation 
model and competing models of ensemble memory for shape with the range manipulation.
The top panel shows violin plots with the difference in predicted negative log likelihood 

scores between each of the six alternative competing models (PNLLAlt) and the main 

Perceptual Summation model (PNLLPerSum) for Experiment 4 (n = 50 participants). Lower 

values of PNLL indicate higher predictive accuracy, therefore, PNLL difference scores 

higher (or lower) than zero indicate support for the Perceptual Summation (or a competing) 

model. In both experiments, the vast majority of participants are better predicted by the 

Perceptual Summation model than any of the alternatives. The bottom panel shows a table 

with a summary of descriptive and inferential statistics from all comparisons in Experiment 

4, including the mean and standard error of the mean across participants. PNLL values were 

compared with a paired two-tailed t-test, corrected for multiple comparisons and all p-values 

were statistically significant (p < 0.001).
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Extended Data Fig. 5 |. The Perceptual Summation model predicts ensemble memory for shape 
with a range manipulation.
Graphical representation of TCC model’s fit and prediction of data in Experiment 4. In this 

experiment participants had to remember simultaneously presented shapes, and the range of 

shapes was manipulated in the ensemble task. The top row of panel A shows the fits of the 

TCC model for individual items to aggregate data from the visual working memory task for 

six items, and the second row of panel A shows results from the predictive analysis in which 

d’ estimates from the visual working memory task were substituted into the TCC Perceptual 

Summation (blue), Post-perceptual (red) and Automatic Averaging (green) models to predict 

the ensemble data. Panel B shows data and model predictions for a few example participants.
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Extended Data Fig. 6 |. Comparison in predictive accuracy between Sequential Perceptual 
Summation model and competing models of ensemble memory for sequentially presented 
stimuli.
The top panel shows violin plots of the difference in predicted negative log likelihood 

scores between each of the eight alternative competing models (PNLLAlt) and the main 

Sequential Perceptual Summation model (PNLLPerSum) (n = 50 participants). Lower 

values of PNLL indicate higher predictive accuracy, therefore, PNLL difference scores 

higher (or lower) than zero indicate support for the Sequential Perceptual Summation (or a 

competing) model. The vast majority of participants are better predicted by the Sequential 

Perceptual Summation model than any of the alternatives. Note that the baseline here is the 

Sequential Perceptual Summation model that relies on fitting a decay rate. The independent 

d’ Perceptual Summation model, the last model above, is the same model but without this 

parametric assumption about how d’ changes across the items in the working memory task. 

This independent model is instead one in which we used separate d’ estimates to quantify 

familiarity of items as a function of serial position, rather than a single d’ and rate parameter. 

This model is marked with an * because it is also a version of the Sequential Perceptual 

Summation model and so shows comparable predictive accuracy to the main Sequential 

Perceptual Summation model we use, as expected. The bottom panel shows a table with 

a summary of descriptive and inferential statistics from all comparisons in Experiment 5, 

including the mean and standard error of the mean across participants. PNLL values were 

compared with a paired two-tailed t-test, corrected for multiple comparisons and for all 

comparisons between competing models p-values were statistically significant (p < 0.001).
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Extended Data Fig. 7 |. The Perceptual Summation model predicts ensemble memory for 
sequentially presented stimuli.
Summary of results from Experiment 5, in which participants had to remember colors 

of sequentially presented real-world objects. The top row of panel A shows the fits of 

the Sequential TCC model to individual data and the second row of panel A shows 

the TCC Sequential Perceptual Summation (blue), Post-perceptual (red) and Automatic 

Averaging (green) models’ predictions of the ensemble data in two conditions. In the 

clockwise (counterclockwise) condition the most recently shown items were from the 

clockwise (counterclockwise) direction from the mean color, producing a clockwise 

(counterclockwise) bias. Panel B shows data and model predictions for a few example 

participants.
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Fig. 1 |. Laboratory ensemble tasks.
Examples of laboratory ensemble tasks in which participants are typically asked to report 

on the average along a stimulus dimension, such as colour or shape, using a continuous 

reproduction task.
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Fig. 2 |. TCC framework for memory of individual items and ensembles.
a, The TCC framework merges principles of memory uncertainty and the exponential 

generalization gradient. On the left, the two Gaussian distributions represent the distribution 

of familiarity signals for old (purple) and new (yellow/orange) items, with increasing values 

denoting greater familiarity. Purple, having been seen, on average has higher familiarity, but 

on a given trial people judge just one sample from this distribution, such that sometimes, 

yellow/orange may feel more familiar. In line with signal detection theory, the distance 

between these distributions (d′) quantifies memory fidelity. On the right, the psychophysical 

similarity function shows how average familiarity scales as a function of psychophysical 

similarity to the remembered item (for example, the purple at the centre of the distribution 

has familiarity equal to d′, and the yellow and orange at the edges have familiarity equal 

to zero). b, TCC allows us to link models for individual items and ensembles. The left 

panel shows the TCC model for individual items, which postulates that each item in the 

memory array elicits a distributed pattern of activation over feature values (upper left), 

which is corrupted by noise (centre left). When tested, people report on the feature value 

that generates the maximum memory signal based on the probed item (lower left). The right 

panel shows the TCC Perceptual Summation model for ensembles, which postulates that 

each item in the memory array elicits a distributed pattern of activation over feature values, 

which are pooled at an early encoding stage of processing (upper right). This distributed 

pattern of activation is corrupted by noise (middle right), and when queried on the mean 
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colour, people report on the feature value that elicits the maximum memory signal in this 

ensemble representation (lower right).
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Fig. 3 |. TCC ensemble models.
Schematic of all ensemble models that fall within the TCC framework. Within the TCC 

framework, all ensemble models posit that activations of individual memory representations, 

quantified with the signal-to-noise ratio (d′), underlie ensemble memory processes. 

Accordingly, each model can be used to predict ensemble data with zero free parameters 

by independently estimating a signal-to-noise ratio from a working memory task and 

substituting it into the ensemble models. Each model provides a way of linking memory 

for individual items to memory for ensembles, but each embodies different theoretical 

assumptions regarding how ensembles are computed. The Perceptual Summation model 

postulates that each item elicits item-specific patterns of activation that are pooled at an 

early encoding stage of processing. This model has the potential to capture key predictions 

in the ensemble memory literature, such as that ensemble representations are more robust 

than representations of individual items, but that item-specific memory can still predict 

aspects of ensemble memory. The Post-perceptual Summation model, in contrast, captures 

the view that representations of individual items are maintained in working memory until 

memory is probed. Finally, the Automatic Averaging model postulates that ensemble 

representations of the average are extracted automatically rather than being built up from 

representations of individual items. Together, comparing these models allows us to formally 

test key predictions in the ensemble literature using formal model comparison as well as a 

principled, theoretical framework of memory processes.
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Fig. 4 |. Non-TCC ensemble models.
Schematic of all ensemble models that do not fall within the TCC framework. The non-TCC 

models differ in the extent to which they represent uncertainty (Noisy Point Estimate, 

Average of Point Estimates and Precision Point Estimate) versus do not (Noise-Free Point 

Estimate) and the extent to which they assume an averaging of individual item values 

(Average of Point Estimates) versus a direct extraction of the ensemble mean (Noise-Free 

and Noisy Point Estimate and Precision Point Estimate). See the main text for the full model 

descriptions.
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Fig. 5 |. Colour, shape and sequential memory tasks.
a,b, Example trial sequences used in the visual working memory (VWM) and ensemble 

tasks with colour (a) and shape (b). In the visual working memory tasks (left), the 

participants saw a set of colours (a) or shapes (b); then, after a delay, a single location 

was probed, and the participants had to indicate which colour or shape was in that position. 

In the ensemble tasks (right), the participants saw a set of colours (a) or shapes (b) and then 

after a delay were probed on the mean colour or mean shape (for example, a summary of 

the entire set) rather than on a single individual item. c, An example trial sequence used 

in the visual working memory and ensemble tasks in Experiment 5. On each trial of the 

visual working memory task (left), the participants saw a number of coloured real-world 

objects presented one at a time. Then, a single object appeared at test in greyscale, and the 

participants had to indicate what colour that particular item had been. In the ensemble task 

(right), the participants saw a sequence of colours on a single real-world object, and at test 

they had to indicate the average colour of this object (ISI denotes ‘interstimulus interval’).
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Fig. 6 |. Comparison in predictive accuracy between the Perceptual Summation model and 
competing models of ensemble memory for colour with set size manipulation.
Top, violin plots based on the difference in PNLL scores between each of the six alternative 

competing models (PNLLalt) and the main Perceptual Summation model (PNLLPerSum) 

for Experiment 1 (n = 50 participants). Lower PNLL values indicate higher predictive 

accuracy; therefore, PNLL difference scores higher (or lower) than zero indicate support for 

the Perceptual Summation (or a competing) model. In both experiments, the vast majority 

of participants were better predicted by the Perceptual Summation model than by any 

of the alternatives. Bottom, descriptive and inferential statistics from all comparisons in 

Experiment 1, including the mean and standard error of the mean across participants. 

The PNLL values were compared with a paired two-tailed t-test, corrected for multiple 

comparisons, and all P values were statistically significant (P < 0.001).
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Fig. 7 |. The Perceptual Summation model predicts ensemble memory for colour with set size 
manipulation.
a,b, Graphical representations of the TCC models’ fit and prediction of the data in 

Experiment 1. In this experiment, the participants had to remember the colours of 

simultaneously presented circles, and the number of colours was manipulated in the working 

memory and ensemble tasks. Panel a shows the fits of the TCC model for individual items 

to aggregate data from the visual working memory task for six and eight items. Estimates 

of d′ from the visual working memory task were substituted into the TCC Perceptual 

Summation (blue), Post-perceptual (red) and Automatic Averaging (green) models to predict 

the ensemble data. Panel b shows model predictions for a few example participants (P1 

through P4). We visually show the fits of the TCC model for individual items to the visual 

working memory data to demonstrate that it provides a reasonable fit to the data (for an 

extended model comparison between this model and other contending models for individual 

items based on fit and predictive accuracy, see Schurgin et al.35).
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Fig. 8 |. Comparison in predictive accuracy between the Perceptual Summation model and 
competing models of ensemble memory for colour with colour range manipulation.
Top, violin plots based on the difference in PNLL scores between each of the six alternative 

competing models (PNLLalt) and the main Perceptual Summation model (PNLLPerSum) 

for Experiment 2 (n = 50 participants). Lower PNLL values indicate higher predictive 

accuracy; therefore, PNLL difference scores higher (or lower) than zero indicate support for 

the Perceptual Summation (or a competing) model. In both experiments, the vast majority 

of participants were better predicted by the Perceptual Summation model than by any 

of the alternatives. Bottom, descriptive and inferential statistics from all comparisons in 

Experiment 2, including the mean and standard error of the mean across participants. 

The PNLL values were compared with a paired two-tailed t-test, corrected for multiple 

comparisons, and all P values were statistically significant (P < 0.001).
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