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Abstract

Let G be a compact group and let fij ∈ C G . We define the Non-Unique Games (NUG) problem 

as finding g1, …, gn ∈ G to minimize ∑i, j = 1
n fij gigj

−1 . We introduce a convex relaxation of the NUG 

problem to a semidefinite program (SDP) by taking the Fourier transform of fij over G. The NUG 

framework can be seen as a generalization of the little Grothendieck problem over the orthogonal 

group and the Unique Games problem and includes many practically relevant problems, such as 

the maximum likelihood estimator to registering bandlimited functions over the unit sphere in 

d-dimensions and orientation estimation of noisy cryo-Electron Microscopy (cryo-EM) projection 

images. We implement a SDP solver for the NUG cryo-EM problem using the alternating direction 

method of multipliers (ADMM). Numerical study with synthetic datasets indicate that while our 

ADMM solver is slower than existing methods, it can estimate the rotations more accurately, 

especially at low signal-to-noise ratio (SNR).
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1. Introduction

We consider problems of the following form:

minimize
g1, …, gn i, j = 1

n
fij gigj

−1

subject to gi ∈ G,

(1.1)

where G is a compact group and fij:G ℝ are suitable functions. We will refer to such 

problems as a Non-Unique Game (NUG) problem over G.

Note that the solution to the NUG problem is not unique. If g1, …, gn is a solution to (1.1), 

then so is g1g, …, gng for any g ∈ G. That is, we can solve (1.1) up to a global shift g ∈ G.

In many inverse problems, the goal is to estimate multiple group elements from information 

about group offsets, and can be formulated as (1.1). A simple example is angular 

synchronization [40], where one is tasked with estimating angles θi i from information 

about their offsets θi − θj mod 2π. The problem of estimating the angles can then be 

formulated as an optimization problem depending on the offsets, and thus be written in 

the form of (1.1). In this case, G ≅ SO 2 .

One of the simplest instances of (1.1) is the Max-Cut problem, where the objective is to 

partition the vertices of a graph as to maximize the number of edges (the cut) between the 

two sets. In this case, G ≅ ℤ2, the group of two elements {±1}, and fij is zero if i, j  is not an 

edge of the graph and

fij 1 = 0andfij − 1 = − 1,

if i, j  is an edge. In fact, we take a semidefinite programming based approach towards (1.1) 

that is inspired by — and can be seen as a generalization of — the semidefinite relaxation 

for the Max-Cut problem by Goemans and Williamson [21].

Another important source of inspiration is the semidefinite relaxation of Max − 2 − Lin ℤL , 

proposed in [15], for the Unique Games problem, a central problem in theoretical computer 

science [26, 27]. Given integers n and L, an Unique-Games instance is a system of linear 

equations over ℤL on n variables xi i = 1
n . Each equation constraints the difference of two 

variables. More precisely, for each i, j  in a subset of the pairs, we associate a constraint

xi − xj = bij mod L .

The objective is then to find xi i = 1
n  in ℤL that satisfy as many equations as possible. This can 

be easily described within our framework by taking, for each constraint,
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fij g = − δg ≡ bij,

and fij = 0 for pairs not corresponding to constraints. The term ‘unique’ derives from the fact 

that the constraints have this special structure where the offset can only take one value to 

satisfy the constraint, and all other values have the same score. This motivated our choice 

of nomenclature for the framework treated in this paper. The semidefinite relaxation for the 

unique games problem proposed in [15] was investigated in [8] in the context of the signal 

alignment problem, where the fij are not forced to have a special structure (but G ≅ ℤL). The 

NUG framework presented in this paper can be seen as a generalization of the approach 

in [8] to other compact groups G. We emphasize that, unlike [8] that was limited to the 

case of a finite cyclic group, here we consider compact groups that are possibly infinite and 

non-commutative.

Besides the signal alignment problem treated in [8] the semidefinite relaxation to the NUG 

problem we develop generalizes with other effective relaxations. When G ≅ ℤ2 it coincides 

with the semidefinite relaxations for Max-Cut [21], the little Grothendieck problem over 

ℤ2 [3, 32], recovery in the stochastic block model [2, 7], and Synchronization over ℤ2 [1, 

7, 18]. When G ≅ SO 2  and the functions fij are linear with respect to the representation 

ρ1:SO 2 ℂ given by ρ1 θ = eiθ, it coincides with the semidefinite relaxation for angular 

synchronization [40]. Similarly, when G ≅ O d  and the functions are linear with respect 

to the natural d-dimensional representation, then the NUG problem essentially coincides 

with the little Grothendieck problem over the orthogonal group [9, 31]. Other examples 

include the shape matching problem in computer graphics for which G is the permutation 

group (see [24, 16]). In addition, it has been shown in [13] that the formulation of NUG 

and the algorithms presented in this paper can be extended to simultaneous alignment and 

classification of a mixture of different signals.

1.1. Orientation estimation in cryo-Electron Microscopy.

A particularly important application of this framework is the orientation estimation problem 

in cryo-Electron Microscopy [39].

Cryo-EM is a technique used to determine the 3-dimensional structure of biological 

macromolecules. The molecules are rapidly frozen in a thin layer of ice and imaged 

with an electron microscope, which gives noisy 2-dimensional projections. One of the 

main difficulties with this imaging process is that these molecules are imaged at different 

unknown orientations in the sheet of ice and each molecule can only be imaged once (due 

to the destructive nature of the imaging process). More precisely, each measurement consists 

of a tomographic projection of a rotated (by an unknown rotation) copy of the molecule. 

The task is then to reconstruct the molecule density from many such noisy measurements. 

Although in principle it is possible to reconstruct the 3-dimensional density directly from the 

noisy images without estimation of the rotations [25], or by treating rotations as nuisance 

parameters [47, 6] here we consider the problem of estimating the rotations directly from 
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the noisy images. In Section 2, we describe how this problem can be formulated in the form 

(1.1).

2. Multireference Alignment

In classical linear inverse problems, one is tasked with recovering an unknown element 

x ∈ X from a noisy measurement of the form P x + ϵ, where ϵ represents the measurement 

error and P is a linear observation operator. There are, however, many problems where 

an additional difficulty is present; one class of such problems includes non-linear inverse 

problems in which an unknown transformation acts on x prior to the linear measurement. 

Specifically, let X be a vector space and G be a group acting on X. Suppose we have n
measurements of the form

yi = P gi ∘ x + ϵi, i = 1, …, n

(2.1)

where

• x is a fixed but unknown element of X,

• g1, …, gn are unknown elements of G,

• ∘ is the action of G on X,

• P:X Y  is a linear operator,

• Y  is the (finite-dimensional) measurement space,

• ϵi’s are independent noise terms.

If the gi’s were known, then the task of recovering x would reduce to a classical linear 

inverse problem, for which many effective techniques exist. While in many situations it is 

possible to estimate x directly without estimating g1, …, gn, or by treating these as nuisance 

parameters, here we focus on the problem of estimating the group elements g1, …, gn.

There are several common approaches for inverse problems of the form (2.1). One is 

motivated by the observation that estimating x knowing the gi’s and estimating the gi’s 

knowing x are both considerably easier tasks. This suggests an alternating minimization 

approach where each estimation is updated iteratively. Besides a lack of theoretical 

guarantees, convergence may also depend on the initial guess. Another approach, which 

we refer to as pairwise comparisons [40], consists in determining, from pairs of observations 

yi, yj , the most likely value for gigj
−1. Although the problem of estimating the gi’s from 

these pairwise guesses is fairly well-understood [40, 10, 43] enjoying efficient algorithms 

and performance guarantees, this method suffers from loss of information as not all of 

the information of the problem is captured in this most likely value for gigj
−1 and thus this 

approach tends to fail at low signal-to-noise-ratio.
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In contrast, the Maximum Likelihood Estimator (MLE) leverages all information. Assuming 

that the ϵi’s are i.i.d. Gaussian, the MLE for the observation model (2.1) is given by the 

following optimization problem:

minimize
g1, …, gn, x

∑
i = 1

n
yi − P gi ∘ x 2

2

subject  to gi ∈ G

x ∈ X

(2.2)

We refer to (2.2) as the Multireference Alignment (MRA) problem. Let us denote the ground 

truth signal and group elements by x0 and g1
0, …, gn

0; the solution to the optimization problem 

by x* and g1
*, …, gn

*, which we will also refer to as xMLE and g1
MLE, …, gn

MLE. Unfortunately, 

the exponentially large search space and nonconvex nature of (2.2) often render it 

computationally intractable. However, for several problems of interest, we formulate (2.2) as 

an instance of an NUG for which we develop computationally tractable approximations.

Notice that although MLE typically enjoys several theoretical properties, their underlying 

technical conditions do not hold in this case. Specifically, the number of parameters to be 

estimated is not fixed but rather grows indefinitely with the sample size n: for each sample 

yi there is a group element gi that needs to be estimated. As a result, the MLE may not be 

consistent in this case. In other words, even in the limit n ∞ the estimator xMLE may not 

converge to the ground truth x0. Similarly, the estimated group elements will not converge 

to their true values. A different version of MLE, not considered in this paper, in which the 

group elements are treated as nuisance parameters and are marginalized would enjoy the 

nice theoretical properties.

2.1. Registration of signals on the sphere.

Consider the problem of estimating a bandlimited signal on the circle x:S1 ℂ from noisy 

rotated discrete sampled copies of it. In this problem, X = span eikθ
k = − t

t
 is the space of 

bandlimited functions up to degree t on S1, G = SO 2  and the group action is

g ∘ x =
k = − t

t
αkeik θ − θg ,

where x = ∑k = − t
t αkeikθ and we identified g ∈ SO 2  with θg ∈ 0,2π .

The measurements are of the form

yi ≔ P gi ∘ x + ϵi, i = 1, …, n
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where

• x ∈ X,

• gi ∈ SO 2 ,

• P:X ℂL samples the function at L equally spaced points in S1,

• ϵi N 0, σ2IL × L i = 1, …, n  are independent Gaussians.

Our objective is to estimate g1, …, gn and x. Since estimating x knowing the group elements 

gi is considerably easier, we will focus on estimating g1, …, gn. As shown below, this will 

essentially reduce to the problem of aligning (or registering) the observations y1, …, yn.

In absence of noise, the problem of finding the gi’s is trivial (cf. first column of Figure 2.1). 

With noise, if x is known (as it is in some applications), then the problem of determining 

the gi’s can be solved by matched filtering (cf. second column of Figure 2.1). However, 

x is unknown in general. This, together with the high levels of noise, render the problem 

significantly more difficult (cf. last two columns of Figure 2.1).

We now define the problem of registration in d-dimensions in general. X = span pk k ∈ At is 

the space of bandlimited functions up to degree t on Sd where the pk’s are orthonormal 

polynomials on Sd, At indexes all pk up to degree t and G = SO d + 1 .

The measurements are of the form

yi ≔ P gi ∘ x + ϵi, i = 1, …, n

(2.3)

where

• x ∈ X,

• gi ∈ SO d + 1 ,

• P:X ℂL samples the function on L points in Sd,

• ϵi N 0, σ2IL × L i = 1, …, n  are independent Gaussians.

Again, our objective is to estimate g1, …, gn and x. We would like the sampling operator P
to be ‘uniform’. One possible sampling scheme is spherical designs surveyed in [11]. An 

illustration of signals on a sphere, sampled at such points, is provided in Figure 2.2.

The MRA solution for registration in d-dimensions is given by
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minimize
g1, …, gn, x

∑
i = 1

n
∥ yi − P gi ∘ x ∥2

2

 subject  to gi ∈ SO d + 1

x ∈ X

(2.4)

We now remove x from (2.4). Let Q:ℂL X be the adjoint of P . Q is also an 

approximate inverse of P (up to normalization), because points are sampled from a 

t-design which has the property of exactly integrating polynomials on the sphere. Then, 

∥ yi − P gi ∘ x ∥2
2 ≈ ∥ Q yi − gi ∘ x ∥2

2  (up to normalization), and the approximation error 

decreases as L increases. Since gi preserves the norm ∥ ⋅ ∥2, it follows that (2.4) is equivalent 

to

minimize
g1, …, gn, x i = 1

n
∥ gi

−1 ∘ Q yi − x ∥2
2

subject to gi ∈ SO d + 1
x ∈ X .

(2.5)

Since the minimizer x with fixed gi’s is the average, (2.5) is equivalent to

minimize
g1, …, gn

∑
i, j = 1

n
∥ gi

−1 ∘ Q yi − gj
−1 ∘ Q yj ∥2

2

 subject  to gi ∈ SO d + 1 .

(2.6)

Since gi preserves ∥ ⋅ ∥2 norm, then (2.6) is equivalent to

minimize
g1, …, gn

∑
i, j = 1

n
∥ Q yi − gigj

−1 ∘ Q yj ∥2
2

 subject  to gi ∈ SO d + 1 .

(2.7)

In summary, (2.4) can be approximated by (2.7), which is an instance of (1.1).

2.2. Orientation estimation in cryo-EM.

The task here is to reconstruct the molecule density from many noisy tomographic 

projection images (see the right column of Figure 1.1 for an idealized density and 

measurement dataset). We assume the molecule does not have any non-trivial point group 
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symmetry. The linear inverse problem of recovering the molecule density given the rotations 

fits in the framework of classical computerized tomography for which effective methods 

exist. Thus, we focus on the non-linear inverse problem of estimating the unknown rotations 

and the underlying density.

An added difficulty is the high level of noise in the images. In fact, it is already non-trivial to 

distinguish whether a molecule is present in an image or if the image consists only of noise 

(see Figure 2.3 for a subset of an experimental dataset). On the other hand, these datasets 

consist of many projection images which renders reconstruction possible.

We formulate the problem of orientation estimation in cryo-EM. Let X be the space of 

bandlimited functions that are also essentially compactly supported in ℝ3 and G = SO 3 . 

For perfectly centered images, and ignoring the effect of the microscope’s contrast transfer 

function, the measurements are of the form

Ii x, y ≔ P gi ∘ ϕ + ϵi, i = 1, …, n

(2.8)

• ϕ ∈ X,

• gi ∈ SO 3 ,

• P ϕ  samples ∫−∞
∞ ϕ x, y, z dz P is called the discrete X-ray transform),

• ϵi’s are i.i.d Gaussians representing noise.

Our objective is to find g1, …, gn and ϕ.

The operator P in the orientation estimation problem is different than in the registration 

problem. Specifically, P is a composition of tomographic projection and sampling. To write 

the objective function for the orientation estimation problem, we will use the Fourier slice 
theorem [30].

The Fourier slice theorem states that the 2-dimensional Fourier transform of a tomographic 

projection of a molecular density ϕ coincides with the restriction to a plane normal to the 

projection direction, a slice, of the 3-dimensional Fourier transform of the density ϕ. See 

Figure 2.4.

Let I i r, θ  be the Fourier transform of Ii in polar coordinates. We identify Îi and Îj with the 

xy-plane in ℝ3, and apply gi
−1 and gj

−1 to Îi and Îj, respectively. Then, the directions of the 

lines of intersection on Îi and Îj are given, respectively, by unit vectors

cij gigj
−1 =

gi gi
−1 ⋅ e 3 × gj

−1 ⋅ e 3

∥ gi gi
−1 ⋅ e 3 × gj

−1 ⋅ e 3 ∥2
= e 3 × gigj

−1 ⋅ e 3

∥ e 3 × gigj
−1 ⋅ e 3 ∥2

,

(2.9)
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cji gigj
−1 =

gj gi
−1 ⋅ e 3 × gj

−1 ⋅ e 3

∥ gj gi
−1 ⋅ e 3 × gj

−1 ⋅ e 3 ∥2
= gigj

−1 −1 ⋅ e 3 × e 3

∥ gigj
−1 −1 ⋅ e 3 × e 3 ∥2

.

(2.10)

where e 3 ≔ 0,0, 1 T . See [42] for details.

Since the noiseless images should agree on their common lines, we consider the following 

MRA-like cost function:

minimize
g1, …, gn

∑
i, j = 1

n
∥ I i ⋅ , cij gigj

−1 − I j ⋅ , cji gigj
−1 ∥2

2

 subject to  gi ∈ SO 3 ,

(2.11)

where, with a minor abuse of notation, we identify the vector cij with the angle θij of a 

common line in the Fourier transform of an image Îi. Equation (2.11) is an instance of (1.1). 

Note that we could also use the L1 norm or a weighted L2 norm in the cost function.

Note that for n = 2 images, there is always a degree of freedom along the line of intersection. 

In other words, we cannot recover the true orientation between Î1 and Î2. However, for 

n ≥ 3, this degree of freedom is eliminated. It is also worth mentioning several important 

references in the context of angular reconstitution [22, 45]. In general, the measurement 

system suffers from a handedness ambiguity on the reconstruction (see, for example, [42]), 

this will be discussed in detail later in the paper.

3. Linearization via Fourier expansion

Let us consider the objective function in the general form

∑
i, j = 1

n
fij gigj

−1 .

(3.1)

Note that each fij in (3.1) can be nonlinear and nonconvex. However, since G is compact 

(and since fij ∈ C G ), we can expand, each fij in Fourier series. More precisely, given the 

unitary irreducible representations ρk  of G, we can write

fij gigj
−1 = ∑

k = 0

∞
dk tr f ij k ρk gigj

−1

= ∑
k = 0

∞
dk tr f ij k ρk gi ρk

* gj ,

(3.2)
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where f̂ ij k  are the Fourier coefficients of fij and can be computed from fij via the Fourier 

transform

f ij k ≔ ∫
G

fij g ρk g−1 dg

= ∫
G

fij g ρk
* g dg .

(3.3)

Above, dg denotes the Haar measure on G and dk the dimension of the representation ρk. See 

[17] for an introduction to the representations of compact groups.

We express the objective function (3.1) as

∑
i, j = 1

n
fij gigj

−1 = ∑
i, j = 1

n
∑

k = 0

∞
dk tr f ij k ρk gi ρk

* gj

= ∑
k = 0

∞
∑

i, j = 1

n
dk tr f ij k ρk gi ρk

* gj ,

which is linear in ρk gi ρk
* gj . This motivates writing (1.1) as linear optimization over the 

variables

X k ≔
ρk g1

⋮
ρk gn

ρk g1

⋮
ρk gn

*
.

In other words,

i, j = 1

n
fij gigj

−1 =
k = 0

∞
tr C k X k ,

where the coefficient matrices are given by

C k ≔ dk

f 11 k f 21 k ⋯ f n1 k
f 12 k f 22 k ⋯ f n2 k

⋮ ⋮ ⋱ ⋮
f 1n k f 2n k ⋯ f nn k

.

We refer to the dk × dk block of X k  corresponding to ρk gi ρk
* gj = ρk gigj

−1  as Xij
k . We now 

turn our attention to constraints on the variables X k
k = 0

∞
. It is easy to see that:

X k ⪰ 0, ∀k
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(3.4)

Xii
k = Idk × dk, ∀k, i,

(3.5)

rank X k = dk, ∀k,

(3.6)

Xij
k ∈ Im ρk , ∀k, i, j .

(3.7)

Constraints (3.4), (3.5) and (3.6) ensure X k  is of the form

X k =

X1
k

X2
k

⋮
Xn

k

X1
k

X2
k

⋮
Xn

k

*

,

for some Xi
k  unitary dk × dk matrices. The constraint (3.7) attempts to ensure that Xi

k  is 

in the image of the representation of G. Notably, none of these constraints ensures that, 

for different values of k, Xij
k  correspond to the same group element gigj

−1. Adding such a 

constraint would yield

minimize
X k k = 0

∞
tr C k X k

subject to X k ⪰ 0
Xii

k = Idk × dk

rank X k = dk

Xij
k = ρk gigj

−1 ,

(3.8)

where gi and gj are elements of G.

Unfortunately, both the rank constraint and the last constraint in (3.8) are, in general, 

nonconvex. We will relax (3.8) by dropping the rank requirement and replacing the 

last constraint by positivity constraints that couple different X k ’s. We achieve this by 

considering the Dirac delta funcion on G. Notice that the Dirac delta funcion δ g  on the 

identity e ∈ G can be expanded as
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δ g = ∑
k = 0

∞
dk tr δ k ρk g

= ∑
k = 0

∞
dk tr ∫

G
δ ℎ ρk

* ℎ dℎ ρk g

= ∑
k = 0

∞
dk tr ρk g .

If we replace g with g−1 gigj
−1 , then we get

δ g−1gigj
−1 = ∑

k = 0

∞
dk tr ρk g−1 ρk gigj

−1

= ∑
k = 0

∞
dk tr ρk

* g Xij
k .

To arrive at a convex program, we consider the following convex constraints, that form a 

natural convex relaxation for Dirac deltas,

∑
k = 0

∞
dk tr ρk

* g Xij
k ≥ 0 ∀g ∈ G,

(3.9)

∫
G

∑
k = 0

∞
dk tr ρk

* g Xij
k dg = 1.

(3.10)

This suggests relaxing (3.8) to

minimize
X k k = 0

∞
tr C k X k

subject to X k ⪰ 0
Xii

k = Idk × dk

k = 0

∞
dktr ρk

* g Xij
k ≥ 0 ∀g ∈ G

G k = 0

∞
dktr ρk

* g Xij
k dg = 1 .

(3.11)

For a nontrivial irreducible representation ρk, we have ∫G ρk g dg = 0. This means that the 

integral constraint in (3.11) is equivalent to the constraint
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Xij
0 = 1, ∀i, j .

Thus, we focus on the optimization problem

minimize
X k k = 0

∞
tr C k X k

subject to X k ⪰ 0
Xii

k = Idk × dk

k = 0

∞
dktr ρk

* g Xij
k ≥ 0 ∀g ∈ G

Xij
0 = 1 .

(3.12)

When G is a finite group it has only a finite number of irreducible representations. This 

means that (3.12) is a semidefinite program and can be solved, to arbitrary precision, in 

polynomial time [46]. In fact, when G ≅ ℤL, a suitable change of basis shows that (3.12) 

is equivalent to the semidefinite programming relaxation proposed in [8] for the signal 
alignment problem.

Unfortunately, many of the applications of interest involve infinite groups. This creates two 

obstacles to solving (3.12). One is due to the infinite sum in the objective function and the 

other due to the infinite number of positivity constraints. In the next section, we address 

these two obstacles for the groups SO 2  and SO 3 .

4. Finite truncations for SO 2 andSO 3  via Fejér kernels

The objective of this section is to replace (3.12) by an optimization problem depending only 

in finitely many variables X k . The objective function in (3.12) is converted from an infinite 

sum to a finite sum by truncating at degree t. That is, we fix a t and set C k = 0 for k > t. 
This consists of truncating the Fourier series of ∑i, j = 1

n fij gigj
−1 . Unfortunately, constraint 

(3.9) given by

k = 0

∞
dktr ρk

* g Xij
k ≥ 0 ∀g ∈ G,

still involves infinitely many variables Xij
k  and consists of infinitely many linear constraints.

We now address this issue for the groups SO 2  and SO 3 .

4.1. Truncation for SO 2 .

Since we truncated the objective function at degree t, it is then natural to truncate the infinite 

sum in constraint (3.9) also at t. If we truncated below t, then some variables (such as X t ) 
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are not constrained; and if we truncated above t, then some variables (such as X t + 1 ) do not 

affect the cost function. The irreducible representations of SO 2  are eikθ , and dk = 1 for all 

k. Let us identify g ∈ SO 2  with θg ∈ 0,2π . That straightforward truncation corresponds to 

approximating the Dirac delta with

δ g ≈
k = − t

t
eikθg .

This approximation is known as the Dirichlet kernel, which we denote as

Dt θ ≔
k = − t

t
eikθ .

However, the Dirichlet kernel does not inherit all the desirable properties of the delta 

function. In fact, Dt θ  is negative for some values of θ.

Instead, we use the Fejér kernel, which is a non-negative kernel, to approximate the Dirac 

delta. The Fejér kernel is defined as

F t θ ≔ 1
t k = 0

t − 1
Dk =

k = − t

t
1 − k

t eikθ,

which is the first-order Cesàro mean of the Dirichlet kernel.

This motivates us to replace constraint (3.9) with

k = − t

t
1 − k

t e−ikθXij
k ≥ 0 ∀θ ∈ 0,2π ,

where, for k > 0, Xij
− k  denotes Xij

k *.

This suggests considering

minimize
X k k = 0

t
tr C k X k

subject to X k ⪰ 0
Xii

k = Idk × dk

k = − t

t
1 − k

t e−ikθXij
k ≥ 0 ∀θ ∈ 0,2π

Xij
0 = 1,

which only depends on the variables Xij
k  for k = 0, …, t.
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Unfortunately, the condition that the trigonometric polynomial ∑k = − t
t 1 − k

t e−ikθXij
k  is 

always non-negative, still involves an infinite number of linear in-equalities. Interestingly, 

due to the Fejér-Riesz factorization theorem (see [19]), this condition can be replaced by 

an equivalent condition involving a positive semidefinite matrix — it turns out that every 

nonnegative trigonometric polynomial is a square, meaning that the so called sum-of-squares 
relaxation [33, 34] is exact. However, while such a formulation would still be an SDP and 

thus solvable, up to arbitrary precision, in polynomial time, it would involve a positive 

semidefinite variable for every pair i, j , rendering it computationally challenging. For 

this reason we relax the non-negativity constraint by asking that ∑k = − t
t 1 − k

t e−ikθXij
k  is 

non-negative in a finite set Ωt ∈ SO 2 . This yields the following optimization problem:

minimize
X k k = 0

t
tr C k X k

subject to X k ⪰ 0
Xii

k = Idk × dk

k = − t

t
1 − k

t e−ikθXij
k ≥ 0 ∀θ ∈ Ωt

Xij
0 = 1 .

(4.1)

4.2. Truncation for SO 3 .

The irreducible representations of SO 3  are the Wigner-D matrices W k α, β, γ , and 

dk = 2k + 1. See [48] for an introduction to Wigner-D matrices. Let us associate g ∈ SO 3
with Euler Z − Y − Z  angle α, β, γ ∈ 0,2π × 0, π × 0,2π . A straightforward truncation 

yields the approximation

δ g ≈
k = 0

t
2k + 1 tr W k α, β, γ .

Observe that the operator tr is invariant under conjugation. Then W k  can be decomposed as

W k α, β, γ = RΛ k θ R*

with an R such that

Λ k θ =

e−ikθ
⋱

1
⋱

eikθ

.
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We can think of R as a change of basis and Λ k θ  as a rotation from SO 2  under the basis 

R. It follows that

tr W k α, β, γ = tr Λ k θ =
m = − k

k
eimθ = Dk θ .

The relationship between θ and α, β, γ is

θ = 2arccos cos β
2 cos α + γ

2 .

This relationship can be obtained by directly evaluating tr W 1 α, β, γ  using the Wigner-d 

matrix w 1 :

tr W 1 α, β, γ = ∑
m = − 1

1
W m, m

1 α, β, γ

= ∑
m = − 1

1
e−im α + γ wm, m

1 β

= cos β 1 + cos α + γ + cos α + γ .

See [48] also for an introduction to Wigner-d matrix. This straightforward truncation at t
yields

δ g ≈
k = 0

t
2k + 1 Dk θ ,

which, again, inherits the undesirable property that this approximation can be negative for 

some θ. Recall that we circumvented this property in the 1-dimension case by taking the 

first-order Cesàro mean of the Dirichlet kernel. In the 2-dimension case, we will need the 

second-order Cesàro mean. Notice that

Dk θ =
sin 2k + 1 θ

2
sin θ

2
.

Fejér proved that [4]

k = 0

t 3 t − k
t − k ! k + 1

2 sin 2k + 1 θ
2 ≥ 0, 0 ≤ θ ≤ π

where 
3 t − k

t − k ! = 1
2 t − k + 2 t − k + 1 . It follows that
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∑
k = 0

t (3)t − k
t − k ! k + 1

2 Dk θ

= ∑
k = 0

t (3)t − k
t − k ! k + 1

2
sin 2k + 1 θ

2
sin θ

2
≥ 0, − π ≤ 0 ≤ π .

Let us define

F t g = F t α, β, γ ≔
k = 0

t 3 t − k
t − k ! k + 1

2
sin 2k + 1 θg

2
sin θg

2

where θg = 2arccos cos β
2 cos α + γ

2 .

We replace constraint (3.9) with

F t α, β, γ ≥ 0 ∀ α, β, γ ∈ 0,2π × 0, π × 0,2π .

Secondly, we discretize the group SO 3  to obtain a finite number of constraints. We 

consider a suitable finite subset Ωt ⊂ SO 3 . In our implementation, we use a Hopf fibration 

[49] to discretize SO 3 . The quotient space SO 3 /SO 2  is equivalent to S2. We take a 

uniform discretization of S1 ≡ SO 2  and a spherical design [11] of S2. It is possible to find 

a spherical design on S2 with O r2  points [11]. By [49], we use O r  points to discretize 

SO 2 . The size of our SO 3  discretization is O r3 . So, we have to enforce O r3  inequality 

constraints. The choice of r is up to the user to strike a balance between computational 

speed and accuracy. We can then relax the non-negativity constraint yielding the following 

semidefinite program1:

minimize
X k k = 0

t
tr C k X k

subject to X k ⪰ 0
Xii

k = Idk × dk

k = 0

t 3 t − k
t − k ! k + 1

2 tr W k α, β, γ *Xij
k ≥ 0 ∀ α, β, γ ∈ Ωt

Xij
0 = 1 .

(4.2)

1Similarly to SO 2 , it is possible that the non-negativity constraint may be replaced by an SDP or sums-of-squares constraint. [38]
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4.3. An additional constraint on X 1 .

In this section, we discuss an additional constraint on X 1 , which uses properties of 

quaternions to constrain each block Xij
1  of X 1  in the convex hull of SO 3  more directly.

We consider the standard rotation matrix R and the unit quaternion q = qr + qii + qjj + qkk
which represent the same rotation as the block Xij

1  (whose representation is associated with 

spherical harmonics), and we consider the outer product Qij of the unit quaternion q

Qij = qTq .

(4.3)

The standard rotation matrix R is related to the block Xij
1  by the formula

R* = M* T*Xij
1 T M,

where,

T ≔

− i
2 0 1

2
0 1 0

− i
2 0 − 1

2

,

and

M ≔
0 1 0
0 0 1

−1 0 0
.

Indeed, one can verify that

T*Xij
1 T =

R 22 R 32 −R 12
R 23 R 33 −R 13

−R 21 −R 31 R 11
,

where,

R =
R 11 R 12 R 13
R 21 R 22 R 23
R 31 R 32 R 33

,

and M is used simply to rearrange the elements of T*Xij
1 T .

Next, R is mapped to Qij by Rodrigues’ rotation formula (see [37]):
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Qij = ℛ R ≔ 1
4

1 + R 11 + R 22 + R 33 R 32 − R 23 R 13 − R 31 R 21 − R 12
R 32 − R 23 1 + R 11 − R 22 − R 33 R 21 + R 12 R 31 + R 13
R 13 − R 31 R 21 + R 12 1 + R 22 − R 11 − R 33 R 23 + R 32
R 21 − R 12 R 31 + R 13 R 23 + R 32 1 + R 33 − R 11 − R 22

.

In summary, the mapping from Xij
1  to Qij, which we denote by AEq, is given by the formula:

Qij = AEq Xij
1 = ℛ M*T*Xij

1 TM .

For each Qij, we wish to impose the constraints implied by Equation (4.3):

Qij ⪰ 0, tr Qij = 1, rank Qij = 1 .

But since the constraint rank Qij = 1 is not convex, we will drop it, giving us the following 

SDP in place of (4.2):

minimize
X k k = 0

t
tr C k X k

subject to X k ⪰ 0
Xii

k = Idk × dk

k = 0

t 3 t − k
t − k ! k + 1

2 tr W k α, β, γ *Xij
k ≥ 0 ∀ α, β, γ ∈ Ωt

Xij
0 = 1

Qij = AEq Xij
1 , Qij ⪰ 0, tr Qij = 1 .

(4.4)

5. Applications

In this section, we consider the application of (4.1) to the problem of registration over the 

unit circle and the application of (4.4) to registration over the unit sphere and orientation 

estimation in cryo-EM. To solve the SDP for each problem, the only parameters we need to 

determine are the coefficient matrices C k  and the truncation parameter t. The calculations 

of C k  are detailed in the following pages. As for t, we experimented over a range of values 

for each problem, and chose a value that balances computational time with accuracy in the 

estimated rotations. The SDP outputs the relative transformations gij = gigj
−1, while we need 

g1, …, gn. For each problem, we describe a rounding procedure to recover g1, …, gn from the 

gij’s.
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5.1. Registration in 1-dimension.

Recall that X is the space of bandlimited functions up to degree t on S1. That is, for x ∈ X, 

we can express

x ω =
l = − t

t
αleilω .

Again, the irreducible representations of SO 2  are eikθ , and dk = 1 for all k. Let us identify 

g ∈ SO 2  with θg ∈ 0,2π , then

g ⋅ x ω =
l = − t

t
eilθgαleilω .

Let P sample the underlying signal x at L = 2t + 1 distinct points. This way, we can 

determine all the αl’s associated with x.

Since yi = P gi ⋅ x + ϵi, for the adjoint Q, we have

Q yi ω =
l = − t

t
αl

i eilω .

Let us identify gigj
−1 with θij ∈ 0,2π . Then, we can express fij in terms of αl

i , αl
j  and θij:

fij gigj
−1 = Q yi − gigj

−1 ∘ Q yj 2
2

= ∫
S1

∑
l = − t

t
αl

i − αl
j eilθij eilω

2
dω

= ∑
l = − t

t
αl

i − αl
j eilθij 2 .

The Fourier coefficients of fij are

f ij k = ∫
0

2π

∑
l = − t

t
αl

i − αl
j eilθij 2e−ikθijdθij

= ∫
0

2π

∑
l = − t

t
αl

i 2e−ikθij + αl
j 2e−ikθij

−αl
i αl

j ei −k − l θij − αl
i αl

j ei −k + l θij dθij

= 2π
∑l = − t

t αl
i 2 + αl

j 2 − α0
i α0

j − α0
i α0

j , k = 0

−α−k
i α−k

j − αk
i αk

j , k ≠ 0

Note that we re-indexed the coefficients f̂ ij k f̂ ij k − t + 1 .
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5.1.1. Rounding.—(4.1) gives us the X k ’s. From the X k ’s, we want to extract each 

θi ∈ 0,2π  (up to a global transformation). Let us consider X 1 . We want X 1  to be of the 

form

eiθ1

eiθ2

⋮
eiθn

eiθ1

eiθ2

⋮
eiθn

*

.

Although X 1  is not guaranteed to be rank 1, we will simply take the top eigenvector of 

X 1  as our estimate of eiθ1, …, eiθn. And from eiθ1, …, eiθn, we can recover θ1, …, θn. See [40] 

for the reasoning behind this approach. In practice, we find using the top eigenvector of X 1

is a sufficient estimate of θ1, …, θn. We do not need to run additional comparisons against 

X 2 , …, X t .

5.2. Registration in 2-dimension.

Recall that X is the space of bandlimited functions up to degree t on S2. That is, for x ∈ X, 

we can express

x ω =
l = 0

t

m = − l

l
αl, mY l, m ω ,

where Y lm  are the spherical harmonics. Again, the irreducible representations of SO 3  are 

the Wigner D-matrices W k α, β, γ , and dk = 2k + 1. Let us associate g ∈ SO 3  with Euler 

(Z-Y-Z) angle α, β, γ ∈ 0,2π × 0, π × 0,2π , then

g ⋅ x ω =
l = 0

t

m, m′ = − l

l
W m, m′

l α, β, γ αl, m′Y l, m ω .

Let P sample the underlying signal x at L = t + 1 2 points. This way, we can determine all 

the αlm’s associated with x.

Again, for the adjoint Q we have

Q yi ω =
l = 0

t

m = − l

l
αl, m

i Y l, m ω .

Let us identify gigj
−1 ∈ SO 3  with Euler (Z-Y-Z) angle αij, βij, γij ∈ 0,2π × 0, π × 0,2π . 

Then, we can express fij in terms of αl, m
i , αl, m

j  and αij, βij, γij :
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fij gigj
−1 = ∥ Q yi − gigj

−1 ∘ Q yj ∥2
2

= ∑
l = 0

t
∑

m = − l

l
αl, m

i 2 + αl, m
j 2

− ∑
l = 0

t
∑

m, m′ = − l

l
αl, m

i W m, m′
l αij, βij, γij αl, m′

j

− ∑
l = 0

t
∑

m, m′ = − l

l
αl, m

i W m, m′
l αij, βij, γij αl, m′

j .

The Fourier coefficients are given by

f ij k = ∫
SO 3

fij g W k α, β, γ *dg = 8π2
2k + 1

∑l = 0
t ∑m = − l

l αlm
i 2 + αlm

j 2 − α00
i α00

j − α00
i α00

j , k = 0

−( − 1)m − m′αk, − m′
i αk, − m

j − αk, m′
i αk, m

j
m, m′ = − k

k
, k ≠ 0

Here, we used the orthogonality relationship

SO 3
W m1, m2

k− α, β, γ W m1′ , m2′
k′ α, β, γ dg = 8π2

2k + 1δk, k′δm1, m1′ δm2, m2′ ,

and the property

W m, m′
k α, β, γ = − 1 m − m′W −m, − m′

k− α, β, γ .

5.2.1. Rounding.—Again, (4.4) gives us the X k ’s. From the X k ’s, we want to extract 

each α, β, γ ∈ 0,2π × 0, π × 0,2π  (up to a global transformation). Let us consider X 1 . We 

want X 1  to be of the form

W 1 α1, β1, γ1

W 1 α2, β2, γ2

⋮

W 1 αn, βn, γn

W 1 α1, β1, γ1

W 1 α2, β2, γ2

⋮

W 1 αn, βn, γn

*

,

where each W 1 αi, βi, γi  is a 3 × 3 matrix. Similarly, X 1  is not guaranteed to be 

rank 3, but we will simply take the top 3 eigenvector of X 1  as our estimate of 

W 1 α1, β1, γ1 , …, W 1 αn, βn, γn . And from W 1 α1, β1, γ1 , …, W 1 αn, βn, γn , we can recover 

α1, β1, γ1 , …, αn, βn, γn .

5.3. Orientation estimation in cryo-EM.

We refer to [50] to expand the objective function. We emphasize that the theory holds 

for arbitrary basis on the space containing the Îi’s. We choose to construct the C k ’s 
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using coefficients and parameters from the Fourier-Bessel expansion. Projection Îi can be 

expanded via Fourier-Bessel series as

I i r, θ = ∑
k = − ∞

∞
∑

q = 1

∞
αkq

i ψkq
c r, θ ,

where

ψkq
c r, θ = NkqJk Rkq

r
c eikθ , r ≤ c,

0 , r > c .

The parameters above are defined as follows:

• c is the radius of the disc containing the support of Îi,

• Jk is the Bessel function of integer order k,

• Rkq is the qth root of Jk,

• Nkq = 1
c π Jk + 1 Rkq

 is a normalization factor.

To avoid aliasing, we truncate the Fourier-Bessel expansion as follows.

I i r, θ ≈ ∑
k = − kmax

kmax

∑
q = 1

pk
αkq

i ψkq
c r, θ .

See [50] for a discussion on kmax and pk. For the purpose of this section, let us assume we 

have αkq
i : − kmax ≤ k ≤ kmax, 1 ≤ q ≤ pk  for each Îi. (These can be computed from the Cartesian 

grid sampled images.)

We shall determine the relationship between Îi r, θi  and Îj r, θj , and the lines of intersection 

between gi
−1 ⋅ Îi and gj

−1 ⋅ Îj embedded in ℝ3. Recall from (2.9) and (2.10) that the directions 

of the lines of intersection between gi
−1 ⋅ Îi and gj

−1 ⋅ Îj are given, respectively, by unit vectors

cij gigj
−1 = e 3 × gigj

−1 ⋅ e 3

∥ e 3 × gigj
−1 ⋅ e 3 ∥2

,

cji gigj
−1 = gigj

−1 −1 ⋅ e 3 × e 3

∥ gigj
−1 −1 ⋅ e 3 × e 3 ∥2

.

Let us associate gigj
−1 ∈ SO 3  with Euler (Z-Y-Z) angle αij, βij, γij ∈ 0,2π × 0, π × 0,2π . 

Then
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e 3 × gigj
−1 ⋅ e 3 =

sinγijsinβij

−cosγijsinβij

0
,

gigj
−1 −1 ⋅ e 3 × e 3 =

−sinαijsinβij

−cosαijsinβij

0
,

under the rotation matrix RZ γij RY βij RZ αij . The directions of the lines of intersection in Îi

and Îj under gigj
−1 are in the directions, respectively,

θi = arctan sin γij, − cos γij = γij − π
2 ,

θj = arctan −sin αij, − cos αij = − αij − π
2 .

We express the fij’s in terms of αkq
i , αkq

j , and θi and θj:

fij θi, θj ≔ fij gigj
−1

= ∥ ∑
k = − kmax

kmax

∑
q = 1

pk
αkq

i ψkq
c r, θi − αkq

j ψkq
c r, θj ∥L2

2

= ∑
k, k′, q, q′

cNkqNk′q′ αkq
i eikθi − αkq

j eikθj αk′q′
i eik′θi − αk′q′

j eik′θj *

⋅ ∫
0

1
Jk Rkqr Jk′ Rk′q′r dr .

For each k, k′, q, q′, we approximate the integral

0

1
Jk Rkqr Jk′ Rk′q′r dr

with a Gaussian quadrature.

Using the approximation above, we have

fij θi, θj ≈ ∑
k, q, k′, q′

bk, q, k′, q′ αkq
i αk′q′

i ei k − k′ θi + αkq
j αk′q′

j ei k − k′ θj

−αkq
i αk′q′

j ei kθi − k′θj − αkq
j αk′q′

i ei kθj − k′θi ,

where

bk, q, k′, q′ = cNkqNk′q′
i

wiJk Rkqri Jk′ Rk′q′ri .
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In terms of the Euler (Z-Y-Z) angles,

fij αij, γij ≔ fij θi, θj

≈ ∑
k, q, k′, q′

bk, q, k′, q′e−iπ
2 k − k′ αkq

i αk′q′
i ei k − k′ γij + αkq

j αk′q′
j e−i k − k′ αij

−αkq
i αk′q′

j eikγij + ik′αij − αkq
j αk′q′

i e−ikαij − ik′γij .

The Fourier coefficients are given by

f ij k = ∫
SO 3

fij α, γ W k α, β, γ *dg

= ∫
0

2π∫
0

2π
fij α, γ ∫

0

π
W k −γ + π, β, − α + π sinβdβ dαdγ .

Note that

0

π
W k α, β, γ sin βdβ

m, m′
=

0

π
eimαwm, m′

k β eim′γsin βdβ,

where w k  is the Wigner d-matrix. Let us define

Hk m, m′ ≔ − 1
m + m′

0

π

wm, m′
k β sin βdβ

= − 1
m + m′

0

π

im − m′
l = − k

k
wl, m

k π/2 e−ilβwl, m′
k π/2 sin βdβ

= − 1
m + m′

im − m′ 2w0, m
k π/2 w0, m′

k π/2

− iπ
2 w1, m

k π/2 w1, m′
k π/2 + iπ

2 w−1, m
k π/2 w−1, m′

k π/2

+
l ≥ 2

k 1 + e−ilπ

1 − l2
wl, m

k π/2 wl, m′
k π/2 .

The m, m′ tℎ entry of f̂ ij k  is approximated by

f ij k m, m′ = Hk m, m′ ∫
0

2π∫
0

2π
fij α, γ e−imγe−im′αdαdγ

= 4π2Hk m, m′ ∑
k, q, k′, q′

bk, q, k′, q′ αkq
i αk′q′

i δ m = k − k′ δ m′ = 0

+ αkq
j αk′q′

j δ m = 0 δ m′ = k′ − k − αkq
i αk′q′

j δ m = k δ m′ = k′

−αkq
j αk′q′

i δ m = − k′ δ m′ = − k .

Here, δ is the Kronecker delta and bk, q, k′, q′ absorbed e−iπ
2 k − k′ .

5.3.1. Handedness ambiguity in cryo-EM.—There exists one additional issue 

specifically for the cryo-EM problem arising from the handedness ambiguity. Suppose 

Bandeira et al. Page 25

Inverse Probl. Author manuscript; available in PMC 2024 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



an image was projected from some molecular density ϕ and orientation R. Let J be the 

reflection operator across the imaging plane. The molecular density Jϕ under orientation 

JRJ* would produce the same projection. In other words, the set of projection images can 

belong to different molecular densities ϕ and Jϕ under different rotations.

We will formalize and deal with the handedness ambiguity in terms of the Wigner D-

matrices. Recall that the Wigner D-matrix W k g  corresponding to α, β, γ ∈ SO 3  is

W k g = eimαwm, m′
k β eimγ

m, m′ = − k

k
.

Let J k  be the following 2k + 1 × 2k + 1  diagonal matrix:

J k ≔

⋱
−1

1
−1

⋱

.

(The diagonal alternates between +1 and −1.) Due to the handedness ambiguity, if 

W k gi W k gj
−1

k
 is a solution to (4.4), then J k W k gi W k gj

−1 J k
k
 is also a valid 

solution to (4.4). In fact, for any ℎ ∈ 0,1 ,

ℎW k gi W k gj
−1 + 1 − ℎ J k W k gi W k gj

−1 J k
k

is a valid solution to (4.4).

Let us remove this extra degree of freedom ℎ. Observe that for ℎ = 1
2 ,

1
2W k g + 1

2J k W k g J k = eimαwm, m′
k β eim′γ, m + m′ ≡ 0 mod 2,

0, otherwise.

I.e., the odd-indexed entries are 0. For example, in the case of k = 1,

1
2W 1 g + 1

2J 1 W 1 g J 1 =
e−iαw−1, − 1

1 β e−iγ 0 e−iαw−1, 1
1 β eiγ

0 w0, 0
1 β 0

eiαw1, − 1
1 β e−iγ 0 eiαw1, 1

1 β eiγ
,

and in the case of k = 2,
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1
2W 2 g + 1

2J 2 W 2 g J 2 =

e−2iαw−2, − 2
2 β e−2iγ 0 e−2iαw−2,0

2 β 0 e−2iαw−2,2
2 β e2iγ

0 e−iαw−1, − 1
2 β e−iγ 0 e−iαw−1,1

2 β eiγ 0

w0, − 2
2 β e−2iγ 0 w0,0

2 β 0 w0,2
2 β e2iγ

0 eiαw1, − 1
2 β e−iγ 0 eiαw1,1

2 β eiγ 0

e2iαw2, − 2
2 β e−2iγ 0 e2iαw2,0

2 β 0 e2iαw2,2
2 β e2iγ

.

We constrain the odd-indexed entries of Xij
k ’s to be 0 so that the SDP finds the solution with 

ℎ = 1
2 . Note that, in practice, we do not explicitly add this constraint. Instead, we permute 

Xij
k  into two disjoint diagonal blocks. For example, in the case of k = 1,

1
2W 1 g + 1

2J 1 W 1 g J 1 =
w0, 0

1 β 0 0

0 e−iαw−1, − 1
1 β e−iγ e−iαw−1, 1

1 β eiγ

0 eiαw1, − 1
1 β e−iγ eiαw1, 1

1 β eiγ
,

and in the case of k = 2,

1
2W 2 g + 1

2J 2 W 2 g J 2 =

e−iαw−1, − 1
2 β e−iγe−iαw−1, 1

2 β eiγ 0 0 0

eiαw1, − 1
2 β e−iγ eiαw1, 1

2 β eiγ 0 0 0

0 0 e−2iαw−2, − 2
2 β e−2iγ e−2iαw−2, 0

2 β e−2iαw−2, 2
2 β e2iγ

0 0 w0, − 2
2 β e−2iγ w0, 0

2 β w0, 2
2 β e2iγ

0 0 e2iαw2, − 2
2 β e−2iγ e2iαw2, 0

2 β e2iαw2, 2
2 β e2iγ

.

We can conjugate each Xij
k  in (4.4) by a permutation and get

Xij
k =

Xij
k, 0 0
0 Xij

k, 1 .

Similarly, we can conjugate X k  by a permutation and get
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X k = X k, 0 0

0 X k, 1 ,

where

X k, 0 =
X11

k, 0 ⋯ X1n
k, 0

⋮ ⋱ ⋮
Xn1

k, 0 ⋯ Xnn
k, 0

, X k, 1 =
X11

k, 1 ⋯ X1n
k, 1

⋮ ⋱ ⋮
Xn1

k, 1 ⋯ Xnn
k, 1

.

Let us denote the above permutation as Πk. The objective function in (4.4) is preserved if we 

conjugate both the C k ’s and the X k ’s by Πk. I.e.,

tr C k X k = tr ΠkC k Πk
TΠkX k Πk

T = tr C k, 0 X k, 0 + tr C k, 1 X k, 1 ,

where C k, 0  and C k, 1  are blocks corresponding to X k, 0  and X k, 1 , respectively. We 

apply the same permutation to the X k ’s in the constraints of (4.4) and reduce (4.4) to

minimize
X k, 0 , X k, 1

∑
k = 0

t
tr C k, 0 X k, 0 + tr C k, 1 X k, 1

subject  to X k, 0 ≻ 0, X k, 1 ≻ 0

Xii
k, 0 = Ik × k, Xii

k, 1 = I k + 1 × k + 1

∑
k = 0

t (3)t − k
t − k ! k + 1

2 tr W k, 0 α, β, γ *Xij
k, 0

+tr W k, 1 α, β, γ *Xij
k, 1 ≥ 0 ∀ α, β, γ ∈ Ωt

Xij
0, 1 = 1

Qij = AEq Xij
1, 0 , Xij

1, 1 , Qij ≻ 0,  tr Qij = 1,

(5.1)

where AEq defines the linear relationship between Qij and X 1,0 , X 1,1  as

Y ij =

− i
2 0 1

2
0 1 0

− i
2 0 − 1

2

*
Xij

1, 1 1, 1 0 Xij
1, 1 1, 2

0 Xij
1, 0 0

Xij
1, 1 2, 1 0 Xij

1, 1 2, 2

− i
2 0 1

2
0 1 0

− i
2 0 − 1

2

,
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Qij = 1
4

1 + Y 11
ij + Y 22

ij + Y 33
ij 0 0 − Y 31

ij − Y 13
ij

0 1 − Y 11
ij − Y 22

ij + Y 33
ij − Y 31

ij + Y 13
ij 0

0 − Y 31
ij + Y 13

ij 1 + Y 11
ij − Y 22

ij − Y 33
ij 0

− Y 31
ij − Y 13

ij 0 0 1 − Y 11
ij + Y 22

ij − Y 33
ij

.

5.3.2. Rounding.—(5.1) gives us the X k, 0 ’s and the X k, 1 ’s. We aggregate X 1,0  and 

X 1,1  into the 3n × 3n matrix X 1 . From the X 1 ’s, we build the synchronization matrix S
described in [39] and apply the cryo_syncrotations function on S from the ASPIRE 

software package [5] to recover α1, β1, γ1 , …, αn, βn, γn . Note that we do not truncate the 

eigenvectors and eigenvalues from X 1 .

6. Implementation and results for synthetic cryo-EM datasets

In this section, we give a brief history of methods used for determining orientations of 

cryo-EM projection images, and where we stand against the current state-of-the-art.

In 1986, Vainshtein and Goncharov developed a common-lines based method for ab-initio 

modeling in cryo-EM [45]. In 1987, M. Van Heel also independently discovered the same 

method, and coined it angular reconstitution [22]. Recall that by the Fourier slice theorem, 

two cryo-EM projection images (in Fourier space) must intersect along a common line. 

Given three cryo-EM images from different viewing directions, their common lines must 

uniquely determine their relative orientations up to handedness. (See Figure 6.1.) The 

orientations of the rest of the images are determined by common lines with the first three 

images. This is angular reconstitution in a nutshell.

In 1992, Farrow and Ottensmeyer expanded upon angular reconstitution by developing 

a method to sequentially add images via least squares [20]. One major drawback in 

sequentially assigning orientations of cryo-EM images is the propagation of error due to 

false common line detection. In 1996, Penczek, Zhu, and Frank tried to circumvent the 

issue via brute-force search for a global energy minimizer [35]. However, the search space 

is simply too big for that method to be applicable. In 2006, Mallick et al. introduced a 

Bayesian method in which common lines between pairs of images are determined by their 

common lines with different projection triplets [29]. In the method by Mallick et al., at 

least seven common lines must be correctly and simultaneously determined, which can be 

problematic. In 2010, Singer et al. lowered the requirement to that only two common lines 

need to be correctly and simultaneously determined [41]. In 2011, Singer and Shkolnisky 

built upon [41] by adding a global consistency condition among the orientations [39]. This 

method is called synchronization, and it is regarded as the current state-of-the-art.

Note that all avaible methods for orientation determination, including the NUG approach 

proposed in this paper, cannot be directly applied to raw experimental images. We will 

explain the factors preventing us from doing so in the next subsection. We therefore 

numerically validate and evaluate the method using synthetic data.
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6.1. Shifts, CTF and contrast.

In comparison to the simplistic forward model (2.8), there are three major imperfections in 

the experimental cryo-EM datasets. First, the images are not centered, and the common lines 

will not correspond exactly even under their true orientations. Second, the images are subject 

to the contrast transfer function (CTF) of the electron microscope. A CTF, as a function of 

radial frequency, is shown in Figure 6.2. Making matters mathematically more challenging, 

a CTF is typically estimated per micrograph and each micrograph would have a different 

CTF. Thus, all images from the same micrograph are typically assigned the same CTF. We 

also say those images belong to the same defocus group. However, as shown in Table 2 of 

Section 6.4, shifts and CTFs are not detrimental to NUG’s performance. This brings us to 

the third obstacle, which does prevent us from directly applying NUG on raw experimental 

images. The ice layer in which the molecules are frozen is not uniform. It can be thicker/

thinner where different projections are taken, and this effect is equivalent to scaling the 

projections by a factor γ > 0. So, various projections have various contrasts. Those effects 

are typically mitigated in class averages. Class averages are formed by in-plane aligning and 

averaging raw images that are estimated to have similar viewing directions. It is possible to 

apply NUG on class averages instead of the original raw experimental images. However, the 

quality of the results then depends crucially on the specific class averaging procedure being 

used and does not provide much insight into the performance of NUG itself.

6.2. ADMM implementation.

There are two parts that are particularly challenging for obtaining a numerical solution to the 

NUG SDP (4.4) and (5.1):

• implementing a SDP solver that is scalable to real-world problems such as 

orientation estimation in cryo-EM,

• computing the coefficient matrix for generic objective function fij’s.

For the cryo-EM problem, the NUG SDP is simply too big to iterate on solvers based on 

techniques like interior point methods. Interior point methods are known for their accuracy. 

However, their accuracy is achieved at the expense of computational complexity. In essence, 

interior point methods solve a system of linear equations that attempts to satisfy both 

primal and dual feasibilities [14]. That is, solvers based on interior point methods have 

to invert a matrix that contains both primal and dual variables. The number and size of 

the signals coupled with the number of inequality constraints in (4.4) and (5.1) make this 

inversion impractical. Instead, we use the alternating direction method of multipliers, or 

ADMM. As the name suggests, ADMM alternates between the primal and the different sets 

of dual variables. More importantly, the steps in ADMM are linear, with the exception of 

an eigendecomposition on the primal variable. In practice, the eigendecomposition on the 

primal variable is manageable.

In general, it is not possible to obtain a closed-form expression for the coefficient matrices 

C k ’s. Sometimes, we need to employ numerical integration schemes over the group G to 

find the C k ’s.
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6.2.1. The alternating direction method of multipliers.—In short, ADMM solves 

the augmented Lagrangian via iterative partial updating. We solve an unconstrained 

optimization problem over the objective variable, and enforce the constraints via dual 

variables. We will express the NUG SDP in a more general form, and derive ADMM 

updates in the more general setting. (4.4) and (5.1) are SDPs of the following form:

minimize
X

C, X

subject to X ⪰ 0
AE X = bE

AI X ≥ bI .

(6.1)

We can think of C and X as the following block matrices:

C =

C 0

C 1

⋱

C t

, X =

X 0

X 1

⋱

X t

.

Note that going from (4.4) and (5.1) to (6.1), we used the fact that

tr C k X k = C k , X k

because the C k ’s are Hermitian. AE and AI are linear operators that encapsulate the equality 

and inequality constraints, respectively. For example, we can think of A as

A X =

AI
1 , X
⋮

AI
m , X
⋮

,

where, for the constraint ∑k = 0
t bktr ρk

* gm Xij
k , AI

m  is the matrix containing bkρk gm  at the 

position of Xij
k  and 0 everywhere else.

More concretely, A X = b is equivalent to Avec X = b, where

A = vec A 1 ⋯ vec A m ⋯ T

and vec vectorizes the matrix A m  along the columns. The adjoint operator of A is given by

A* z = mat ATz ,
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where mat is the reverse operator of vec. Furthermore, we can verify

• A X , z = Avec X , z = mat ATz , X = A* z , X ,

• AA* z = A A* z = AAT z,

• A*A z = A* A X = mat ATA vec X .

Now, we describe the ADMM solver outlined in [44] for SDP (6.1). ADMM is essentially 

a series of partial iterative updates based on the augmented Lagrangian. So, we will define 

the dual variables and write out the augmented Lagrangian. Then, we derive the updates by 

setting the gradient of the augmented Lagrangian, with respect to specific variables, to 0.

The dual variables corresponding to (6.1) are

−X ≺ 0 S ≻ 0
bE − AE X = 0 yE

bI − AI X ≤ 0 yI ≥ 0.

The Lagrangian for (6.1) is

L X, S, yE, yI ≔ − bE, bI , yE, yI + X, S + AE
* yE + AI

* yI − C .

(6.2)

The motivation for defining (6.2) is so that the primal variable X satisfies the constraints 

using the dual variables via

minimize
S ⪰ 0, yE, yI ≥ bI

maximize
X

L X, S, yE, yI .

(6.3)

Notice that (6.3) is an unconstrained optimization problem over X. If X is not PSD, then 

there exists S ⪰ 0 such that L X, S, yE, yI = − ∞. Thus, due to the inner maximization over 

X, (6.3) produces a solution satisfying X ⪰ 0. The equality and inequality constraints are 

enforced in a similar manner. The maximizing X must satisfy

∇XL = 0 S + AE
* yE + AI

* yI = C .

In fact, this gives us the dual problem to (6.1)

minimize
S, yE, yI

δ ≺ 0 S + δ ≤ 0 yI − bE, bI , yE, yI

subject  to S + AE
* yE + AI

* yI = C .

The augmented Lagrangian is the Lagrangian with the dual variables regularized by the 

Frobenius norm:
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Lρ X, S, yE, yI ≔ − bE, bI , yE, yI + X, S + AE
* yE + AI

* yI − C
+ ρ

2 ∥ S + AE
* yE + AI

* yI − C ∥Fro 
2 .

(6.4)

This regularization term is crucial for numerical convergence of the solver.

The updates for the dual variables are given by their individual optimality conditions.

• Solving 0 = ∇SLρ for S and applying the PSD projection, we get

S k + 1 = C − AE
* yE

k − AI
* yI

k − 1
ρX k

⪰ 0
.

• Solving 0 = ∇yELρ for yE, we get

yE
k + 1 = AEAE

* −1 1
ρ bE − AE X k − AE AI

* yI
k + S k − C .

Note that for the NUG SDP, AEAE
* = ℐ because each equality constraint is on a 

single entry in X. So, this update simplifies to

yE
k + 1 = 1

ρ bE − AE X k − AE AI
* yI

k + S k − C .

• Note that if we solve 0 = ∇yILρ for yI, we will have to invert the operator 

AIAI
*, and this is extremely computationally challenging. Instead, we add 

an additional regularization term ρ
2∥ yI − yI

k ∥λℐ − AIAI*
2 , where λ is the largest 

eigenvalue of AIAI
* and yI

k  is the element from the previous yI-update. 

Solving 0 = ∇yI Lρ + ρ
2∥ yI − yI

k ∥λℐ − AIAI*
2  for yI and applying the the nonnegativity 

projection, we get

yI
k + 1 = 1

ρλ bI − AI X k + 1
λAI C − AE

* yE
k − AI

* yI
k − S k + yI

k
≥ 0

.

The update for the primal variable is simply a gradient descent given by

X k + 1 = X k + ρ S k + AE
* yE

k + AI
* yI

k − C .

We initialize the variables as the following:

• X 0 = I,

• yI
0 = 0,

• S 0 = 0,
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• yE
0 = 1

2AE C − AI
* yI

0 − S 0 .

We apply the updates in the following order:

1. S k + 1 = C − AE
* yE

k − AI
* yI

k − 1
ρX k

⪰ 0
,

2. yE
k + 1/2 = AE C − AI

* yI
k − S k + 1 ,

3. yI
k + 1 = 1

ρλ bI − AI X k + 1
λAI C − AE

* yE
k + 1/2 − AI

* yI
k − S k + 1 + yI

k

≥ 0
,

4. yE
k + 1 = AE C − AI

* yI
k + 1 − S k + 1 ,

5. X k + 1 = X k + ρ S k + 1 + AE
* yE

k + 1 + AI
* yI

k + 1 − C .

Note that we updated yE twice, which guarantees the solver’s convergence to the optimizer 

[44].

6.2.2. Fourier coefficients for bandlimited functions on SO 3 .—The 

coefficient matrix in (3.12) is composed of

f ij k = ∫
G

fij g ρk
* g dg .

We obtained closed-form expressions for the registration problem (2.4) under the 

assumption that the noise in the underlying signal is Gaussian. For the cryo-EM problem 

(2.11), we require a single approximation of an integral using Gaussian quadrature. 

However, this is not always the case. For example, the noise in the cryo-EM projections 

is better modeled by the Poisson distribution [36]. We describe the numerical integration 

scheme in [28] that can be used to obtain the desired Fourier coefficients f̂ ij k . We need to 

make the assumption that fij’s are bandlimited by T . The method described in [28] has a 

better computational complexity than straight forward numerical integration. We will define 

the quadrature, and then outline the evaluation over the quadrature.

For function f with bandlimit T , we have the equality

f k = 1
(2T )2

∑
j1 = 0

2T − 1
∑

j2 = 0

2T − 1
∑

l = 0

2T − 1
bT l f αj1, βl, γj2 ρk

* αj1, βl, γj2 ,

(6.5)

where

bT l = 2
T sin π 2l + 1

4T m = 0

T − 1 1
2m + 1sin π 2l + 1 2m + 1

4T ,

and
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αj1 = 2πj1
2T , βl = π 2l + 1

4T , γj2 = 2πj2
2T , 0 ≤ j1, j2, l < 2T .

Recall that

ρk α, β, γ m, m′ = eimαwm, m′
k β eim′γ .

We can re-write the entries in (6.5) as

[f k ]m, m′ = 1
(2T )2

∑
l = 0

2T − 1
bT l wm′, m

k βl ∑
j2 = 0

2T − 1
e−imγj2 ∑

j1 = 0

2T − 1
e−im′αj1f αj1, βl, γj2 .

(6.6)

By rearranging the terms in (6.6), it becomes obvious that we should compute f̂ k  in the 

following order:

1. for all 0 ≤ j2, l < 2T  and −T ≤ m′ ≤ T , compute

S1 l, j2, m′ = 1
2T j1 = 0

2T − 1
e−im′αj1f αj1, βl, γj2 ,

2. for all 0 ≤ l < 2T  and −T ≤ m′, m ≤ T , compute

S2 l, m′, m = 1
2T j2 = 0

2T − 1
e−imγj2 S1 l, j2, m′ ,

3. for all −T ≤ m′, m ≤ T , compute

[f k ]m, m′ = ∑
l = 0

2T − 1
bT l wm′, m

k βl S2 l, m′, m .

The complexity to compute f̂ k m, m′ for all m, m′ and k is O T 4 ; and the complexity of the 

straight-forward evaluation in (6.5) is O T 6  [28].

6.2.3. Simplification for cryo-EM.—Recall that the objective function for cryo-EM 

does not depend on β. I.e.,

f α, γ = f α, β1, γ = f α, β2, γ .

(6.6) reduces to
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[f k ]m, m′ = ∑
l = 0

2T − 1
bT l wm′, m

k βl
1

(2T )2
∑

j2 = 0

2T − 1
e−imγj2 ∑

j1 = 0

2T − 1
e−im′αj1f αj1, γj2 .

(6.7)

We compute (6.7) in the following order:

1. compute

BT k =
l = 0

2T − 1
bT l wm′, m

k βl ,

2. for all 0 ≤ j2 < 2T  and −T ≤ m′ ≤ T , compute

S1 j2, m′ = 1
2T j1 = 0

2T − 1
e−im′αj1f αj1, γj2 ,

3. for all −T ≤ m′, m ≤ T , compute

S2 m′, m = 1
2T j2 = 0

2T − 1
e−imγj2S1 j2, m′ ,

4. for all −T ≤ m′, m ≤ T , compute

[f k ]m, m′ = BT k S2 m′, m .

The complexity to compute f̂ k m, m′ for all m, m′ and k is O T 3 .

6.3. Rotation MSE and FSC resolution.

We assess the performance of orientation estimation method using the mean squared error 

(MSE), defined as follows:

MSE ≔ 1
n ∑

i = 1

n
∥ Ri − Ri ∥Fro

2 .

(6.8)

Here Ri are the true rotations (which are known in the simulation setting) and R̂i are the 

estimated rotations (note that we previously used the hat notation for the Fourier transform, 

but here it is used for estimators). Since the estimation is up to a global rotation and possibly 

handedness, the two sets of rotations are aligned prior to computing the MSE.

In addition, we will include the Fourier Shell Correlation (FSC) of the reconstructed 

structure against the known structure. We reconstruct the 3-dimensional structure (in Fourier 
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space) using the estimated orientations to get ϕ̂, and compare it against the known structure 

ϕ (in Fourier space). For each spatial frequency rk, we calculate the FSC

FSC rk ≔
∑∥ v ∥2 = rk ϕ v ϕ* v

∑∥ v ∥2 = rk ϕ v 2∑∥ v ∥2 = rk ϕ v 2 .

We derive the resolution (in Angstroms) by interpolating the FSC until we reach an rk

yielding FSC rk ≤ 0.5. See [23] for a discussion on the FSC and the cutoff value.

Note that the rotation MSE is the most direct assessment of orientation estimation methods. 

After all, the stated objective of orientation estimation in cryo-EM is to estimate the 

orientations. In addition, the quality of the 3-dimensional reconstruction depends on several 

other factors such as the signal-to-noise ratio of the images, the number of images, the 

distribution of the viewing directions and the CTF of the images. We focus on the rotation 

MSE because the other factors mentioned are independent of the algorithm being used.

6.4. Simulated data.

With the ASPIRE software package in [5], we generate a set of 100 and a set of 500 

projection images of size 129 × 129 from the Plasmodium falciparum 80S ribosome 
(see https://www.ebi.ac.uk/pdbe/emdb/empiar/entry/10028/.) We add Gaussian noise to the 

simulated projections, and then apply a circular mask to zero out the noise outside of 

the radius. Table 1 shows a comparison of NUG and the synchronization method for 

different noise levels. In particular, the estimation error of NUG at SNR=1/64 with 500 

images is sufficiently low (MSE=0.05) to result in a meaningful 3-D ab-initio model 

(with ¡ 30 Angstrom resolution). Numerical experiments were conducted on a cluster of 

Intel(R) Xeon(R) CPU E7–8880v3 @ 2.30GHz totaling 144 cores and 792GB of RAM. 

The synchronization method is roughly two orders of magnitude faster than NUG, but NUG 

gives more accurate estimates at low SNR.

To put the numbers in Table 1 into perspective, a MSE of 0.1, for example, can be regarded 

as small enough in one instance to lead to a good reconstruction, but too large in another. 

The 3-dimensional reconstruction from 100 images at low SNR (e.g., SNR=1/128) looks bad 

even if one uses the true orientations (i.e., MSE=0). On the other hand, the 3-dimensional 

reconstruction from 500 images at moderate SNR (e.g., SNR=1/32) would look very decent 

at MSE=0.1. The latter case is shown in Figure 7 in [39], where SNR=1/32 and the MSE 

is slightly above 0.1. The resolution measure quantifies the quality of the 3-D ab-initio 

model. An idea about the quality of 3-dimensional reconstruction with respect to the MSE 

can also be obtained from Table 3 and Figure 8 in [42]. We would like to point out that 

for the same computational cost, synchronization can process more images than NUG, and 

therefore may yield better 3-dimensional reconstructions. However, beyond the theoretical 

importance, NUG still might be useful in situations in which the number of images is limited 

(e.g., when there are only a handful number of class averages or in electron tomography).

We also illustrate the effects of contrast, CTF and shifts on the performance of NUG in 

the numerical experiment reported in Table 2. In this numerical experiment, phase flipping 
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was applied to correct for the phases of the CTF but not their magnitudes. As for shifts, 

we simply ignore it in the NUG SDP. In the future, we can expand (4.4) to include shifts 

to improve upon our estimates. Please see Section 6.1 for a discussion on the effects of 

contrast, CTF and shifts.

The distribution for the contrast was based on the following numerical experiment. 

We used the publicly available experimental dataset EMPIAR-10028 found here: https://

www.ebi.ac.uk/pdbe/emdb/empiar/entry/10028/. Using the known 3-dimensional structure 

of the molecule, we construct 10,000 simulated clean projections of size 64 × 64 at different 

orientations sampled uniformly over SO 3 . For each image Î in the experimental dataset, we 

solve for γ in

minimize
γ, Ii

∥ γI − Ii ∥Fro 
2 ,

where Ii’s are simulated projections generated from the known structure. Figure 6.3 shows 

the empirical distribution of γ.

7. Summary

The NUG problem consists in the minimization of the sum of pairwise cost functions 

defined over the ratio between group elements, for arbitrary compact groups. This 

corresponds to the simultaneous multi-alignment of many datapoints (e.g. signals, images, or 

molecule densities) with respect to transformations given by an action of the corresponding 

group. We presented a methodology to solve this problem involving a relaxation of the 

problem to an SDP and an implementation of an ADMM algorithm to solve the resulting 

SDP.

In this paper we focused mainly in the context of alignment over SO 2  and SO 3 . A notable 

example is that of finding a consistent set of pairwise rotations of many different functions 

defined on a sphere which globally minimize the disagreement between pairs of functions.

The NUG problem arises in cryo-EM, where the task is to recover the relative orientations 

of many noisy 2-dimensional projections images of a 3-dimensional object, each obtained 

from a different unknown viewing direction. Once good alignments are estimated, the 

3-dimensional object can be reconstructed using standard tomography algorithms. In this 

paper we formulate the problem of image alignment in cryo-EM as an instance of NUG, and 

demonstrate the applicability to simulated datasets.

The computational and numerical considerations require truncations of the both the cost 

functions and group representations; a general approach is proposed as part of the 

formulation as an SDP, and additional methods particularly developed for the case of SO 3 , 

and to the special properties of the cryo-EM problem, are presented.

It is noteworthy that, compared to previous work on related alignment problems, the 

formulation of the problem as an SDP can provide a certificate for optimality in some cases. 

Specifically, whenever the solution of the SDP also satisfies the nonconvex constraints that 
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have been relaxed, it serves as a certificate that optimality has been achieved. In numerical 

work not reported in this paper we have numerically observed optimality of NUG SDP for 

some instances of MRA, but not for estimation of orientations in cryo-EM. Better theoretical 

understanding of when NUG SDP achieves optimality is an interesting open problem. In the 

context of cryo-EM, like other common-line based approaches, it does not require an initial 

guess. These properties make NUG a candidate for future work on robust ab initio alignment 

which would provide an initialization for other refinement algorithms.
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Figure 1.1. 
Illustration of the cryo-EM imaging process: A molecule is imaged after being frozen at a 

random (unknown) rotation and a tomographic 2-dimensional projection is captured. Given 

a number of tomographic projections taken at unknown rotations, we are interested in 

determining such rotations with the objective of reconstructing the molecule density. Images 

courtesy of Amit Singer and Yoel Shkolnisky [42].
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Figure 2.1. 

Illustration of the registration problem in S1. The first column consists of a noiseless signal 

at three different shifts, the second column represents an instance for which the template x
is known and matched filtering is effective to estimate the shifts. However, in the examples 

we are interested in the template is unknown (last two columns) rendering the problem of 

estimating the shifts significantly harder.
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Figure 2.2. 
An illustration of registration in 2-dimensions. The left four spheres provide examples of 

clean signals yi and the right four spheres are of noisy observations. Note that the images are 

generated using a quantization of the sphere.
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Figure 2.3. 
Sample images from the E. coli 50S ribosomal subunit, generously provided by Dr. Fred 

Sigworth at the Yale Medical School.
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Figure 2.4. 
An illustration of the use of the Fourier slice theorem and the common lines approach to 

the orientation estimation problem in cryo-EM. Image courtesy of Amit Singer and Yoel 

Shkolnisky [42].
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Figure 6.1. 
Three cryo-EM images uniquely determine their orientations up to handedness. Image 

courtesy of Singer et al. [41].
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Figure 6.2. 
Example created by Jiang and Chiu available at http://jiang.bio.purdue.edu/software/ctf/

ctfapplet.html
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Figure 6.3. 
Distribution of contrast in the experimental dataset EMPIAR-10028.
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Table 1.

The resolutions shown are in Angstroms. At high SNR, synchronization is accurate to more decimal places. 

This is not surprising since we have compromised on various truncations and discretizations for computational 

speed, etc. However, as the noise increases, we see NUG outperforming synchronization.

100 images SNR NUG MSE sync. MSE NUG res sync res

1/1 0.0153 1.2759e-04 24.6 20.8

1/2 0.0155 1.3593e-04 21.5 20.3

1/4 0.0174 3.6615e-04 27.0 22.4

1/8 0.0192 0.0037 28.7 25.8

1/16 0.0227 0.0300 29.8 30.9

1/32 0.0298 0.1572 35.6 45.8

1/64 0.1559 2.7818 45.3 174.1

1/128 2.1239 4.1492 97.9 175.3

500 images SNR NUG MSE sync. MSE NUG res sync res

1/1 0.0125 4.1412e-05 18.1 14.6

1/2 0.0130 5.1825e-05 20.8 18.2

1/4 0.0134 1.5268e-04 21.7 17.0

1/8 0.0143 0.0018 16.4 18.1

1/16 0.0175 0.0189 20.8 17.7

1/32 0.0195 0.1559 24.6 30.7

1/64 0.0460 2.2496 29.3 71.1

1/128 1.6060 3.1661 64.2 107.6
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Table 2.

Effects of shifts, CTFs and contrast on the MSE (defined in (6.8)) of the NUG SDP cryo-EM. Shifts are 

sampled from U − 5,5 , CTFs are drawn uniformly from 4 defocus groups and contrasts are sampled from 

U 0.5,1.5 . We used 500 simulated projections of size 64 × 64.

SNR benchmark CTF CTF and shifts CTF and contrast

1/4 0.0285 0.0381 0.3382 0.7342

1/8 0.0333 0.1450 0.5741 > 2.0

1/16 0.0698 0.7631 1.3391 > 2.0

1/32 0.4387 1.9199 > 2.0 > 2.0

1/64 1.8587 > 2.0 > 2.0 > 2.0
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