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A novel dual‑pooling attention 
module for UAV vehicle 
re‑identification
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Vehicle re-identification (Re-ID) involves identifying the same vehicle captured by other cameras, 
given a vehicle image. It plays a crucial role in the development of safe cities and smart cities. With 
the rapid growth and implementation of unmanned aerial vehicles (UAVs) technology, vehicle Re-ID 
in UAV aerial photography scenes has garnered significant attention from researchers. However, 
due to the high altitude of UAVs, the shooting angle of vehicle images sometimes approximates 
vertical, resulting in fewer local features for Re-ID. Therefore, this paper proposes a novel dual-
pooling attention (DpA) module, which achieves the extraction and enhancement of locally important 
information about vehicles from both channel and spatial dimensions by constructing two branches of 
channel-pooling attention (CpA) and spatial-pooling attention (SpA), and employing multiple pooling 
operations to enhance the attention to fine-grained information of vehicles. Specifically, the CpA 
module operates between the channels of the feature map and splices features by combining four 
pooling operations so that vehicle regions containing discriminative information are given greater 
attention. The SpA module uses the same pooling operations strategy to identify discriminative 
representations and merge vehicle features in image regions in a weighted manner. The feature 
information of both dimensions is finally fused and trained jointly using label smoothing cross-entropy 
loss and hard mining triplet loss, thus solving the problem of missing detail information due to the 
high height of UAV shots. The proposed method’s effectiveness is demonstrated through extensive 
experiments on the UAV-based vehicle datasets VeRi-UAV and VRU.

As an important component of intelligent transportation systems, vehicle re-identification (Re-ID) aims to 
find the same vehicle from the vehicle images taken by different surveillance cameras. The use of vehicle Re-ID 
algorithm can automatically perform the work of image matching, solving the problem of vehicle identification 
due to the influence of external conditions, such as artificially blocked license plates, obstacle blocking, blurred 
images, etc., saving manpower and consuming less time, providing strong technical support for the construction 
and maintenance of urban security order and guaranteeing public safety. Driven by deep learning technology, 
more and more researchers have started to shift towards the deep convolutional neural network, which solves 
the previous problem of insufficient feature extraction expression using traditional methods.

Existing vehicle Re-ID work1–6 is mainly through road surveillance video to obtain vehicle data. A large num-
ber of surveillance cameras deployed in highways, intersections and other areas can only provide a specific angle 
and a small range of vehicle images. When encountering certain special circumstances, such as camera failure 
or events that the target vehicle is not in the monitoring coverage, it is impossible to identify and re-identify the 
target vehicle. In recent years, unmanned aerial vehicles (UAVs) technology7 has made significant developments 
in terms of flight time, wireless image transmission, automatic control, etc. Mobile cameras on UAVs have a wider 
range of viewpoints as well as better maneuverability, mobility, and flexibility, and UAVs can track and record 
specific vehicles in urban areas and highways8. Therefore, the vehicle Re-ID task in the UAV scenario has received 
increasingly wide attention from researchers as a complementary development to the traditional road surveillance 
scenario and has greater application value in practical public safety management, traffic monitoring, and vehicle 
statistics. Figure 1 compares the two types of vehicle images based on road surveillance and aerial photography 
based on UAVs. The similarity between the two is that the captured vehicle image is a single complete vehicle. 
The difference is that the height of the UAV is usually higher than the height of the fixed surveillance camera, 
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which results in the angle of the vehicle image sometimes being approximately vertical. Also, the height of the 
UAV is uncertain, resulting in scale variation in the captured vehicle images.

Since the height of the UAV is usually higher than the height of the fixed surveillance camera, the obtained 
vehicle images are taken at an almost near vertical angle, and therefore fewer local features of the vehicle are used 
for Re-ID. On the one hand, the idea of the attention mechanism has been proven to be effective. It is important 
to build an attention module to focus on channel information and important regions. On the other hand, average 
pooling9 takes the average value in each rectangular region, which preserves the background information in the 
image and allows input of the information of extracting all features in the feature map to the next layer. General-
ized mean pooling operation10 allows focusing on regions with different fineness by adjusting the parameters. 
The minimum pooling operation11 will focus on the smallest pixel points in the feature map. Soft pooling12 is 
based on softmax weighting to retain the basic attributes of the input while amplifying the feature activation 
with greater intensity, i.e., to minimize the information loss brought about by the pooling process and to better 
retain the information features. Unlike maximum pooling, soft pooling is differentiable, so the network acquires 
a gradient for each input during backpropagation, which facilitates better training. A series of pooling methods 
have been successively proposed by researchers13–15, each of which has shown different advantages and disad-
vantages. Previous studies usually combine only average pooling and maximum pooling to capture key features 
of images, while ignoring the use of multiple pooling methods in combination. In addition, the pooling layer is 
an important component in convolutional neural networks and has a significant role in reducing the number 
of network training parameters, decreasing the difficulty of network optimization, and preventing overfitting16.

Based on the above analysis and thinking, this paper presents a novel dual-pooling attention (DpA) module 
for UAV vehicle Re-ID. Our main contributions are:

• We design the channel-pooling attention (CpA) module and spatial-pooling attention (SpA) module 
respectively, where the CpA module aims to focus on the important features of the vehicle while ignoring the 
unimportant information. The SpA module aims to capture the local range dependency of the spatial region. By 
combining multiple pooling operations, the network is enabled to better focus on detailed information while 
avoiding the intervention of more redundant information, and the pooling operations also help prevent overfit-
ting. In addition, omni-dimensional dynamic (OD) convolution is introduced in the CpA and SpA modules to 
further dynamically extract rich contextual information.

• We concatenate the two to obtain the DpA module and embed it into the conventional ResNet50 backbone 
network to improve the model’s channel and spatial awareness. In addition, this paper introduces hard mining 
triplet loss combined with cross-entropy loss with label smoothing for training, thus improving the ability of 
triplet loss to perform strong discrimination even in the face of difficult vehicle samples.

• We conduct a number of experiments to verify the effectiveness of the our model, and the results show that 
the proposed method achieves 81.74% mean average precision (mAP) on the VeRi-UAV dataset. In the three 
test subsets of VRU, the accuracy of mAP reaches 98.83%, 97.90% and 95.29%, respectively. This indicates that 
the DpA module can solve the problem of insufficient fine-grained information based on vehicle Re-ID images 
taken by UAVs.

Related work on the vehicle Re‑ID task
In recent years, most vehicle Re-ID methods are based on traditional road surveillance images, and their 
methodological ideas broadly include using vehicle local features to achieve the extraction of detailed feature 
information17–19, using attention mechanisms to improve the model’s ability to focus on important regions20–22, 
optimizing network training to improve recognition rates by designing appropriate loss functions23,24, and using 
unsupervised learning without manual labeling to improve the generalization ability of the model in complex 
realistic scenes25–27. For example, Jiang et al.28 designed a global reference attention network (GRA-Net) with 
three branches to mine a large number of useful discriminative features to reduce the difficulty of distinguish-
ing similar-looking but different vehicles. EMRN29 proposes a multi-resolution features dimension uniform 
module to fix dimensional features from images of varying resolutions, thus solving the multi-scale problem. 
Besides, GiT30 uses a graph network approach to propose a structure where graphs and transformers interact 
constantly, enabling close collaboration between global and local features for vehicle Re-ID. The dual-relational 
attention module (DRAM)31 models the importance of feature points in the spatial dimension and the channel 
dimension to form a three-dimensional attention module to mine more detailed semantic information. In addi-
tion, viewpoint-aware network (VANet)32 is used to learn feature metrics for the same and different viewpoints. 
Generative adversarial networks (GAN) are used to solve the labeling difficulty in the Re-ID dataset33.

However, the current vehicle datasets VeRi-776, VehicleID, etc. are captured by fixed surveillance cameras, 
and the perspective and diversity of vehicles are insufficient, so the above-mentioned feature extraction methods 

(a) Road surveillance-based image display (b) UAV-based image display

Figure 1.   Comparison of two types of vehicle images.
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are only for vehicle images captured by traditional road surveillance. Since the birth of the first vehicle Re-ID 
dataset VARI34 based on aerial images in 2019, vehicle Re-ID using images captured by UAVs has started to 
attract the attention of researchers35–37. In UAV surveillance scenarios, the height of its aerial photography is 
more flexible and usually higher than the height of the fixed surveillance camera, resulting in more challenging 
recognition as most of the captured vehicle images are non-complete vehicles captured in top-down viewpoints.

In view of the existing research work, we broadly classify the specific research ideas into three categories, 
namely, based on multi-view features, optimizing the loss function, and introducing the attention mechanism.

Based on multi‑view features
The viewpoint problem is an important challenge in UAV aerial photography scenarios. Therefore, Song et al.35 
designed a multi-branch twin network based on a viewpoint decision model to be used as a deep feature learning 
network for vehicle images with different viewpoints. The network combines viewpoint information to match 
composite sample pairs, and then learns deep features via a multi-branch separated twins network to enhance 
the learning of images of the same vehicle at different viewpoints, which is validated on VeRi-UAV, a multi-
scale vehicle image Re-ID dataset. Organisciak et al.38 also proposed a UAV Re-ID benchmark, for evaluating 
Re-ID performance across viewpoints and scale respectively. In addition, Teng et al.39 proposed a point-of-view 
adversarial strategy and a multi-scale consensus loss to improve the robustness and discriminative ability of 
learning deep features.

Optimizing the loss function
The design of the loss function is used to improve the model sampling method, which in turn improves the 
performance of the vehicle Re-ID model in UAV scenarios. Yao et al.40 introduced a weighted triplet loss (WTL) 
function to penalize the embedded features of larger strength negative pairs, which is well targeted for the training 
of UAV vehicle Re-ID networks. Besides, the normalized softmax loss41 is proposed to increase the inter-class 
distance and decrease the intra-class distance and combine with the triplet loss to train the model, which solves 
the problem of how to robustly learn a common visual representation of vehicles from different viewpoints and 
distinguish between different vehicles with similar visual appearance by optimizing the loss function.

Introduction of attention mechanism
Many researchers have combined the attention mechanism with the Re-ID model to further improve the feature 
representation capability of the model. Lu et al. researchers42 proposed a global attention and full-scale network 
(GASNet) for vehicle Re-ID task based on UAV images, which captures vehicle features with global information 
by global relationship-aware attention mechanism in the network. Recently, in order to be able to effectively 
extract distinguishable vehicle features, Jiao et al.43 proposed an effective orientation adaptive and salience atten-
tive (OASA) network, and designed a transformer-based salience attentive module to direct the model to focus 
on subtle but discriminative cues of vehicle instances in the aerial images.

In summary, compared with road surveillance with fixed camera locations, it is more flexible and convenient 
to utilize images captured in UAV scenarios for vehicle Re-ID tasks in public transportation safety management. 
From the current state of research, there are fewer related studies because experimental datasets are still difficult 
to obtain, so this paper focuses on further research in the field of vehicle Re-ID based on UAV aerial scenes.

Proposed approach
Overall network architecture
The overall network architecture of this paper is shown in Fig. 2. It consists of three parts: input images, feature 
extraction, and output results. First, the input image is enhanced with data by AugMix44 method, where AugMix 
overcomes the image distortion problem caused by previous MixUp data enhancement by applying different data 
enhancements randomly to the same image. Then, the backbone network ResNet50 and a dual-pooling attention 
(DpA) module are used as the feature extraction part of the network. After the gallery set to be queried and the 
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target query vehicle are input to the network model for feature extraction, the similarity between the features of 
the target query vehicle image and the vehicle image features in the gallery set is calculated by a metric method. 
Finally, the similarity is ranked and the vehicle retrieval results are obtained.

Channel‑pooling attention
To focus more on the features with the discriminative nature of vehicle images and avoid the interference of 
background clutter information, four pooling methods are introduced to process the channel features. The 
specific module diagram is shown in Fig. 3a. First, let the output features of the third residual block (Conv4_x) 
of ResNet50 be the input matrix X. Suppose the input matrix X ∈ R

C×H×W , where C, H, and W represent the 
channel number, height, and width of the feature map respectively. Four copies of X are made, and the average 
pooling (AvgP)9, generalized mean pooling (GeMP)10, minimum pooling (MinP)11, and soft pooling (SoftP)12 
operations are performed on them. The first three poolings make the dimension change from C ×H ×W  to 
C × 1× 1 channel descriptors. The feature map X ∈ R

C×H×W is taken as input and a vector f ∈ R
C×1×1 is gen-

erated as the output of the pooling operation. The vector f = [f 1, · · · f k , · · · f C] in the case of the AvgP, MinP 
and GeMP of are respectively given by:

where xkpq denotes the element located at (p, q) in the rectangular region Rij , |Rij| indicates the number of elements 
in the rectangular area Rij.

where xkpq denotes the element located at (p, q) in the rectangular region R, |R| denotes the number of all elements 
of the kth feature map, and α is the control coefficient.

And the feature map generated by SoftP is still C ×H ×W . Its formulas for SoftP are shown as follows:

where xkmn is similar to xkpq above and denotes the element located at (m, n) in the rectangular region R.
From one perspective, since AvgP focuses on each pixel of the feature map equally and SoftP captures impor-

tant regions better than maximum pooling, the outputs of both are summed to obtain a1 ∈ R
C×H×W to give more 

attention to important vehicle features. From another perspective, GeMP can focus on different fine-grained 

(1)f kAvgP =
1

|Rij|

∑

(p,q)∈Rij

xkpq

(2)f kMinP = − max
(p,q)∈Rij

(−xkpq)

(3)f kGeMP =





1

|R|

�

(p,q)∈R

(xkpq)
α





1
α

(4)f kSoftP =
1

∑

(m,n)∈R e
xkmn

∑

(p,q)∈R

ex
k
pq × xkpq

SoftP

GeMP

MinP

AvgP

CC

AvgP

SoftP

GeMP

MinP

(a) CpA Module

(b) SpA Module

Channel-Spatial Map

C×H×W

H×W×C

C×1×1

2HW×1×1

C×H×W

Conv4_x

Conv4_x

Conv

OBROBR

OBR OBR

Dual-pooling Attention Module

X

X

X
Conv

Conv4_x

X

C*

S*

Element-wise Subtract

Element-wise Sum Dot Product

ConcatenateCC

Average Pooling

Soft  Pooling

Minimum Pooling

Generalized Mean Pooling

AvgP

GeMP

SoftP

MinP

OBR =

ODConv

BN

ReLU

OBR =

ODConv

BN

ReLU

Figure 3.   Dual-pooling attention module. (a) CpA represents channel-pooling attention, (b) SpA represents 
spatial-pooling attention.



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:2027  | https://doi.org/10.1038/s41598-024-52225-x

www.nature.com/scientificreports/

regions adaptively by adjusting the parameters, while minimum pooling focuses on small pixels in the feature 
map, i.e., the background regions, so GeMP and MinP are subtracted to obtain a2 ∈ R

C×1×1 to give more atten-
tion to vehicle fine-grained features and ignore the background regions as much as possible. The output of both 
of them is dotted and multiplied to obtain the channel attention map C∗ ∈ R

C×H×W . The channel pooling matrix 
C∗ can be formulated as:

where * represents the dot product operation.
The OBR module is composed of OD convolution, batch normalization (BN) and rectified linear unit (ReLU) 

activation function, which is sequentially used twice in a row for the channel attention map C∗ . Compared with 
normal convolution, dynamic convolution is used here, which is linearly weighted by multiple convolution 
kernels and establishes certain dependencies with the input data to better learn flexible attention and enhance 
the extraction of feature information. Finally, the original input matrix X is summed with the output of the OBR 
module and normalized by the sigmoid function to obtain the final channel-pooling attention output matrix 
X

′
∈ R

C×H×W . These operations can be defined as:

where σ(.) is the sigmoid activation function and the OBR module represents the OD convolution of 3 × 3, BN, 
and ReLU activation function.

Spatial‑pooling attention
Feature relations are used to compute spatial attention, similar to the above channel-pooling attention mod-
ule. As shown in Fig. 3b, first, the output feature X of the original feature, the third residual block of ResNet50 
(Conv4_x), is transposed to obtain XT ∈ R

H×W×C . Then the operation of multiplying H and W is performed 
to aggregate and extend the dimensions to become a matrix of HW × C × 1 . This matrix is then copied in four 
copies and AvgP, SoftP, GeMP, and MinP are applied along the channel axis, which finally makes the dimension 
change from H ×W × C to HW × 1× 1 spatial descriptors. Similarly, the outputs of AvgP and SoftP are added 
and the convolution layer is applied to obtain b1 ∈ R

HW×1×1 . The outputs of GeMP and MinP are subtracted to 
obtain b2 ∈ R

HW×1×1 . Finally, the two are concatenated to get the output S∗ ∈ R
2HW×1×1 . The spatial pooling 

matrix S∗ can be formulated as:

where Conv stands for convolution operation and [. , .] is the concatenation operation.
Then convolution is applied to S∗ to expand it to C × 1× 1 . Similarly, the OBR module uses twice for the 

output attention map S∗ to dynamically enhance the acquisition of spatial domain information features. Finally, 
the original input X is added up to get the output matrix X ′′

∈ R
C×H×W of the spatial-pooling attention module. 

These operations can be defined as:

Loss functions
In vehicle Re-ID, a combination of identity loss and metric loss is often used. Therefore, in the training phase, 
we use cross-entropy (CE) loss for classification and triplet loss for metric learning. The CE loss is often used 
in classification tasks to represent the difference between the true and predicted values. The smaller the value, 
the better the prediction of the model. The label smoothing (LS) strategy45 is introduced to solve the overfitting 
problem. Therefore, the formula for the label smoothing cross-entropy (LSCE) loss is as follows:

where parameter ε is the smoothing factor, which was set to 0.1 in the experiment.
The core idea of triplet loss is to first build a triplet consisting of anchor samples, positive samples, and 

negative samples. Then after continuous learning, the distance between positive samples and anchor samples 
under the same category in the feature space is made closer, and the distance between negative samples and 
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anchor samples under different categories are made farther. In this paper, we use hard mining triplet (HMT) 
loss to further improve the mining ability in the face of difficult vehicle samples by selecting the more difficult 
to distinguish positive and negative sample pairs in a batch for training. The loss function for the hard mining 
triplet is calculated as follows:

where T denotes the number of vehicle identities in each training batch, S denotes the number of images included 
in each vehicle identity. Ai , Pi , and Nj denote the anchor sample, the vehicles belonging to the same category 
as the anchor sample but least similar to it, and the vehicles belonging to a different category than the anchor 
sample but most similar to it, respectively. m represents the minimum boundary value of this loss, and [.]+ is 
the max(., 0) function.

In summary, this work combines LSCE loss and HMT loss. The final loss is:

where �1 and �2 are two weights for different losses, and �1 = �2 = 1.

Experiment results and discussion
In this section, we perform a number of experiments on vehicle datasets (VeRi-UAV and VRU) based on UAV 
photography to validate the effectiveness of our method, including a performance comparison with state-of-
the-art methods and a set of ablation studies (mainly on VeRi-UAV). The experimental results showed 81.7% 
mAP and 96.6% Rank-1 on VeRi-UAV. In the three test subsets of VRU, the accuracy of mAP reaches 98.83%, 
97.90% and 95.29%, respectively. It can be concluded that our model can effectively mine the fine-grained infor-
mation of vehicle images captured by UAVs, which leads to a better performance in model accuracy and model 
retrieval capability. And by combining CpA, which focuses on the important features of vehicles and ignores the 
unimportant information, and SpA, which captures the local range dependence of spatial regions, the model can 
further be improved in terms of channel and spatial perception. It is also verified that the hard mining triplet 
loss combined with cross-entropy loss with label smoothing can perform a strong discriminative ability in the 
face of difficult vehicle samples.

Next, information about the dataset used, implementation details and evaluation metrics, experimental results 
compared to state-of-the-art methods, ablation experimental results, discussion of validity, and visual analysis 
of the model retrieval results are shown specifically, respectively.

Datasets
Liu et al.46 constructed VeRi-UAV, a dataset based on the Re-ID of UAV vehicles, to capture vehicles from 
multiple angles in different areas, including parking lots and highways. VeRi-UAV includes 2,157 images of 
17,516 complete vehicles with 453 IDs. To test the Re-ID method, the authors segmented another 17,516 vehicle 
images using a vehicle segmentation model. After some minor manual adjustments, the dataset has a total of 
9792 training images, 6489 test images, and 1235 query images. Lu et al.42 constructed VRU, the largest current 
vehicle Re-ID dataset based on aerial drone photography. The dataset was divided into a training set and three 
test sets: small, medium, and large. The training set includes 80,532 images of 7085 vehicles. The small, medium, 
and large test sets contain 13,920 images of 1200 vehicles, 27,345 images of 2400 vehicles, and 91,595 images of 
8000 vehicles, respectively.

Implementation details and evaluation metric
In this paper, we use the weight parameters of ResNet50 pre-trained on ImageNet as the initial weights of the net-
work model. All experiments were performed on PyTorch. For each training image, balanced identity sampling 
is taken and it is resized to 256× 256 and pre-processing is also performed using the AugMix data augmentation 
method. In the training phase, the model was trained for a total of 60 epochs, and a warm-up strategy using a 
linear learning rate was employed. For the VeRi-UAV dataset, the training batch size is 32 and an SGD optimizer 
was used with an initial learning rate of 0.35e−4. The learning rate tuning strategy of CosineAnnealingLR is 
also used. For the VRU dataset, the training batch size is 64 and the initial learning rate is 1e−4 using the Adam 
optimizer. The learning rate tuning strategy of MultiStepLR is used, which decays to 1e−5 and 1e−6 in the 30th 
and 50th epochs. In addition, the batch sizes for testing are all 128.

In the model testing phase, we use Rank-n and mean average precision (mAP) as the main evaluation metrics. 
Among them, Rank-n denotes the probability that there is a correct vehicle in the first n vehicle images in the 
retrieval results. mAP is obtained by averaging the average precision (AP) and can be regarded as the mathemati-
cal expectation of the average precision. In addition, mINP introduced in the ablation experiments is used to 
evaluate the cost required by the model to search for the most difficult-to-match vehicle samples, thus further 
demonstrating the experimental effectiveness.

(14)
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Comparison with state‑of‑the‑art methods
Comparisons on VeRi‑UAV
The methods compared on the VeRi-UAV dataset include the handcrafted feature-based methods BOW-
SIFT47 and LOMO48, and the deep learning-based methods Cross-entropy Loss45, Hard Triplet Loss49, VANet50, 
Triplet+ID Loss34, RANet51, ResNeSt52 and PC-CHSML46. Among them, LOMO48 improves vehicle viewpoint 
and lighting changes through handcrafted local features. BOW-SIFT47 performs feature extraction by employ-
ing content-based image retrieval and SIFT. VANet50 learns visually perceptive depth metrics and can retrieve 
images with different viewpoints under similar viewpoint image interference. RANet51 implements a deep CNN 
to perform resolution adaptive. PC-CHSML46 are approaches for UAV aerial photography scenarios, which 
improves the recognition retrieval of UAV aerial images by combining pose-calibrated cross-view and difficult 
sample-aware metric learning. Table 1 shows the comparison results with the above-mentioned methods in 
detail. First of all, the results show that the deep learning-based approach achieves superior improvement over 
the manual feature-based approach. Secondly, compared with methods for fixed surveillance shooting scenarios 
such as VANet50, DpA shows some improvement in shooting highly flexible situations. Additionally, compared 
with the method PC-CHSML46 for the UAV aerial photography scenario, DpA shows an improvement of 4.2%, 
10.0%, 9.5%, and 9.6% for different metrics of mAP, Rank-1, Rank-5, and Rank-10. Consequently, the effective-
ness of the module is further verified.

Comparisons on VRU
It is a relatively newly released UAV-based vehicle dataset, hence, few results have been reported about it. Table 2 
compares DpA with other methods42,53–55 on VRU dataset. Among them, MGN53 integrates information with 
different granularity by designing one global branch and two local branches to improve the robustness of the 
network model. SCAN54 uses channel and spatial attention branches to adjust the weights at different loca-
tions and in different channels to make the model more focused on regions with discriminative information. 
Triplet+CE loss55 then uses ordinary triplet loss and cross-entropy loss for model training. The GASNet model42 
captures effective vehicle information by extracting viewpoint-invariant features and scale-invariant features. 
The results show that, in comparison, DpA contributes 0.32%, 0.59%, and 1.36% of the mAP improvement to the 
three subsets of VRU. Taken together, this indicates that the DpA module enhances the ability of the model to 
extract discriminative features, which can well solve the problem of local features being ignored in UAV scenes.

Ablation experiments
In this section, we designed some ablation experiments on the VeRi-UAV dataset to evaluate the effectiveness of 
the proposed methodological framework. The detailed results of the ablation studies are listed in Tables 3, 4, 5 
and 6. It is worth noting that a new evaluation index mINP was introduced in the experiment. The mINP is a 

Table 1.   Comparison of various proposed methods on VeRi-UAV dataset (in %). Bold numbers indicate the 
best ranked results.

Method mAP Rank-1 Rank-5 Rank-10

BOW-SIFT47 6.7 18.9 34.4 43.4

LOMO48 25.5 51.9 70.1 77.0

RANet51 44.3 71.6 82.4 85.3

ResNeSt52 64.4 80.1 85.5 86.9

Triplet+ID Loss34 66.1 80.9 86.9 88.4

VANet50 66.5 81.6 87.0 88.0

Cross-entropy Loss45 67.6 94.8 96.3 97.4

Hard Triplet Loss49 73.2 84.8 88.6 89.2

PC-CHSML46 77.5 86.6 89.0 89.8

DpA (Ours) 81.7 96.6 98.5 99.4

Table 2.   Comparison of various proposed methods on VRU dataset (in %). Bold numbers indicate the best 
ranked results.

Method

Small Medium Large

mAP Rank-1 Rank-5 mAP Rank-1 Rank-5 mAP Rank-1 Rank-5

MGN53 82.48 81.72 95.08 80.06 78.75 93.75 71.53 66.25 87.15

SCAN54 83.95 75.22 95.03 77.34 67.27 90.51 64.51 52.44 79.63

Triplet+CE loss55 97.40 95.81 99.29 95.82 93.33 98.83 92.04 87.83 97.28

GASNet42 98.51 97.45 99.66 97.31 95.59 99.33 93.93 90.29 98.40

DpA(Ours) 98.83 98.07 99.70 97.90 96.51 99.44 95.29 92.30 98.96
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recently proposed metric for the evaluation of Re-ID models i.e., the percentage of correct samples among those 
that have been checked out as of the last correct result.

Evaluation of DpA module
To verify the validity of the DpA module, we directly used the baseline network composed of ResNet50 as 
the backbone network, combined with generalized mean pooling, batch normalization layer, fully connected 
layer, LSCE loss, and HMT loss. The detailed results of the ablation study on the VeRi-UAV dataset are shown 
in Table 3. Firstly, the results showed that the addition of CpA to the baseline resulted in a 1.62% and 0.36% 
improvement in the assessment over the baseline on mAP and Rank-1, respectively. This indicates that CpA 
enhances the channel information to be able to extract discriminative local vehicle features. Then after adding 
SpA to the baseline alone, it improved by 0.67% and 0.54% over the baseline on mAP and Rank-1 respectively, 
showing a greater focus on important regions in the spatial dimension. Finally, after combining CpA and SpA on 
top of the baseline, we can find another 2.49%, 0.63%, 0.36%, and 2.27% improvement on mAP, Rank-1, Rank-5, 
and mINP, respectively. We can draw two conclusions: firstly, feature extraction from two dimensions, channel 
and spatial, respectively, can effectively extract more and discriminative fine-grained vehicle features. Secondly, 
the accuracy of Re-ID is improved by connecting two attention modules in parallel.

Comparison of different attention modules
This subsection compares the performance with the already proposed attention modules SE56, Non-local57, 
CBAM58, and CA59. Correspondingly, SE56 gives different weights to different positions of the image from the 
perspective of the channel domain through a weight matrix to obtain more important feature information. 
Non-local57 achieves long-distance dependence between pixel locations, thus enhancing the attention to non-
local features. CBAM58 module sequentially infers the attention map along two independent channel and spatial 
dimensions and then multiplies the attention map with the input feature map to perform adaptive feature optimi-
zation. CA59 decomposes channel attention into two one-dimensional feature encoding processes that aggregate 
features along both vertical and horizontal directions to efficiently integrate spatial coordinate information into 
the generated attention maps.

Table 4 shows the experimental comparison results for different attentional mechanisms. Firstly, adding the 
SE and CA attention modules can slightly improve the accuracy of the model to some extent, while adding the 
Non-local, CBAM attention module does not produce the corresponding effect. Second, compared with the 
newer attention module CA, the proposed DpA module can achieve 2.16% mAP, 0.36% Rank-1, 0.27% Rank-5, 
and 4.55% mINP gains on VeRi-UAV. Therefore, this demonstrates the proposed DpA module is more robust in 
UAV aerial photography scenarios with near-vertical shooting angles and long shooting distances.

To further validate the effectiveness of the DpA method, we also used the Grad-CAM++ technique to visualize 
the different attention maps. As shown in Fig. 4, from left to right, the attention maps of residual layer 3 (without 
any attention), SE, Non-local, CBAM, CA, and DpA are shown in order. It can be clearly seen that, firstly, all six 
methods focus on the vehicle itself. Secondly, the attention modules of SE, Non-local, CBAM and CA pay less 
attention to the local information of the vehicle and some important parts are even ignored, while the red area 
of the DpA module is more obvious to achieve more attention to important cues at different fine-grained levels 
and to improve the feature extraction capability of the network.

Table 3.   Ablation experiments of DpA module on VeRi-UAV (in %). Bold and italicized numbers indicate the 
best and second best ranked results, respectively.

Method mAP Rank-1 Rank-5 mINP

ResNet50+LSCE+HMT (Baseline) 79.25 95.96 98.12 49.29

Baseline+CpA 80.87 96.32 98.21 49.88

Baseline+SpA 79.92 96.50 98.21 48.97

Baseline+DpA 81.74 96.59 98.48 51.56

Table 4.   Ablation experiments of different attention modules on VeRi-UAV (in %). Bold and italicized 
numbers indicate the best and second best ranked results, respectively.

Method mAP Rank-1 Rank-5 mINP

ResNet50+LSCE+HMT (Baseline) 79.25 95.96 98.12 49.29

Baseline+SE56 79.89 96.14 98.48 49.71

Baseline+Non-local57 78.85 96.50 98.21 47.42

Baseline+CBAM58 78.69 96.23 97.85 48.17

Baseline+CA59 79.58 96.23 98.21 47.01

Baseline+DpA 81.74 96.59 98.48 51.56
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Comparison of DpA module placement in the network
We designed a set of experiments and demonstrated its effectiveness by adding DpA modules at different stages 
of the backbone network. � indicates that the DpA module is added after one of the residual blocks of the 
backbone network.

Table 5 shows the experimental results of adding the DpA module after different residual blocks of the back-
bone. Firstly, the results show that the different residual blocks added to the backbone network have an impact 
on the network robustness. Specifically, adding the DpA module behind the 2nd (No.1), 3rd (No.2) and 3rd 
and 4th (No.6) residual blocks of the backbone network respectively improves the accuracy over the baseline 
(No.0), indicating that the module is able to effectively extract fine-grained vehicle features at these locations. 
In contrast, adding the DpA module behind the 4th residual block (No.3) and behind the 2nd and 3rd (No.4), 
2nd and 4th (No.5) residual blocks all show some decrease in accuracy over the baseline (No.0), which indicates 
that the network’s attention is more dispersed after adding it to these positions, thus introducing more irrelevant 
information. Secondly, it can be seen from the table that using mostly one DpA is more robust to the learning 
of network features than using two DpAs jointly, and saves some training time. In particular, No.2, after adding 
the DpA module to the third residual block of the backbone network, has at least a 2.17% improvement in mAP 
compared to the joint use of two DpA’s. In brief, weighing the pros and cons, we choose to add the DpA module 
only after Conv4_x of ResNet50.

Comparison of different metric losses
Metric loss has been shown to be effective in Re-ID tasks, which aim to maximize intra-class similarity while 
minimizing inter-class similarity. The current metric losses treat each instance as an anchor, such as HMT loss 
and circle loss60 which utilize the hardest anchor-positive sample pairs. The multi-similarity (MS) loss61 which 
selects anchor-positive sample pairs is based on the hardest negative sample pairs. The supervised contrastive 
(SupCon) loss62 samples all positive samples of each anchor, introducing cluttered triplet while obtaining richer 
information. The adaptation of different loss functions to the scenario often depends on the characteristics of 
the training dataset. Table 6 shows the experimental results of applying different metric losses for training on 

CACBAM DpALayer3 Non-localSEOriginal 

Low High

CACBAM DpALayer3 Non-localSEOriginal 

Low High

Figure 4.   Heat map comparison of different attention modules. The red area indicates the part of the network 
with the highest attention value, and the blue area indicates the part of the network with the lowest attention 
value.

Table 5.   Ablation experiment of adding DpA module at different residual blocks of the backbone network on 
VeRi-UAV (in %). Bold and italicized numbers indicate the best and second best ranked results, respectively.

No. Conv3_x Conv4_x Conv5_x mAP Rank-1 Rank-5 mINP Training time (h)

0 79.25 95.96 98.12 49.29 0.70

1 � 79.71 96.23 98.21 49.35 0.84

2 � 81.74 96.59 98.48 51.56 0.81

3 � 78.94 96.41 98.12 48.64 1.10

4 � � 78.34 96.41 98.39 46.84 1.00

5 � � 78.87 96.23 97.76 47.58 1.32

6 � � 79.57 96.50 98.39 47.75 1.27
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the VeRi-UAV dataset, and it can be seen that the HMT loss improves both in terms of mAP compared to other 
losses, which indicates that the HMT loss targeted to improve the network’s ability to discriminate difficult 
samples for more robust performance in the vehicle Re-ID task in the UAV scenario.

Discussion
Although the current attention mechanism can achieve certain effect on some vision tasks, its direct application 
is not effective due to the special characteristics of the UAV shooting angle. Therefore, the main idea of this paper 
is to design the attention module combining multiple pooling operations and embedding it into the backbone 
network, which improves the fine-grained information extraction capability for the vehicle Re-ID in the UAV 
shooting scenario, and devotes to solving the problem of insufficient local information of the vehicle due to the 
near vertical angle of the UAV shooting and the varying height. A large number of experimental results prove 
its better results on both VeRi-UAV and VRU datasets. In addition, Fig. 5 shows the matching rate results from 
the top 1 to the top 20 for the different validation models mentioned above, respectively. In contrast, the curves 
plotted by our proposed method as a whole lie above the others, which further validates the effectiveness of the 
method in terms of actual vehicle retrieval effects. Therefore, our vehicle Re-ID model not only achieves accurate 
identification of the same vehicle, but also provides certain technical support for the injection of UAV technology 
into intelligent transportation systems.

Visualization of model retrieval results
To illustrate the superiority of our model more vividly, Fig. 6 shows the visualization of the top 10 ranked retrieval 
results for the baseline and model on the VeRi-UAV dataset. A total of four query images corresponding to the 
retrieval results are randomly shown, the first row for the baseline method and the second row for our method. 
The images with green borders represent the correct samples retrieved, while the images with red borders are 
the incorrect samples retrieved.

In contrast, on the one hand, the baseline approach focuses on general appearance features, where the top-
ranked negative samples all have similar body postures. However, our method focuses on vehicle features with 
discriminative information, such as the vehicle parts marked with red circles in the query image in Fig. 6 (vehicle 
type symbol, front window, rear window, and side window). On the other hand, as in the second query image 
in the figure, our method correctly retrieves the top 5 target vehicle samples in only 5 retrievals, while in the 
baseline method, it takes 9 retrievals to correctly retrieve the top 5 target vehicle samples.

Conclusion and future work
In this work, we propose a dual-pooling attention (DpA) module for vehicle Re-ID that to solve the current 
problem of difficult extraction of local features of vehicles in UAV scenarios due to the high shooting height 
and vertical shooting angle. The first designed DpA module consists of a channel-pooling attention module 

Table 6.   Ablation experiments of different metric losses on VeRi-UAV (in %). Bold and italicized numbers 
indicate the best and second best ranked results, respectively.

Method mAP Rank-1 Rank-5 mINP

DpA+Circle60 72.29 95.43 97.67 38.05

DpA+MS61 72.64 95.43 97.58 38.31

DpA+SupCon62 74.91 97.13 98.12 39.04

DpA+HMT 81.74 96.59 98.48 51.56

Figure 5.   Comparisons of CMC curves for the case of: (a) CpA, SpA and DpA modules, (b) five different 
attention mechanisms, and (c) DpA placed in different positions of the backbone network.
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and a spatial-pooling attention module. The former aims to focus on the important features of the vehicle while 
ignoring the unimportant information, and the latter aims to capture the local range dependence of the spatial 
region. Effective extraction of fine-grained important features of a vehicle is achieved by taking two dimensions, 
the channel domain and the spatial domain. Then, we fuse the features extracted from the two dimensions and 
improve the model’s channel and spatial awareness by introducing OD convolution to achieve dynamic extraction 
of rich contextual information. Extensive comparative evaluations show that our approach outperforms state-of-
the-art results on two challenging UAV-based aerial vehicle Re-ID datasets, achieving competitive performance 
in the Re-ID task.

In addition, there is room for further improvement of the approach proposed in this paper. From the retrieval 
visualization in Fig. 6, it can be seen that there are retrieval errors for vehicles with serious occlusion. Therefore, 
further research will be carried out in the future to address the problem of occlusion of important parts of the 
vehicle, so that the network can adaptively focus on the fine-grained information of other parts to improve 
the recognition accuracy and retrieval capability. Meanwhile, due to the lack of research on vehicle Re-ID in 
the UAV aerial photography scene, there is great potential for future research, such as considering expanding 
UAV scene datasets (e.g., placing drones at different angles to increase the number of vehicle images containing 
multiple views), combining spatial-temporal information of vehicles, and combining vehicle images captured 
by traditional fixed surveillance cameras and UAVs for application to vehicle Re-ID tasks.

Data availability
The dataset analyzed during this study and the associated data are available in the GitHub repository at the link 
https://​github.​com/​Gxy02​21/g-​re-​id.​git.
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