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High-dimensional complex survey data of general structures (e.g., con-
taining continuous, binary, categorical, and ordinal variables), such as
the US Department of Defense’s Health-Related Behaviors Survey
(HRBS), often confound procedures designed to impute any missing sur-
vey data. Imputation by fully conditional specification (FCS) is often
considered the state of the art for such datasets due to its generality and
flexibility. However, FCS procedures contain a theoretical flaw that is
exposed by HRBS data—HRBS imputations created with FCS are
shown to diverge across iterations of Markov Chain Monte Carlo.
Imputation by joint modeling lacks this flaw; however, current joint
modeling procedures are neither general nor flexible enough to handle
HRBS data. As such, we introduce an algorithm that efficiently and flex-
ibly applies multiple imputation by joint modeling in data of general
structures. This procedure draws imputations from a latent joint multi-
variate normal model that underpins the generally structured data and
models the latent data via a sequence of conditional linear models, the
predictors of which can be specified by the user. We perform rigorous
evaluations of HRBS imputations created with the new algorithm and
show that they are convergent and of high quality. Lastly, simulations
verify that the proposed method performs well compared to existing
algorithms including FCS.
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1. INTRODUCTION

Missing data present one of the classical problems of statistical analyses.
Imputation, in which missing values are replaced with plausible entries accord-
ing to some sort of statistical model, is a highly popular approach for address-
ing missing data as it yields completed datasets that can be analyzed with
traditional techniques. Modern approaches to imputation have tended to settle
within a Bayesian paradigm wherein imputations are sampled at random from
a posterior predictive distribution; this begets the multiple imputation frame-
work in which estimators of uncertainty can be adjusted for imputation error
through the creation of several imputed datasets. Most commonly used imputa-
tion procedures generate imputations iteratively via Markov Chain Monte
Carlo (MCMC) in hopes that after a burn-in period of iterations, the imputa-
tions will represent draws from the posterior distribution of the missing data
given the observed data. Reviews of missing data, imputation, and multiple
imputation are numerous—examples include Rubin (1987, 1996), Schafer
(1999), Carpenter and Kenward (2012), and Little and Rubin (2020).

This article is motivated by the problem of imputation in the US
Department of Defense’s 2018 Health-Related Behaviors Survey (HRBS) of
service members, which is designed to assess health behaviors that have the
potential to impact readiness and to assess the overall well-being of the US
Armed Forces. HRBS data are high-dimensional (approximately 33,000
respondents across with nearly 300 variables) and have a difficult-to-model
data structure (e.g., the survey includes complicated skip logic and many items
are sparsely distributed binary variables). As demonstrated later, we find that
no existing imputation algorithm is well suited to handle the complexities of
HRBS data.

The current state of the art for missing data problems in large-scale surveys
akin to HRBS is often considered imputation by fully conditional specification
(FCS, Raghunathan et al. 2001; Van Buuren et al. 2006; Van Buuren and

Statement of Significance
This article illustrates a novel, flexible, and computationally efficient
procedure for imputation of missing values in high-dimensional data-
sets of a general structure via joint modeling. The method outperforms
existing state-of-the-art techniques in a general simulation study and is
shown to produce high-quality imputations in a data application
wherein procedures that use fully conditional specification (i.e., mice)
yield divergent imputations.
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Groothuis-Oudshoorn 2011; White et al. 2011), also known as chained equa-
tions, wherein each variable is imputed from a conditional model that poten-
tially includes all other variables. This process naturally lends itself to
imputation of variables of general structure (e.g., binary, unordered categorical,
ordinal); furthermore, transformation (e.g., Robbins and White 2011; Robbins
2014; Lee and Carlin 2017) or predictive mean matching (Little 1988) can be
applied to preserve continuous marginal distributions that are nonstandard.
Conditional modeling and imputation may be performed with random forests
(Doove et al. 2014; Shah et al. 2014) or regression trees (Burgette and Reiter
2010; Doove et al. 2014) within FCS procedures. Since the conditional models
can be, in theory, incompatible with one another, FCS does not necessarily
sample imputations from a valid joint distribution, and as such, the imputations
are not guaranteed to converge across iterations of MCMC. In spite of its theo-
retical flaws, FCS is thought to perform well in practice (Lee and Carlin 2010;
White et al. 2011; Van Buuren 2018) and is widely used and available across a
host of software (e.g., Raghunathan et al. 2002; Van Buuren and Groothuis-
Oudshoorn 2011; Su et al. 2011; Honaker et al. 2011). However, application
of FCS methods to HRBS induces problems. Imputation of sparse binary varia-
bles by logistic regression yields clearly erroneous marginal distributions,
whereas divergence across iterations of MCMC is observed when predictive
mean matching is applied.

Imputation algorithms that sample from valid joint distributions have been
developed (e.g. Schafer 2017; Gondara and Wang 2018; Hoff 2018; Yoon
et al. 2018; Zhao and Schafer 2018; Quartagno and Carpenter 2020; Erler et al.
2021; Grund et al. 2021). However, these procedures tend to be incompatible
or highly inefficient with data of general structures or high dimensions. For
example, these procedures often lack the flexibility to impose selected condi-
tional dependencies within imputation modeling, which renders them compu-
tationally infeasible with HRBS data.

Here, we introduce a new procedure that borrows from earlier ideas
(Carpenter and Kenward 2012; Robbins et al. 2013) and addresses the theo-
retical and empirical issues encountered with FCS. This algorithm imposes a
latent multivariate normal process to facilitate the imputation of continuous,
binary, unordered categorical, and ordinal (i.e., ordered categorical) varia-
bles. To ensure theoretical validity, procedure draws imputations from a
joint model while building that model from a sequence of linear conditional
models. Modeling in such a fashion enables flexibility in the selection of
conditional relationships that permitted between variables. The sweep opera-
tor (Goodnight 1979) optimizes the computational performance of the algo-
rithm. When the method is applied to HRBS, diagnostics of both marginal
and multivariate distributions indicate strong performance with convergence
observed over MCMC iterations. The new procedure also has the potential
to be dramatically more computationally efficient than FCS with high-
dimensional data.

Joint Imputation of General Data 185



2. THE HEALTH-RELATED BEHAVIORS SURVEY DATA

The HRBS, which has been administered in some form for over 30 years, has
been described as the US Department of Defense’s “flagship survey for under-
standing the health, health-related behaviors, and well-being of service mem-
bers. . . the HRBS asks questions about health-related issues that can affect
force readiness or the ability to meet the demands of military life” (https://
www.rand.org/nsrd/projects/hrbs.html). The 2018 version of the survey was
administered to service members in the US Armed Forces of all ranks and pay
grades (excluding generals and admirals), components (including active duty,
reserve, and National Guard but excluding those currently deployed), and
branches. The sample was stratified by component, pay grade, branch, and
gender, and disproportionate sampling across strata was used to account for
response rates that were expected to vary across strata and increase counts in
less prevalent strata. In particular, strata involving Coast Guard and Marine
Corps, as well as women, were oversampled, whereas strata involving the Air
Force were sampled at smaller rates. The target population for the 2018 HRBS
included 2,170,000 service members, 400,000 of which were sampled, yield-
ing a total of 33,641 respondents (for a response rate of 8.4 percent). Survey
weights that account for sample design and nonresponse were developed. See
Meadows et al. (2020a, 2020b) for details.

Missingness in HRBS data occurs through two primary means: (1) drop out,
which occurs when an individual stops midway through and fails to return to
complete the survey, and (2) refusal, which occurs when an individual fails to
respond to a specific item on the survey but does respond to some subsequent
items. The bulk of the missingness in the 2018 HRBS (approximately 94 per-
cent) was due to drop out, which leads to a nearly (though not entirely) mono-
tonic missingness pattern. Missingness rates in the data range from less than
0.1 percent for items appearing early in the survey to seven percent for items
that occur later. Approximately 89 percent of cases are complete.

The survey data contain 265 items split across 14 separate modules, many
of which regard sensitive topics such as drug and alcohol use, sexual behavior,
and gambling addiction. Most of the items are binary (e.g., yes/no), and many
have sparse distributions (e.g., a very low prevalence of “yes” responses). Note
that several of the survey items are subject to skip logic in that they are only
asked of respondents who provide specific answers to other questions.
Specifically, the survey instrument contains both parent (e.g., Did you deploy
in the past year?) and child questions (e.g., For how long did you deploy?),
where child questions are asked only of those who provided certain response
to the parent questions. As such, HRBS mandates an imputation algorithm that
has the flexibility to select conditional dependence structures for each variable.
That is, there is no basis upon which a relationship between a parent question
and a child question can be estimated (since child questions are only observed
for individuals who provide a specific answer to the parent question).
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2.1 HRBS and Existing Imputation Algorithms

Although we provide further details in section 6, application of existing impu-
tation algorithms to HRBS data induces problems that are briefly overviewed
here. Procedures that apply joint modeling and are designed for general data,
such as jomo (Quartagno and Carpenter 2020), sbgcop (Hoff 2018), and
HCMM (Murray and Reiter 2016) crash and therefore fail to produce imputa-
tions, likely due to their inability to selectively model conditional relationships.
Similarly, mice (Van Buuren and Groothuis-Oudshoorn 2011), which utilizes
FCS, when applied in conjunction with random forests or regression trees also
fails to produce imputations. When mice is applied with logistic and poly-
tmous regression for binary and categorical variables, imputations are created
that are clearly erroneous. Furthermore, mice when applied with predictive
mean matching (PMM, Little 1988) produces imputations that diverge across
iterations of MCMC. An example of this divergence is illustrated via a trace
plot seen in figure 1 for a representative item.

It is clear that HRBS requires a new imputation algorithm that is general
and flexible enough to handle its complexities. The new procedure is outlined
in section 4, although relevant background for imputation procedures in gen-
eral is first provided in section 3.
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Figure 1. Trace Plot Across Iterations of MCMC of the Mean (in Percent) of
Imputations Created using mice with PMM for HRBS Variable Q40A: “In the
Past 12 Months, Have You Used Marijuana or Hasish?”
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3. AN IMPUTATION PRIMER

Relevant imputation methods are founded on the concept of data augmentation
(DA, Tanner and Wong 1987). DA is designed for cases where the desired
objective of sampling from a posterior distribution PðhjyÞ is difficult, but for
some latent variable z, sampling from Pðzjy; hÞ and Pðhjy; zÞ is simple, where
Pð�Þ is general notation for a probabilistic density. As such, DA involves itera-
tively sampling from Pðzjy; hÞ and Pðhjy; zÞ to yield valid draws from
Pðh; zjyÞ. In missing data models, it is common to let y represent the observed
data in the DA formulation, z represent the missing data, and h model parame-
ters. As such, imputation via DA involves iteratively alternating between an
imputation step (or I Step), which involves sampling updated imputations from
the density of the missing data given the observed data and the parameters
sampled from the previous iteration, and a parameter step (P Step) wherein one
samples parameters from the density of the parameters given the observed data
and the imputations sampled from the preceding I Step.

To illustrate the DA process with more formal notation, let vobs denote the
observed data and vmis denote the missing data, while v ¼ fvobs; vmisg gives
the complete data. Furthermore, H is a set of model parameters that govern the
distribution of v. The objective is to sample imputations from Pðvmisjvobs;HÞ.
Letting v

ðtÞ
mis and HðtÞ represent samples of vmis and H drawn at the tth iteration,

these are updated within the ðt þ 1Þth iteration via:

I Step: Draw v
ðtþ1Þ
mis from Pðvmisjvobs;H

ðtÞÞ.
P Step: Draw Hðtþ1Þ from PðHjvobs; v

ðtþ1Þ
mis Þ.

As t !1, convergence is observed in that fvðtÞmis;H
ðtÞg represents a random

draw from Pðvmis;HjvobsÞ. Validity of estimators derived from the imputed
data is contingent upon the missing at random assumption (in the nomenclature
of Little and Rubin 2020).

Gibbs sampling (Geman and Geman 1984) is used to update imputations
within the I Step. Letting v ¼ fX1; . . . ;Xpg, within the ðt þ 1Þth iteration, we
sequentially update XðtÞj for each j by replacing values that were originally
missing (in Xj) with draws from

P
�

XjjXðtþ1Þ
1 ; . . . ;Xðtþ1Þ

j�1 ;XðtÞjþ1; . . . ;XðtÞp ;H
ðtÞ
�
;

which serves to create Xðtþ1Þ
j . In the event that v follows a Gaussian distribu-

tion, multivariate normal theory can be used to form of each of the above con-
ditional models given a mean vector and covariance matrix extracted from
HðtÞ. However, joint modeling in this manner for more general data, which
may contain binary, unordered categorical, or ordinal variables, is more com-
plicated. Elaborating, one can construct a joint model via a sequence condi-
tional model using
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PðX1;X2; . . . ;XpjHÞ ¼
Yp

j¼1

PðXjjX1; . . . ;Xj�1; h
�
j Þ;

where H ¼ fh�1; . . . ; h�pg. Given the specific marginal structure of each Xj,
models for

PðXjjX1; . . . ;Xj�1Þ (1)

and h�j may be easily determined for j ¼ 1; . . . ; p, which yields a valid joint
density. Nonetheless, sampling from

PðXjjX1; . . . ;Xj�1;Xjþ1; . . . ;XpÞ (2)

for j ¼ 1; . . . ; p in a manner that is congenial with the resulting joint density,
as is required for Gibbs sampling, often presents an intractable (or computa-
tionally infeasible) problem for high-dimensional data of a general structure.

FCS circumvents the above problem by modeling each conditional expres-
sion of the form in (2) instead of addressing the joint distribution. As such, in
lieu of a P Step, FCS samples model parameters for each conditional model
within each phase of the Gibbs sampling. That is, for each j ¼ 1; . . . ; p, impu-
tations for Xj at the ðt þ 1Þth iteration are determined via

h
tþ1ð Þ

j � P hjjX tþ1ð Þ
1 ; . . . ;X tþ1ð Þ

j�1 ;X tð Þ
j ; . . . ;X tð Þ

p

� �
;

X tþ1ð Þ
j � P XjjX tþ1ð Þ

1 ; . . . ;X tþ1ð Þ
j�1 ;X tð Þ

jþ1; . . . ;X tð Þ
p ; h

tþ1ð Þ
j

� �
;

where hj indicates model parameters for the density seen in (2). Since the
sequence conditional expressions given by (2) may define an incoherent
joint distribution when modeled separately, there is no guarantee that fvðtÞmis;
HðtÞg will converge to Pðvmis;HjvobsÞ across iterations with FCS; in fact,
divergence is possible. Most references that discuss convergence in FCS
methods (e.g., White et al. 2011; Van Buuren 2018) recommend the use of a
small number of iterations of MCMC (usually as low as five, which is the
default in several algorithms), perhaps to hedge against the possibility of
divergence.

Researchers have noted performance issues with FCS when applied in
high-dimensional datasets (e.g., Loh et al. 2019); nonetheless, it has
observed prevalent usage when applied in a large-scale survey (e.g.,
Schenker et al. 2006).
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4. A JOINT IMPUTATION ALGORITHM FOR DATA OF
GENERAL STRUCTURES

Here, we introduce a novel imputation method which is designed to accom-
plish the following:

(1) Sample imputations from a coherent joint distribution;
(2) Have the flexibility to impute variables of a variety of structures (e.g., con-

tinuous, binary, unordered categorical, ordinal);
(3) Afford the user the ability to determine which conditional relationships are

permitted within the imputation model;
(4) Be computationally feasible and efficient in high-dimensional datasets.

In light of the above, the procedure is referred to as General Efficient
Regression-Based Imputation with Latent (GERBIL) processes from here out.

In the development of the GERBIL method, we revisit the data augmenta-
tion framework, but instead of assuming that the latent process z (as described
at the beginning of section 3) represents only the missing data whereas the
other process y is the observed data, we assume that there is a latent data sys-
tem that underpins all data values (observed or missing) and that the collected
data instead represent available knowledge regarding this system in that some
variables may be fully or partially observed.

4.1 Defining the Latent Process

As in section 3, let v ¼ fX1; . . . ;Xpg denote that collected data (which may
contain missing values). We assume that each variable in v has either a contin-
uous, categorical, binary, or ordinal distribution. Extensions involving semi-
continuous data and right-censored data are discussed in section 7. For
simplicity, we assume that binary variables take on value 0 or 1, and we
assume that if Xj is unordered categorical or ordinal with kj > 2 possible val-
ues, then Xj 2 f1; . . . ; kjg. We reformat the data so that if Xj is unordered cate-
gorical, it is represented by kj � 1 nested binary variables. However,
missingness is imposed in a nested binary variable for cases where the catego-
rical variable was observed to fall into a category antecedent to the one corre-
sponding to the that binary variable. To elaborate, a categorical variable Xj is
reformatted into variables X�j0 ; . . . ;X�j0þkj�2 for some index j0 as follows:

X�j0þ‘�1 ¼

?; if Xj < ‘ or Xj ¼ ?;

1; if Xj ¼ ‘;

0; if Xj > ‘;

8>><
>>: (3)

for 1 6 ‘ 6 kj � 1 where “?” indicates a missing value. All ?s in X�j0 ; . . . ;
X�j0þkj�2 are imputed. Let v� ¼ fX�1; . . . ;X�qg denote the (expanded)
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reformatted data, where q P p and where v� contains only continuous,
binary, and ordinal variables. Note that variables that are not unordered catego-
rical are copied over from v to v�. For an unordered categorical variable Xj, we
suggest ordering the categories from least to most prevalent when creating the
nested variables; this will minimize the number of missing values that are arti-
ficially imposed.

The formulation in (3) represents a nested version of the manner in which
semicontinuous (i.e., mixed discrete/continuous) data are frequently handled in
imputation algorithms (Robbins et al. 2013). Specifically, the categorical varia-
ble is first broken down into two variables: (1) a binary variable that indicates
whether or not the original variable falls into the first category and (2) a catego-
rical variable that is set as the value of the original variable but is missing
when the original variable falls into the first category. Next, this second (cate-
gorical) variable is dissected in a similar manner—this yields a second binary
variable that is unity when the original variable fell into the second category,
missing when it fell into the first, and zero otherwise, along with a third varia-
ble that is unordered categorical and contains missing values for cases where
the original categorical variable fell into one of the first two categories. This
process is repeated until all categories are embodied by nested binary variables.
The advantage of this process is that it allows the nested variables to be (condi-
tionally) independent of one another and is easily reversed following
imputation.

Borrowing from the idea of probit modeling, akin to how it has
been previously applied in imputation settings (Carpenter and Kenward
2012), we assume that a multivariate Gaussian distribution underpins v�.
Specifically, w ¼ fZ1; . . . ;Zqg indicates the underlying latent process. We
assume that w � Nqðl;RÞ for a mean vector l and variance matrix R. The
process of observed data v� is generated from the latent process w as
follows:

If X�j is continuous,

X�j ¼ F�1
j ðUðZjÞÞ; (4)

where Fjð�Þ is the marginal cumulative distribution function (CDF) of X�j , in

that FjðxÞ ¼ PrðXj 6 xÞ where PrðAÞ gives the probability of event A, and
where Uð�Þ denotes the CDF of a standard normal random variable. Of course,
prior to imputation, the observed data should be transformed to have a standard
normal distribution via the inverse transformation Zj ¼ U�1ðFjðX�j ÞÞ.
Transformations of this type may be performed with a parametric density (e.g.,
Robbins and White 2011; Robbins et al. 2013) or in a nonparametric manner
with a kernel or empirical distribution (Robbins 2014). This formulation serves
to link the continuous data via a Gaussian copula (Nelsen 2009).
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If X�j is binary, a probit-type model is imposed:

X�j ¼
0; if Zj < 0;

1; if Zj P 0:

(

Lastly, if X�j is ordinal where X�j 2 f1; 2; . . . ; kjg,

X�j ¼ i if sj;i�1 < Zj 6 sj;i;

for i 2 f1; . . . ; kjg, where sj;i ¼ U�1ðPrðX�j 6 iÞÞ for i 2 f1; . . . ; kj � 1g and
where we set sj;0 ¼ �1 and sj;kj ¼ 1.

Note that the latent multivariate normal process can be modeled condition-
ally upon a set of fully observed predictors; these variables can obey any distri-
bution and need not be underpinned by a normal density. For simplicity, we do
not condition on such variables here.

4.2 Imputation of the Latent Process

The P Step of GERBIL builds upon ideas presented in Robbins et al. (2013),
which addressed missingness in continuous variables. The objective of the P
Step is to determine values of the mean vector l and variance matrix R of the
latent multivariate Gaussian process (Robbins et al. 2013); however, these
quantities are modeled indirectly. Specifically, we build a joint model for w by
stating linear forms for conditional models seen in (1) in that Zj is allowed to
depend on variables that precede it in sequence but not those that antecede it.
That is, we assume

Zj ¼ Vjbj þ rjej; (5)

for j ¼ 1; . . . ; q, where Vj denotes an n� jj predictor matrix of which the col-
umns are some subset of the columns of f1; Z1; . . . ; Zj�1g, with 1 indicating
a vector of ones, and where bj denotes a length-jj vector of regression
coefficients—the flexibility to selectively reduce the size of the predictor set
for each conditional model is crucial in our setting as referenced previously.
Also, ej is mean-zero Gaussian noise, and rj is a positive scalar. This model
imposes that PðZjjZ1; . . . ;Zj�1Þ ¼ PðZjjVjÞ, in that the conditional distribu-
tion is independent of terms excluded from Vj. Note that the predictor matrix
Vj for a Zj that corresponds to a nested binary variable within an unordered cat-
egorical variable should exclude any other nested variables from that same cat-
egorical variable. Likewise, in accordance with the skip logic seen within
HRBS data, the predictor list for child questions should exclude the respective
parent question.
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Using a noninformative prior for H ¼ fb1; r1; . . . ; bq; rqg in that
PðHÞ /

Qq
j¼1 1=r2

j , the posterior distributions of bj and r2
j (given fully

observed w) are derived as follows. If X�j is binary, we fix r2
j ¼ 1, which is in

accordance with traditional probit modeling. Otherwise,

r2
j jw � Inv-v2ðn� jj; s

2
j Þ; (6)

where letting the superscript T indicate a matrix transpose, s2
j ¼ ðZj � Vjb̂jÞT

ðZj � Vjb̂jÞ=ðn� jjÞ with b̂j ¼ ðVT
j VjÞ�1VT

j Zj and with Inv-v2ð � ; � Þ denot-
ing an inverse chi-square distribution. Likewise,

bjjr2
j ;w � Njjðb̂j; r

2
j ðVT

j VjÞ�1Þ: (7)

Given imputed values of the latent process, wðtÞ ¼ fZðtÞ1 ; . . . ; ZðtÞq g at the tth

iteration, the P Step involves sampling b
ðtÞ
j and rðtÞj from Pðbj; rjjZðtÞ1 ; . . . ;

ZðtÞj�1Þ for j ¼ 1; . . . ; q in accordance with (6), when needed, and (7) above.
We next calculate lðtÞ and RðtÞ, the mean vector and covariance matrix of

the process w at the tth iteration, from the parameter set fbðtÞ1 ; r
ðtÞ
1 ; . . . ;

bðtÞq ; r
ðtÞ
q g; section A.1 of the supplementary data online provides illustration of

such calculations.
The I Step for the ðt þ 1Þth of GERBIL involves sampling wðtþ1Þ from

Pðwjv�obs; l
ðtÞ;RðtÞÞ, where v�obs includes the fully and partial observed informa-

tion regarding w from v�. Since v� is uniquely determined from w, we do not
need to recalculate v� at each iteration to align with the data augmentation

framework. First, we use lðtÞ and RðtÞ to find the parameters that define
PðZjjZ1; . . . ;Zj�1;Zjþ1; . . . ;ZpÞ for each j ¼ 1; . . . ; q, which is Gaussian since

w multivariate normal. We execute Gibbs sampling from this distribution. For
each j 2 f1; . . . ; qg, let

l tþ1ð Þ
jj� ¼ E ZjjZ tþ1ð Þ

1 ; . . . ;Z tþ1ð Þ
j�1 ;Z tð Þ

jþ1; . . . ;Z tð Þ
p ; l

tð Þ;R tð Þ
h i

;

r tþ1ð Þ
jj� ¼ Var ZjjZ tþ1ð Þ

1 ; . . . ;Z tþ1ð Þ
j�1 ;Z tð Þ

jþ1; . . . ;Z tð Þ
p ; l

tð Þ;R tð Þ
� �

:

Multivariate normal theory is used to determine lðtþ1Þ
jj� and rðtþ1Þ

jj� . Details are
provided in section A.1 of the supplementary data online.

If X�j is continuous:

• For cases where X�j is observed, set Zðtþ1Þ
j ¼ Zj;

• For cases where X�j is missing, sample Zðtþ1Þ
j from Nðlðtþ1Þ

jj� ; rðtþ1Þ
jj� Þ.
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Note that if X�j is binary or ordinal, only partial information is known regarding
Zj, even for cases where X�j is observed. This information is incorporated in
the sampling scheme for binary X�j as follows:

• For cases where X�j is missing, sample Zðtþ1Þ
j from Nðlðtþ1Þ

jj� ; rðtþ1Þ
jj� Þ;

• For cases with X�j ¼ 0, draw Zðtþ1Þ
j from trNðlðtþ1Þ

jj� ; rðtþ1Þ
jj� ;�1; 0Þ; and

• For cases with X�j ¼ 1, draw Zðtþ1Þ
j from trNðlðtþ1Þ

jj� ; rðtþ1Þ
jj� ; 0;1Þ.

In the above, trNðl; r2; a; bÞ is a truncated normal distribution with mean l,
variance r2, and bounds of a and b. That is, X � trNðl; r2; a; bÞ implies X �
ðZja < Z < bÞ with Z � Nðl; r2Þ. To find Zðtþ1Þ

j if X�j is ordinal with kj

categories:

• For cases where X�j is missing, sample Zðtþ1Þ
j from Nðlðtþ1Þ

jj� ; rðtþ1Þ
jj� Þ;

• For cases with X�j ¼ i where 1 6 i 6 kj, draw Xðtþ1Þ
j from

trNðlðtþ1Þ
jj� ; rðtþ1Þ

jj� ; sj;i�1; sj;iÞ.

Herein, we again set sj;0 ¼ �1 and sj;kj ¼ 1.
To initialize the MCMC procedure, we find that setting lð0Þjj� ¼ 0 and

rð0Þjj� ¼ 1 and sampling wð0Þ ¼ fZð0Þ1 ; . . . ; Zð0Þq g according to the rules above
performs sufficiently well. Of course, more rigorous options could be
implemented.

4.3 Derivation of Final Imputations

After a burn-in period of b iterations, the MCMC procedure is stopped, and

wðbÞ ¼ fZðbÞ1 ; . . . ;ZðbÞq g indicates the final imputed version of the latent data.

The final imputations for the (reformatted) recorded dataset are denoted

~v� ¼ f~X
�
1; . . . ; ~X

�
qg
0 and are derived from wðbÞ as follows.

If X�j is continuous, ~X
�
j ¼ F�1

j ðUðZ
ðbÞ
j ÞÞ; see Robbins et al. (2013) and

Robbins (2014) for specifics regarding transformation and untransformation of
marginal distributions. If X�j is binary,

~X
�
j ¼

0; if ZðbÞj < 0;

1; if ZðbÞj P 0;

8<
:

and if X�j is ordinal with kj categories,

~X
�
j ¼ i if sj;i�1 < ZðbÞj 6 sj;i:
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for i 2 f1; . . . ; kjg.
The nesting structure described in (3), in which case an unordered categori-

cal variable Xj � v from the original dataset has been represented by fX�j0 ; . . . ;
X�j0þkj�2g � v� for some j0 in the expanded dataset, is then reversed. This cre-
ates the final imputed dataset ~v ¼ f~X1; . . . ; ~Xpg, which is accomplished after
setting

~X j ¼

1; if X�j0 ¼ 1;

2; if X�j0þ1 ¼ 1 and X�j0 ¼ 0;

..

.

kj � 1; if X�j0þkj�2 ¼ 1 and X�i ¼ 0 for each i 2 fj0; . . . ; j0 þ kj � 3g;

kj; if X�i ¼ 0 for each i 2 fj0; . . . ; j0 þ kj � 2g;

8>>>>>>>>><
>>>>>>>>>:

for all categorical Xj and setting other variables contained in v equal to their
corresponding imputed version in ~v�.

To apply multiple imputation (Rubin 1987, 1996), the entire process illus-
trated above is repeated independently m times to procedure m separately
imputed datasets. Well known combining rules are used to pool the datasets
and adjust estimators for imputation error.

Note that the marginal transformations that are applied to continuous varia-
bles in (4) assume that FjðxÞ ¼ PrðXj 6 xÞ is known for each relevant j and
likewise that sj;i ¼ U�1fPrðX�j 6 iÞg is assumed known for each ordinal Xj.
In practice, these quantities are estimated which may induce bias into the trans-
formations in missingness mechanisms that are not missing completely at ran-
dom (borrowing the terminology of Little and Rubin 2020). However, earlier
studies involving continuous data (Robbins et al. 2013; Robbins 2014) find no
evidence of substantial bias stemming from transformations. Note also that the
copula framework applied to continuous variables requires that following the
marginal transformations, the transformed variables obey a multivariate normal
distribution (i.e., relationships between variables are linear). The aforemen-
tioned studies have also shown that in practice, bivariate relationships are often
more linear following such transformations than before.

The manner in which we handle categorical variables is, to our knowledge,
novel. Alternative approaches proposed by other authors do not impose miss-
ingness in nested variables (Allison 2002; Honaker et al. 2011; Carpenter and
Kenward 2012)—imputed values of the categorical variable are then set as the
category that observes the highest value among the imputed nested variables.
However, rigorous evaluations of this approach are scarce, as noted by
Carpenter and Kenward (2012). In contrast, our proposed approach performs
well in simulations (see section 5).

Joint Imputation of General Data 195



Note that sweep operator (Beaton 1964; Goodnight 1979) is used to dramat-
ically improve the computational efficiency of the GERBIL algorithm in both
the P Step and I Step. Further details on the use of this operation are provided
in section A.2 of the supplementary data online.

4.4 Advantages over Existing Methods

GERBIL applies joint modeling which avoids the theoretical issues encoun-
tered with FCS and guarantees that GERBIL imputations will converge across
iterations of MCMC. That is, the use of joint modeling gives GERBIL a strong
advantage over all implementations of FCS (e.g., mice, mi, IVEware) regard-
less of the conditional model used for imputation. Furthermore, strategic use of
the sweep operator in GERBIL ensures that it may be more computationally
efficient than existing FCS software. In addition, most current implementations
of imputation by joint modeling (e.g., Schafer 2017; Zhao and Schafer 2018)
do not facilitate general data structures.

The R package jomo (Carpenter and Kenward 2012; Quartagno and
Carpenter 2020), which uses a latent Gaussian process to underpin noncontinu-
ous variables, is perhaps most closely aligned with GERBIL in terms of utility,
but GERBIL has a number of operational advantages over jomo. Specifically,
jomo does not build the joint model from a sequence of conditional models as
seen in (5) but instead directly estimates the covariance matrix. Estimation of a
covariance matrix that is subject to restrictions (e.g., the diagonal elements that
correspond to binary variables must be set to 1) is difficult in practice as the
result may not be positive semidefinite. jomo addresses this issue by using a
guess-and-check Metropolis-Hastings algorithm, and further applies a guess-
and-check method in lieu of sampling from a truncated normal distribution.
These issues lead to infeasibility of the algorithm when applied to high-
dimensional, complex data such as the HRBS data studied in section 6. Lastly,
jomo does not let its user specify dependencies (which is crucial for HRBS
and similar data)—collinearities in the data may render estimation of the cova-
riance matrix infeasible.

The GERBIL procedure provides a more natural method by which cova-
riance matrices of the latent process can be estimated. By setting the condi-
tional error variance of the models for binary variables to be one (instead of
attempting to restrict diagonal elements of a covariance matrix to be one), we
ensure that the resulting covariance matrix will be positive semidefinite and
can be estimated using appropriate Bayesian techniques. Furthermore, varia-
bles can be dropped from specific conditional models in (5) while maintaining
a positive semidefinite covariance matrix, enabling the user to avoid multicolli-
nearities and impose desired conditional dependence structures.

Hoff (2018) introduces a rank-based approach to estimating parameters of a
copula model that underpins general data. This method may be easily extended
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to impute missing data and is implemented for such purpose in the R package
sbgcop (Hoff 2018). This approach is theoretically similar to that of jomo
and as such contains some of the same drawbacks (e.g., lack of flexibility
regarding which dependencies are enabled, which may lead to its use being
infeasible in high-dimensional data from complex surveys such as HRBS).
Unlike jomo, however, sbgcop circumvents the need to restrict variances
that correspond to binary variables to unity through sampling latent data via a
correlation matrix (although covariances are indeed estimated through the
Gibbs sampling process). Additionally, sbgcop does not directly enable the
imputation of unordered categorical variables. Murray and Reiter (2016) intro-
duce a joint modeling procedure for mixed data based on Dirichlet process
mixtures (this method is implemented within the R package
MixedDataImpute), and the R packages mdmb (Grund et al. 2021) and
JointAI (Erler et al. 2021) develop imputations via a joint model for general
data under the guise of a specific analysis model of interest. However, these
procedures have the same practical drawbacks as jomo and sbgcop and lack
computational feasibility in data of high dimensions. Procedures based upon
deep learning have been developed (Gondara and Wang 2018; Yoon et al.
2018), but these have been shown to underperform in comparison to FCS
methods (Wang et al. 2022).

5. SIMULATIONS

In this section, we perform a simulation study to evaluate the effectiveness of
GERBIL and compare its performance to that of several existing procedures. It
is not computationally feasible to perform simulations with data that mimic
HRBS due to the dimensionality and complexity of those data. We instead per-
form simulations using smaller synthetic datasets in hopes of showing
GERBIL performs comparably to existing procedures that fail when applied to
HRBS. The synthetic data are not designed to favor any particular method(s)
but are instead designed to be general and applicable for all methods. Since the
performance of an imputation algorithm is dependent upon compatibility
between the model used for imputation and those used for analysis (e.g.,
Robbins and White 2014; Grund et al. 2021), we will consider a wide variety
of models for analysis (including those which are more complicated than mod-
els used for the analysis of HRBS data) in order the more fully assess the capa-
bilities of the GERBIL algorithm.

First, we generate a dataset that contains six variables with differing mar-
ginal structures, loosely outlined as follows:

• X1—Unordered categorical;
• X2—Continuous (fully observed);
• X3—Continuous;
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• X4—Binary (generated from a probit-type model);
• X5—Ordinal (generated from a probit-type model); and
• X6—Binary (generated from a logistic model).

Elaborating, X1 is generated from a multinomial distribution with 4 categories.
A latent process that underpins X2 . . . ; . . . X5 is generated from a multivariate
normal distribution with while conditioning on X1. Further, X6 is generated
from a logistic model conditional on X1 . . . ; . . . X5. Nonnegligible associations
exist between all variables. We generate n¼ 2, 000 observations of each
variable.

Missingness is stochastically imposed in the synthetic data using the follow-
ing three mechanisms. In each case, around a third of the observations are
missing (excluding X2).

(1) MCAR: Missingness probabilities are independent of any other data
characteristics.

(2) MAR: Missingness probabilities depend upon only the fully observed vari-
able X2.

(3) NMAR: Missingness probabilities in variable Xj depend upon only Xj for
j 2 f1; 3; . . . ; 6g.

These mechanisms are designed in line with the nomenclature of Little and
Rubin (2020). Further details on the data generating and missingness mecha-
nisms are provided in section A.5 of the supplementary data online. Note that
missingness rates in each variable (with the exception of X2) are approximately
33 percent under each mechanism.

Next, the missing values are imputed using six distinct methods, three of
which utilize FCS, whereas the others implement joint modeling. Specifically,
comparisons to FCS are performed using the implementation available in the R
package mice (Van Buuren and Groothuis-Oudshoorn 2011). Within mice,
one can assign different methods of imputation to each variable, with Gaussian
imputation available for continuous variables, logistic regression for binary
variables, and polytomous regression for categorical variables. mice also
implements predictive mean matching (PMM, Little 1988), which uses a near-
est neighbor-type approach based on a predictive model and is often applied to
handle continuous variables that may have non-Gaussian marginal distribu-
tions, as well as classification tress and random forests. These techniques can
also be applied to binary, unordered categorical, and ordinal variables within
mice. We also compare against the R packages jomo and sbgcop, both of
which employ joint modeling (as described in section 4.4). In summary, the
various methods used for imputation in the simulations are:

(1) sbgcop: The sbgcop package is used for imputation (1.1 seconds per 100
iterations). The categorical variable is handled in accordance with (3).
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(2) jomo: The jomo package is used for imputation (2 seconds per 100 itera-
tions when applied within this simulation setting).

(3) HCMM: The hierarchically coupled mixture model procedure from the R
package MixedDataImpute is used for imputation (4.1 seconds per
100 iterations).

(4) Logistic: mice is used with logistic regression for binary variables, polyt-
omous regression for categorical variables, ordered logistic regression for
ordinal variables, and Gaussian imputation for continuous variables (20
seconds per 100 iterations).

(5) PMM: mice is used with PMM for all variables (3 seconds per 100
iterations).

(6) CART: mice with imputation by classification trees is performed for all
variables (1 minute per 100 iterations).

(7) GERBIL: General Efficient Regression-Based Imputation with Latent
processes as proposed in section 4 (3.8 seconds per 100 iterations). An
empirical distribution transformation (Robbins 2014) is applied to continu-
ous variables.

We also considered mice with random forests (eight minutes per 100 itera-
tions), but due to its computational burden, it was excluded from the larger
simulation study. Abbreviated simulations show it does not perform as well as
the other mice methods. The computing times listed are performed on a
Windows machine with a 2.8 GHz processor and 32.0 GB of RAM. Due to its
use of the SWEEP operator, GERBIL will improve in computational efficiency
in comparison to the mice methods as the dimensionality of the data
increases. Comparisons to JointAI (1.5 minutes per 100 iterations) may also
be informative (in particular, if a single analysis model is of interest) but are
excluded here for brevity—however, in simulations not shown, JointAI per-
forms comparably to the other existing joint modeling procedures.

We use 15 iterations of MCMC for the mice methods, 60 iterations for
GERBIL, jomo, and HCMM, and 120 iterations for sbgcop; more iterations
of the non-mice methods are used because of their relative computational effi-
ciency and because mice is shown to converge somewhat quicker in the set-
ting of these simulations. All possible inter-variable dependencies are enabled
for the mice methods and GERBIL. To adjust for imputation error, we use
multiple imputation (Rubin 1987, 1996) with m¼ 40 independently imputed
datasets for each method. This selection of m is in line with the recommenda-
tions of Graham et al. (2007).

We use N¼ 5,000 replications for this simulation study—that is, the above
process of simulating and imputing data is repeated independently 5,000 times.
The following parameters are tracked in each replication for each method:

• Means and the variance-covariance matrix of the dataset fX1;1; . . . ;X1;4;X2;
. . . ;X6g where the X1;k for k 2 f1; . . . ; 4g are categorical indicators
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underpinning X1 (although the mean and variance of X2 are excluded). There
are 8 mean parameters calculated with 8 variances and 36 covariances.

• Estimated regression coefficients, and standard errors of those coefficients,
for all fully specified conditional models of the form PðXjjX1 . . . ;Xj�1;

Xjþ1;X6Þ for j 2 f1; . . . ; 6g. For continuous and ordinal variables, we fit a
basic linear model. For binary variables, we fit a logistic regression, and for
the categorical variable, we fit a multinomial log-linear model via the nnet
package in R (Venables and Ripley 2002). There are 58 regression parame-
ters tabulated with 58 standard errors on those parameters.

We calculate root mean square error (rMSE) for all parameters and coverage
rates for a subset of parameters.

We let ĥ
½r	ðxÞ denote the value of a parameter h estimated at the rth replica-

tion for imputation method x (ĥ
½r	ðxÞ is calculated as the average of separate

estimates of h produced for each of the multiply imputed datasets). For method
x, we calculate the rMSE in the estimate of h as follows:

rMSEhðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

r¼1

½ĥ½r	ðxÞ � h	2
vuut :

The rMSE is calculated for all parameters listed above.
We compare the rMSE of GERBIL to the rMSE of each of the competing

methods. Table 1 shows the portion of the 168 parameters for which GERBIL
yields the better (i.e., smaller) rMSE for each method under each missingness
mechanism. We see that in all cases, GERBIL performs better for a majority of
the parameters. The exact rMSE seen for each of the six methods under all
missingness mechanisms is reported in the tables seen in section A.7 of the
supplementary data online.

We next consider the accuracy of the interval estimates produced using multi-
ple imputation for each of the methods. That is, if h is the mean of a variable or a
regression coefficient, we use Rubin’s combining rules (Rubin 1987) across the

multiply imputed datasets to approximate the variance of ĥ
½r	ðxÞ, which we denote

T ½r	ðxÞ at the rth replication. Then, for these parameters, we calculate the coverage

of a ð1� aÞ percent confidence interval around h as N�1PN
r¼1 C½r	h ðxÞ where

C½r	h ðxÞ ¼
1; if h 2 fĥ½r	ðxÞ6t1�a=2;d½r	

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T ½r	ðxÞ

p
g;

0; otherwise;

8<
:

and where ta;n is the 100ath percentile of a t distribution with n degrees of free-
dom (where the degrees of freedom at the rth replication, d½r	, are calculated
from the within- and between-imputation variances).
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Box plots across the 66 parameters for which the coverage rates were calcu-
lated are shown in figure 2 for each method and missingness mechanism. The
estimated rates approximate the coverage of a 95 percent confidence interval
for the parameters. NMAR results are excluded from the figure since all meth-
ods provide poor coverage under NMAR missingness and those results do not
further inform the comparative performance of the methods.

Figure 2 shows that GERBIL systematically provides estimated coverage
that is close to 95 percent. The HCMM, Logistic, and PMM methods perform
reasonably well; however, the other methods fail to yield reliable coverage.
Exact rates of coverage are reported in tables provided in section A.7 of the
supplementary data online.

In summary, GERBIL met our aspiration of performing no worse than the
procedures the existing procedures within our simulation study. In fact,
GERBIL was shown to outperform those methods in several regards.

6. IMPUTATION OF HRBS DATA

This section details imputation of HRBS data, including imputations created
with GERBIL and comparisons to imputations created using existing methods
when feasible.

The skip logic structure to HRBS data, as discussed in section 2, is
addressed as follows for imputation. Regardless of the imputation method
used, all child questions are imputed for all cases, including cases for which
the respective question was legitimately skipped. A postimputation editing
process determined which imputed values should be overwritten as legitimate
skips (as is needed for cases in which the parent question was missing). That
is, if a respondent had an imputed value on a parent question that indicated no
deployment in the prior year, a nonzero imputed value of the child question of
how long the deployment lasted was retained and “cleaned” later so that the
parent–child questions were consistent. In contrast, if the imputed value of the
parent question indicated that the respondent did not deploy, the child question
was marked as a skip.

Table 1. The Portion of the 168 Parameters for Which the rMSE for the
Respective Method in the Respective Missingness Mechanism Is Greater Than
the rMSE Yielded by GERBIL

sbgcop jomo HCMM Logistic PMM CART

MCAR 0.643 0.613 0.601 0.595 0.601 0.738
MAR 0.690 0.661 0.649 0.589 0.655 0.762
NMAR 0.589 0.595 0.625 0.619 0.619 0.708
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When using a method that builds conditional models (and thereby has the
flexibility to select predictors for those models), including GERBIL and mice,
the imputation model for a child question is not allowed to include a parent
question (and vice versa) to avoid collinearity issues. Similarly, each condi-
tional model is reduced as needed for sparsely distributed variables so that the
number of predictors is never greater than the number of affirmative observed
responses.

As noted in section 2, the jomo, sbgcop, and HCMM algorithms were
unable to produce imputations across the full HRBS dataset. This is likely a
consequence of those methods being unable to allow its user to specify
dependence structures; that is, they cannot account for collinearity issues cre-
ated when estimating covariances between parent and child questions.
Furthermore, there are concerns about the computational efficiency of those
methods when applied to data of the dimensionality of HRBS. We also applied
mice to HRBS data with several different approaches for estimating the con-
ditional models. Note that we were unable to produce imputations of HRBS
data using mice with imputation by classification and regression trees, linear
discriminant analysis, and random forests—this is likely a consequence of
computational issues induced by the dimensionality and/or sparsity of the data.

In all, we were able to generate imputations for the full HRBS dataset using
three methods: logistic (mice with logistic and polytomous regression for
binary and categorical variables and PMM for continuous variables), PMM
(mice with PMM for all variables), and GERBIL. All methods implement
conditional models that align with the requirements noted above; the mice
methods do so with expressions in the form of (2), whereas GERBIL builds
models based on (1). For all methods, the variables are indexed in the order in
which they appear on the survey. In accordance with existing literature (e.g.,
Schenker et al. 2006), survey weights are included as a covariate in the imputa-
tion model. After adding binary indicators for parent questions and including

sbgcop jomo HCMM Logistic PMM CART GERBIL sbgcop jomo HCMM Logistic PMM CART GERBIL
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Figure 2. Boxplots of the Simulated Coverage Rates for the 95 Percent
Confidence Intervals of 66 Separate Parameters under Various Methods and
Missingness Mechanisms.
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14 fully observed supplementary (i.e., nonsurvey) variables, the imputation
model contains 284 variables, of which 27 are modeled as continuous, 186 as
binary, 52 as ordinal, and 19 as unordered categorical. Consequentially, the
expanded dataset used to model the latent process has 346 variables.

GERBIL is more computationally efficient when applied to HRBS data than
mice. When run on a Windows machine with a 2.8-GHz processor and 32.0
GB of RAM, one iteration of GERBIL takes two minutes with HRBS data,
whereas one iteration of mice with logistic regression takes one hour.
Although recent versions of mice have improved the computational efficiency
of PMM, GERBIL is also approximately five times faster than mice with
PMM when applied to HRBS data. As such, we ran no more than 250 itera-
tions for both of the mice methods—this proved sufficient for illustrating
issues with the performance of mice. Furthermore, we ran GERBIL with up
to 5,000 iterations. Due to the computational intensity of all procedures, most
of our diagnostics involve one imputed dataset; that is, we do not consider mul-
tiple imputation, although multiple chains are involved in the calculation of
convergence diagnostics for GERBIL presented shortly.

To assess the quality of the imputations, we use a variety of metrics, begin-
ning with marginal diagnostics. Let l̂obs;j denote the mean of observed values
of variable j and l̂imp;j denote the mean of the imputed values of variable j. For
each variable and for a variety of imputation methods, we calculate

dj ¼
jl̂mis;j � l̂obs;jj

l̂obs;j
: (8)

Box plots of the values of logðdj þ 1Þ across all variables for each imputation
method and for varying burn-in periods are shown in figure 3. The log transfor-
mation is used to reduce the effect of extreme values of dj on the visualization.

Although dj is an imperfect measure (l̂mis;j may be rightfully different from
l̂obs;j), the figure indicates issues with both versions of imputations created
using mice. Specifically, when mice with logistic modeling is applied, the
means of the imputed values clearly diverge from their respective means found
using only observed data and should thus be considered erroneous. Sparse
binary variables are most problematic in this regard. In that vein, issues with
logistic regression in sparse data have been identified previously (Devika et al.
2016). For instance, the “one in ten rule” (Harrell et al. 1996; Peduzzi et al.
1996) is clearly violated in this application, as are relaxations of it (e.g.,
Vittinghoff and McCulloch 2007). In fact, imputation literature suggests the
use of PMM in place of logistic regression in sparse data (Van Buuren 2018).
However, issues are observed when PMM is used as well. Specifically, some
degree of divergence is present. GERBIL, however, offers stable performance
when up to 5,000 iterations are considered.

To further investigate convergence issues and to diagnose whether PMM
imputations are erroneous, we focus on four representative binary variables:
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(1) Q22B—“In the past 12 months. . . I rode in a car or other vehicle driven by
someone who had too much to drink” (0.56 percent of cases are imputed;
of observed cases, 3.1 percent respond “yes”).

(2) Q40A—“In the past 12 months, have you used marijuana or hashish?”
(1.6 percent of cases are imputed; of observed cases, 0.76 percent respond
“yes”).

(3) Q43B—“In the past 12 months have you used. . . prescription sedatives,
tranquilizers, muscle relaxers, or barbiturates?” (1.7 percent of cases are
imputed; of observed cases, 6.9 percent respond “yes”).

(4) Q97—“In the past 12 months, have you ever had to lie to people important
to you about how much you gambled?” (6.4 percent of cases are imputed;
of observed cases, 0.45 percent respond “yes”).

Trace plots of the mean of mice with PMM and GERBIL imputations for
these variables across the first 250 iterations of MCMC are shown in figure 4.
The logistic method is omitted from the figure as those imputations are clearly
erroneous and diverge quickly. Furthermore, the figure shows evidence of
divergence across iterations of PMM. Discrepancies between the observed and
imputed marginal distributions are not evidence in themselves that imputations
are erroneous, and it remains possible that convergence will occur with more
iterations. However, the values reported in the figure enter the realm of implau-
sibility. For instance, with Q97 after 250 iterations of PMM, we see that
imputed values constitute 6.4 percent of the total cases but contribute 48.0 per-
cent of the “yes” responses (130 imputed yeses versus 141 observed yeses).

In contrast, GERBIL imputations appear to be stable across iterations of
MCMC. The mean of the GERBIL imputations slightly exceeds that of the
observed data; however, this is reasonable given that the items in question
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Figure 3. Box Plots of logðdj þ 1Þfrom (8) across All Variables for Various
Imputation Method and Burn-In Periods (Iterations). The logistic and PMM
methods use mice.
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pertain to sensitive topics and therefore those that would answer “yes” may be
more likely to refuse or drop out. To diagnose whether convergence has
occurred for GERBIL imputations, we calculate the R̂ statistic of Gelman and
Rubin (1992). This statistic is calculated across ten independently generated
chains of imputed data with 250 iterations of MCMC each; in line with the
guidance of Gelman and Rubin (1992), calculations involve only the latter half
of iterations. The values of the R̂ are 1.020, 1.005, 1.010, and 1.018 for the
four variables described above. Most imputations procedures consider
R̂ < 1:1 to be indicative of convergence (Su et al. 2011; Gelman et al. 2013).
The R̂ statistic was not calculated for mice due to its computational burden.

We have indications that the observed divergence of the PMM procedure is
not a consequence of the sparsity of the data but is instead related to FCS sam-
pling from an incoherent joint distribution. To elaborate, we ran the PMM
algorithm while enabling dependencies within the conditional models that are
in line with the sequential structure seen in (1) as opposed to the fully condi-
tional models of (2). Results (omitted for brevity) indicate that divergence is
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Figure 4. Trace Plots across Iterations of MCMC of the Mean (in Percent) of
Imputations Created with Two Methods for Four Binary HRBS Variables.

Joint Imputation of General Data 205



no longer observed in this case. See Meadows et al. (2020a, 2020b) for further
details.

Multivariate properties of the HRBS imputations as found using the various
methods are shown in section A.3 of the supplementary data online. Therein,
further issues with the mice imputations are illustrated, and the GERBIL impu-
tations are shown to be of high quality. We also consider posterior predictive
p-values (He et al. 2010; Burgette and Reiter 2010) as a diagnostic tool.
Results for these evaluations are shown in section A.4 of the supplementary
data online.

7. DISCUSSION

To summarize, HRBS data were shown to present a unique and significant
challenge for imputation algorithms. However, the proposed GERBIL method
was demonstrated to be able to accomplish what existing methods could not: it
created high-quality imputations of the HRBS data, and as such, this important
dataset can be analyzed without fear of the imputations biasing the findings.

GERBIL is able to accomplish what was previously infeasible by satisfying
the objectives stated at the beginning of section 4. Specifically, imputations are
sampled from a coherent joint distribution in that the data augmentation frame-
work of Tanner and Wong (1987) is obeyed, thereby ensuring MCMC conver-
gence. Unlike existing procedures that accomplish that objective, GERBIL is
also easily applied in large datasets. To elaborate, existing general imputation
procedures (e.g., Van Buuren and Groothuis-Oudshoorn 2011; Su et al. 2011;
Quartagno and Carpenter 2020) are usually computationally onerous or simply
inoperable when applied to high-dimensional data. However, the proposed
GERBIL method was upward of 30 times faster than mice when applied in
the HRBS data example provided here, and jomo procedure was not able to
process HRBS data. The need for efficient imputation algorithms with high-
dimensional data is amplified by the fact that big data are becoming increas-
ingly prevalent and that studies have shown the need for exhaustive variable
selection when building imputation models (Robbins and White 2014).

Multilevel modeling is an important tool that has been well-studied within
the imputation framework. Approaches for FCS are found within the mice
package. Furthermore, approaches for multilevel models with continuous data
have been developed (Schafer and Yucel 2002; Yucel 2008; Goldstein et al.
2009) and extended for use with mixed data within the jomo and JointAI
(Erler et al. 2021) packages, for example. Since a latent multivariate normal
model underpins both the machinery used by both GERBIL and jomo, the
methodology used to apply jomo with multilevel models could be extended
for use within the GERBIL procedure.

Several authors have pointed out that bias can result in estimators involving
complex survey weights when multiple imputation is used (e.g., Kott 1995;
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Kim et al. 2006). Several authors have studied this issue, with Seaman et al.
(2012) and others suggesting that for best results, one should use the weights,
all covariates used to produce the weights and for final analysis, and their inter-
actions should be used in the imputation model. Quartagno et al. (2020) extend
these concepts by stratifying the data on the basis of the weight and use multi-
level modeling for imputation which, as noted above, could be incorporated
within GERBIL. For large datasets with missingness scattered throughout all
or most variables (such as the HRBS), it is impractical to include all possible
interactions within imputation models.

Note there is potential that (when one is selective with regard to the predic-
tors used within the conditional models) the ordering of the variables may
affect the imputations with GERBIL. As the variable ordering used in our data
example was natural due to the nearly monotonic nature of the missingness,
we did not explore this issue here and leave it for further work.

Additional points of discussion are seen in section A.6 of the supplemental
material online.

Supplementary Materials

Supplementary materials are available online at academic.oup.com/jssam.
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