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Derivation and validation of novel 
integrated inpatient mortality 
prediction score for COVID‑19 
(IMPACT) using clinical, laboratory, 
and AI—processed radiological 
parameter upon admission: 
a multicentre study
Eric Daniel Tenda 1,2*, Joshua Henrina 1, Andry Setiadharma 1, Dahliana Jessica Aristy 1, 
Pradana Zaky Romadhon 3, Harik Firman Thahadian 4, Bagus Aulia Mahdi 5, 
Imam Manggalya Adhikara 6, Erika Marfiani 7, Satriyo Dwi Suryantoro 8, 
Reyhan Eddy Yunus 2,9 & Prasandhya Astagiri Yusuf 2,10

Limited studies explore the use of AI for COVID-19 prognostication. This study investigates the 
relationship between AI-aided radiographic parameters, clinical and laboratory data, and mortality 
in hospitalized COVID-19 patients. We conducted a multicentre retrospective study. The derivation 
and validation cohort comprised of 512 and 137 confirmed COVID-19 patients, respectively. Variable 
selection for constructing an in-hospital mortality scoring model was performed using the least 
absolute shrinkage and selection operator, followed by logistic regression. The accuracy of the scoring 
model was assessed using the area under the receiver operating characteristic curve. The final model 
included eight variables: anosmia (OR: 0.280; 95%CI 0.095–0.826), dyspnoea (OR: 1.684; 95%CI 
1.049–2.705), loss of consciousness (OR: 4.593; 95%CI 1.702–12.396), mean arterial pressure (OR: 
0.928; 95%CI 0.900–0.957), peripheral oxygen saturation (OR: 0.981; 95%CI 0.967–0.996), neutrophil 
% (OR: 1.034; 95%CI 1.013–1.055), serum urea (OR: 1.018; 95%CI 1.010–1.026), affected lung area 
score (OR: 1.026; 95%CI 1.014–1.038). The Integrated Inpatient Mortality Prediction Score for 
COVID-19 (IMPACT) demonstrated a predictive value of 0.815 (95% CI 0.774–0.856) in the derivation 
cohort. Internal validation resulted in an AUROC of 0.770 (95% CI 0.661–0.879). Our study provides 
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valuable evidence of the real-world application of AI in clinical settings. However, it is imperative to 
conduct prospective validation of our findings, preferably utilizing a control group and extending the 
application to broader populations.

Abbreviations
AI	� Artificial intelligence
ALA	� Affected lung area
AUROC	� Area under the receiver operating curve
CXR	� Chest X-ray
CT-SS	� Computed tomography severity score
IMPACT​	� Integrated inpatient mortality prediction score for COVID-19
LASSO	� Least absolute shrinkage and selection operator
LOC	� Loss of consciousness
MAP	� Mean arterial pressure
MICE	� Multiple imputation by chained equations
NETs	� Neutrophil extracellular traps
PACS	� Picture archiving and communication system
RT-PCR	� Real-time reverse-transcription polymerase-chain-reaction
SPSS	� Statistical program for social science
SpO2	� Peripheral oxygen saturation

More than 3 years since the first Coronavirus disease 2019 (COVID-19) appeared in Wuhan, China, and started 
a once-in-a-century pandemic1. While advancement in the treatment and prevention of severe COVID-19 dis-
ease has progressed rapidly, this respiratory viral disease remains an important source of worldwide morbidity 
and mortality2. A new wave of cases is still being reported due to viral mutation, partly due to antivirals and less 
efficacious vaccines, which selectively produce more resistant strains. Learning from the constraints caused by 
the COVID-19 waves, a clinical decision tool is essential for managing outbreaks of COVID-19 cases to help in 
triaging patients and thus preventing scarcity of hospital beds and medical resources3.

Numerous clinical decision tools have been created and published for the purpose mentioned above, such 
as the COVID-GRAM and the 4C Mortality score4,5. To the best of our knowledge, the clinical decision tools 
available today utilize clinical parameters and laboratory data only. It is understandable because these tools must 
be simple and practical and have adequate accuracy to be used clinically. Understandably, there are no clinical 
decision tools that incorporate radiographic AI parameter of COVID-19 patients.

The role of artificial intelligence (AI) in the medical field has expanded rapidly. Mainly, this role is limited 
to the purpose of screening and diagnosis. For example, in the field of pulmonology, AI-aided radiographic 
interpretation of chest X-ray (CXR) images proved to be sensitive and accurate for pulmonary tuberculosis 
screening6. The role of AI in COVID-19 diagnosis has also been reported. In one study, CAD4COVID-Xray (an 
AI software), through the color heatmap method, had a superior COVID-19 pneumonia diagnosis compared to 
six radiologists7,8. In contrast, the evidence on incorporating AI-aided radiographic interpretation of CXR for 
predicting clinical outcomes is scarce.

This study aimed to investigate the relationship between AI-aided radiographic parameter, clinical and labora-
tory data, and clinical outcomes in hospitalized COVID-19 patients with confirmed RT-PCR results. Additionally, 
we aimed to develop and validate a clinical risk tool known as Integrated Inpatient Mortality Prediction Score 
for COVID-19 (IMPACT) by integrating these data.

Methods
Study design
This was a retrospective cohort study using a secondary data from medical records and Picture Archiving and 
Communication System (PACS) chest radiography repositories. This study was conducted at three academic 
hospital, i.e., Airlangga University Hospital, located in Surabaya, East Java Province, Sardjito General Hospital, 
located in Jogjakarta, Special Region of Jogjakarta Province, and in dr. Cipto Mangunkusumo General Hospi-
tal, located in Centre Jakarta, Special Capital Region of Jakarta. The ethics committee of the respective hospi-
tals approved the study. The requirement for written informed consent was exempted due to the utilization of 
anonymized historical data. (University of Gadjah Mada, University of Airlangga, and University of Indonesia 
IRB). All methods were performed in accordance with the relevant guidelines and regulations and adhered to 
Declaration of Helsinki.

Data obtained from the first two hospitals was used for the derivation of the novel scoring system. Data 
obtained from the latter hospital was used for the validation of the novel scoring system.

This study enrolled a cohort of adult patients (≥ 18 years old) hospitalized with COVID-19 cases between 
April 2020 and April 2022 for the derivation cohort. The validation cohort, however, included only hospitalized 
COVID-19 cases from April 2020 to April 2021. The reasons for this approach are twofold. Firstly, we utilized 
data from a separate study to constitute the validation cohort. Secondly, due to the expiration of our software 
permit, we were unable to access the CXR software required for additional analysis. As a result, we relied solely 
on the available data for analysis.

The decision to utilize chest X-ray rather than more advanced imaging modalities is driven by two primary 
considerations. First and foremost is Indonesia’s classification as a low to middle-income country (LMIC). The 
accessibility of chest CT-scans is constrained, predominantly concentrated in major cities, reflecting the uneven 
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distribution of healthcare infrastructure. Furthermore, adhering to WHO guidelines, chest radiography provides 
higher specificity and can be performed using portable equipment at the point of care. This not only tackles the 
issue of restricted access but also mitigates the risk of cross-infection linked to patient transport9,10.

COVID-19 cases were verified using either positive high-throughput sequencing or real-time reverse-tran-
scription polymerase-chain-reaction (RT-PCR) tests conducted on nasal and pharyngeal swab samples.

This study excluded cases with substandard chest radiography qualities, large lung cavities on CXR, con-
current mediastinal or lung mass, and an interval between RT-PCR and CXR acquisition of more than 7 days.

Included in the data collection including the patients’ demographic data, vaccination data, comorbidities, 
clinical and laboratory data in the emergency department, treatment, and discharge outcome. COVID-19 disease 
severity was determined on hospital admission and was stratified according to the local Indonesian Guideline, 
which adopted the WHO COVID-19 disease severity stratification11.

A group of internal medicine physicians carefully examined, summarized, and verified the data. Two clini-
cians independently reviewed each record.

Potential predictive variables
We included the following variables: gender, vaccination status, smoking history, and comorbidities (autoim-
munity, obesity, arterial hypertension, diabetes mellitus, asthma, coronary heart disease, cerebrovascular disease, 
chronic obstructive pulmonary disease, pulmonary tuberculosis, chronic kidney disease, chronic liver disease, 
brain disease, immunodeficiency disease, and cancer), as well as symptoms (fever, cough, sore throat, rhinorrhea, 
anosmia, myalgia, headache, malaise, anorexia, diarrhea, nausea, vomiting, abdominal pain, dyspnoea, chest 
pain, loss of consciousness), CXR data (CXR projection, pneumonia on CXR, CXR AI probability score, CXR AI 
affected lung area [ALA] score), sepsis, septic shock, ARDS, co-infection, clinical data (systolic blood pressure, 
diastolic blood pressure, pulse rate, temperature, respiratory rate, peripheral oxygen saturation, and symptom 
onset), and laboratory data (haemoglobin, potassium, sodium, white blood cells, lymphocytes, neutrophil levels, 
thrombocyte count, neutrophil-to-lymphocyte ratio, and urea levels).

Outcomes
The primary outcome of this study was in-hospital mortality. The secondary outcome of this study was disease 
progression defined as at least one degree increment of disease severity (e.g., disease progression from moderate 
to severe disease).

AI system for chest X‑ray interpretation
CAD4COVID-Xray software (Thirona, Nijmegen, Netherlands; https://​covid.​cad4tb.​care/​accou​nts/​login/?​
next=/; based on CAD4TB ver. 6) was used for AI chest X-ray interpretation. The principal objective of the 
CAD4COVID-Xray software is to facilitate the triaging process in environments with limited resources and 
in areas with a high prevalence of COVID-19. This product holds a CE certification and employs the identical 
technical core utilized by CAD4TB, another CE-certified product registered by the FDA in Ghana. Consequently, 
CAD4COVID-Xray is developed to the same high-quality standard as CAD4TB, a standard substantiated by 
validation through over 40 academic publications. CAD4TB has been successfully deployed in 35 countries, 
playing a pivotal role in screening six million people globally12. Hence, its reliability, pertinence, and applicability 
have undergone rigorous validation, affirming that CAD4COVID-Xray is not only a dependable solution but 
also possesses relevance and generalizability across diverse healthcare scenarios.

The AI software relies on color heat-map method to detect parenchymal abnormality on chest X-rays (Fig. 1).
The software executed a series of steps outlined below:

Figure 1.   Detection of lung parenchymal abnormality in the chest X-ray with the heatmap method.

https://covid.cad4tb.care/accounts/login/?next=/
https://covid.cad4tb.care/accounts/login/?next=/
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1.	 Pseudoanonymization of COVID-19 Patients’ Digital Chest X-ray
	   Confirmed COVID-19 patients’ digital chest X-rays (in DICOM format) underwent pseudoanonymiza-

tion before being uploaded using the PACS INFINITT software from INFINITT Healthcare in Seoul, South 
Korea.

2.	 Chest X-ray scoring process

•	 The chest X-ray scoring involved four consecutive steps:
•	 Normalization: Standardizing the CXR scale for consistent handling by the AI and generalization from 

CXRs of different sizes.
•	 Segmentation of Lung Fields: Automatic separation of lungs from the surrounding areas of the image 

by the AI.
•	 Texture Evaluation: Identification of relevant anomalies in the lung segments.
•	 Area Analysis: Determination of the proportion of lung parenchyma affected.

3.	 Filter Weight Determination
•	 The weights of each filter were determined, and an average filter weight was applied as a mask on the CXR 

picture. This created a color heat map visible only on the lung area previously segregated by the trained 
model.

4.	 Color Heat Map Representation:

•	 The color heat map exhibited various colors based on data weight:
•	 High, medium, low, and extremely low probabilities of abnormality were represented by the colors red, 

yellow, green, and blue, respectively.

5.	 CAD4COVID Software Scoring:

•	 The CAD4COVID software received the digital CXR file and generated two AI scorings:
•	 Affected Lung Area (ALA) Score: Calculated from the total lung volume with abnormalities found on 

the CXR, ranging from 0 to 100. A higher score indicates a greater impact on lung tissue.
•	 COVID Probability Score: Determined by the average final weight of all layers, ranging from 0 to 100. 

A higher score suggests a higher likelihood of COVID-19 occurrence.

Variable selection and establishing a scoring system
For the variable selection and scoring system derivation, we included all 512 hospitalized COVID-19 patients in 
the derivation cohort. In the selection process, we entered 66 variables. We applied the Least Absolute Shrinkage 
and Selection Operator (LASSO) regression with the purpose to minimize the potential collinearity of measured 
variables from the same patient and to prevent variables over-fitting. To deal with missing values, imputation 
was considered if the missing values were less than 25%. We used Multiple Imputation by Chained Equations 
(MICE) to impute numeric, binary, and factor variables13. In our multivariable analyses, we used least absolute 
shrinkage and selection regression with L1 penalization and tenfold cross-validation for internal validation4. 
Based on its value, this logistic regression model imposes penalties on the absolute magnitudes of the regres-
sion coefficients. The estimates of weaker components are minimized towards zero by using greater penalties, 
leaving just the most significant predictors in the model. The factors that were shown to be the most predictive 
were those with the lowest value (min). The LASSO regression was carried out using the statistical program 
“glmnet” from the R Foundation. The risk score was then created using the consistently statistically significant 
factors that were included in logistic regression models after the variables found by LASSO regression analysis 
were included. (supplementary file).

Accuracy assessment
The IMPACT’s score accuracy was assessed using the area under the receiver-operator characteristic curve 
(AUROC). Statistical analysis was performed with the IBM Statistical Program for Social Science (SPSS) for 
Macintosh, 27.0 (IBM Corp., Armonk, NY, USA) with statistical significant set at P < 0.05.

IMPACT score validation
The IMPACT score was validated using data from Dr. Cipto Mangunkusumo General Hospital (RSCM), which 
included a cohort of 137 patients. RSCM is a national referral hospital situated in Jakarta, the capital city of 
Indonesia. As a result, the baseline characteristics of hospitalized COVID-19 patients in this study were highly 
diverse, showcasing the ethnic and racial heterogeneity of Indonesia. The data collected from RSCM underwent 
meticulous scrutiny and verification by two physicians (AS and JH). This dataset was utilized to compute the 
IMPACT COVID-19 mortality risk score, as mentioned earlier, for the derivation cohort.

Characteristics of derivation cohort
In the derivation cohort, we included a total of 512 patients from two academic medical centres located in Sura-
baya, East Java Province, and the Special Region of Jogjakarta, Jogjakarta Province, spanning from April 2020 
to April 2022. Upon hospital admission, the proportion of COVID-19 disease severity, as per the Indonesian 
COVID-19 guideline, was as follows: mild cases accounted for 5.9%, moderate cases for 41.2%, severe cases for 
30.9%, and critical cases for 22.1%. Out of 512 patients, 106 patients (20.7%) experienced clinical worsening 
during their hospitalization, resulting in an in-hospital mortality rate of 28.9%. The top five pre-existing condi-
tions observed in these patients were hypertension, diabetes, obesity, coronary heart disease, and chronic kidney 
disease. The predominant symptoms reported were cough, fever, dyspnoea, nausea, and malaise (refer to Table 2). 
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Abnormal chest X-rays were identified in 412 (80.47%) patients, and further details regarding laboratory find-
ings can be found in Table 2.

Predictor selection
For the LASSO regression, we entered 66 variables measured at hospital admission (Tables 1 and 2). Through 
LASSO regression with, we identified 18 variables that were significant predictors for mortality (Fig. 2). These 
variables were gender, vaccination status, positive cancer status, sore throat, anosmia, dyspnoea, lost of con-
sciousness, effusion on CXR, septic shock, CXR ALA score, mean arterial pressure, respiratory rate, peripheral 

Table 1.   Demographic and clinical characteristics of the derivation cohort. Categorical data are summarized 
using frequencies and percentages n (%). Continuous data are presented either as mean values with standard 
deviation (mean ± SD) for normally distributed data, or as median values with the first and third quartiles 
[median (Q1–Q3)] for data that are not normally distributed. BMI Body Mass Index, ARDS acute respiratory 
distress syndrome, COPD chronic obstructive pulmonary disease, HIV human immunodeficiency virus, AIDS 
acquired immunodeficiency syndrome.

Baseline characteristics Derivation cohort (n = 512)

Mortality

Survived (n = 364) Deceased (n = 148)

Age, years 55 (44–64) 54 (41–63) 58 (50–65)

Male 260 (50.8) 169 (46.4) 91 (61.5)

BMI, kg/m2 24.22 (22.25–27.18) 24.44 (22.23–27.06) 23.88 (22.32–27.68)

Current smokers 25 (6.8) 23 (6.3) 12 (8.1)

Symptoms onset, days 4 (2–7) 4 (2–7) 5 (3–7)

Intubation on admission 7 (1.4) 3 (0.8) 4 (2.7)

Length of stay, days 9.00 (5.25–13.00) 10.00 (7.00–14.00) 6.00 (3.00–10.75)

Disease severity

 Mild 30 (5.9) 29 (8.0) 1 (0.7)

 Moderate 211 (41.2) 168 (46.2) 43 (29.1)

 Severe 158 (30.9) 96 (26.4) 62 (41.9)

 Critically ill 113 (22.1) 71 (19.5) 42 (28.4)

Complications and coincidences

 Sepsis 65 (12.7) 44 (12.1) 21 (14.2)

 Septic shock 46 (9.0) 24 (6.6) 22 (14.9)

 ARDS 79 (15.4) 47 (12.9) 32 (21.6)

 Secondary infection 70 (13.7) 48 (13.2) 22 (14.9)

Comorbidities

 No. of comorbidities

  0 130 (25.4) 100 (27.5) 30 (20.3)

  1 174 (34.0) 124 (34.1) 50 (33.8)

  2 120 (23.4) 84 (23.1) 36 (24.3)

  3 50 (9.8) 34 (9.3) 16 (10.8)

  4 24 (4.7) 14 (3.8) 10 (6.8)

  5 10 (2.0 7 (1.9) 3 (2.0)

  6 3 (0.6) 1 (0.3) 2 (1.4)

  7 1 (0.2) 0 (0.0) 1 (0.7)

Hypertension 187 (36.5) 131 (36.0) 56 (37.8)

Diabetes mellitus 187 (36.5) 125 (34.3) 62 (41.9)

Obesity 122 (23.8) 91 (25.0) 31 (20.9)

Coronary heart disease 67 (13.1) 43 (11.8) 24 (16.2)

Chronic kidney disease 47 (9.2) 25 (6.9) 22 (14.9)

Congestive heart failure 21 (4.1) 11 (3.0) 10 (6.8)

Cancer 20 (3.9) 10 2.7) 10 (6.8)

Cerebrovascular disease 14 (2.7) 10 (2.7) 4 (2.7)

Asthma 10 (2.0) 7 (1.9) 3 (2.0)

COPD 8 (1.6) 5 (1.4) 3 (2.0)

Pulmonary tuberculosis 6 (1.2) 3 (0.8) 3 (2.0)

Autoimmune 5 (1.0) 4 (1.1) 1 (0.7)

Chronic liver disease 3 (0.6) 1 (0.3) 2 (1.4)

HIV/AIDS 3 (0.6) 2 (0.5) 1 (0.7)
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oxygen saturation, white blood cells count, neutrophil count, neutrophil–lymphocyte-ratio, serum urea lev-
els, and potassium levels. Subsequently, these variables were entered in logistic regression. The final variables 
included in final model were anosmia (OR: 0.280; 95%CI 0.095–0.826; P = 0.021), dyspnoea (OR: 1.684; 95%CI 
1.049–2.705; P < 0.031), loss of consciousness (OR: 4.593; 95%CI 1.702–12.396; P = 0.003), mean arterial pres-
sure (OR: 0.928; 95%CI 0.900–0.957; P = 0.007), peripheral oxygen saturation (OR: 0.981; 95%CI 0.967–0.996; 

Table 2.   Clinical, laboratory and radiological findings of the derivation cohort (n[%]; mean ± SD; median 
[Q1–Q3]). Categorical data are summarized using frequencies and percentages n (%). Continuous data are 
presented either as mean values with standard deviation (mean ± SD) for normally distributed data, or as 
median values with the first and third quartiles [median (Q1–Q3)] for data that are not normally distributed. 
AI artificial intelligence.

Baseline characteristics Derivation cohort (n = 512)

Mortality

Survived (n = 364) Deceased (n = 148)

Signs and symptoms

 Cough 346 (67.6) 250 (68.7) 96 (64.9)

 Fever 283 (55.3) 204 (56.0) 79 (53.4)

 Dyspnoea 261 (51.0) 168 (46.2) 93 (62.8)

 Nausea 114 (22.3) 77 (21.2) 37 (25.0)

 Malaise 101 (19.7) 70 (19.2) 31 (20.9)

 Vomiting 89 (17.4) 57 (15.7) 32 (21.6)

 Anorexia 80 (15.6) 52 (14.3) 28 (18.9)

 Headache 60 (11.7) 47 (12.9) 13 (8.8)

 Rhinorrhea 57 (11.1) 44 (12.1) 13 (8.8)

 Anosmia/hyposmia 53 (10.4) 48 (13.2) 5 (3.4)

 Diarrhea 45 (8.8) 30 (8.2) 15 (10.1)

 Myalgia 37 (7.2) 28 (7.7) 9 (6.1)

 Abdominal pain 32 (6.3) 18 (4.9) 14 (9.5)

 Sore throat 25 (4.9) 23 (6.3) 2 (1.4)

 Loss of consciousness 22 (4.3) 9 (2.5) 13 (8.8)

 Chest pain 17 (3.3) 12 (3.3) 5 (3.4)

Vital signs

 Systolic blood pressure, mmHg 128.50 (113.25–142.00) 12.50 (117.00–142.00) 128.50 (110.00–145.00)

 Diastolic blood pressure, mmHg 80.00 (70.00–87.00) 80.00 (72.00–87.75) 79.00 (64.75–87.00)

 Mean arterial pressure, mmHg 95.00 (86.75–105.58) 95.17 (87.67–105.33) 94.50 (81.85–105.92)

 Pulse rate, beats/min 97 (85–108) 96 (84–105) 100 (88–113)

 Respiratory rate, breaths/min 24 (20–26) 23 (20–25) 24 (22–28)

 Temperature, °C 36.50 (36.00–37.00) 36.50 (36.00–37.00) 36.55 (36.00–37.00)

 Peripheral oxygen saturation, % 95.00 (89.00–98.00) 96.00 (91.00–98.00) 89.50 (82.25–96.00)

Laboratory findings

 Haemoglobin, g/dL 13.10 (11.60–14.50) 13.10 (11.70–14.48) 12.80 (11.50–14.68)

 Leukocyte, 103 cell/µL 8.32 (5.87–11.44) 8.05 (5.76–10.60) 9.81 (6.45–14.41)

 Neutrophil, % 77.75 (69.30–85.78) 75.65 (66.65–83.80) 83.80 (76.93–89.78)

 Lymphocyte, % 14.25 (8.50–20.78) 16.15 (9.40–22.48) 10.70 (5.70–17.28)

 Neutrophil lymphocyte ratio 5.36 (3.32–9.91) 4.64 (3.02–8.61) 7.83 (4.38–15.85)

 Thrombocyte, 103 cell/µL 243.50 (176.00–322.75) 251.50 (183.25–330.75) 234.50 (168.50–308.00)

 Serum urea, mg/dL 15.10 (10.50–26.20) 13.60 (9.70–22.08) 23.75 (13.70–48.88)

Sodium, mmol/L 135.00 (131.00–138.00) 135.00 (132.00–138.00) 134.85 (131.00–138.00)

 Potassium, mmol/L 4.02 (3.66–4.47) 4.00 (3.64–4.34) 4.12 (3.68–4.74)

Radiological findings

 Radiological pneumonia

  Unilateral 11 (2.1) 8 (2.2) 3 (2.0)

  Bilateral 401 (78.3) 274 (75.3) 127 (85.8)

  Pleural effusion 6 (1.2) 1 (0.3) 5 (3.4)

 AI processed parameter

  Affected lung area score, % 15.65 (2.92–33.65) 9.87 (1.75–28.13) 28.47 (10.83–42.60)

  Probability score, % 81.70 (59.02–98.82) 73.50 (56.24–98.14) 93.88 (63.62–99.48)
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P = 0.012), neutrophil % (OR: 1.034; 95%CI 1.013–1.055; P = 0.001), serum urea (OR: 1.018; 95%CI 1.010–1.026; 
P < 0.001), affected lung area score (OR: 1.026; 95%CI 1.014–1.038; P < 0.001). (Table 3).

IMPACT mortality score construction
The IMPACT score was constructed based on the rounding of the beta coefficients acquired from the logistic 
model. The mortality risk score was developed by utilizing coefficients from the logistic model. We employed 
the following formulas in the logistic model to compute the probability and 95% confidence intervals14: The 
probability formula is given by exp(β × X)/[1 + exp(β × X)]. The formula for calculating the lower limit of the 95% 
confidence interval is exp[Xn × βn—z × SE(β)]/{1 + exp[Xn × βn—z × SE(β)]}, and the formula for calculating the 
upper limit of the 95% confidence interval is exp[Xn × βn + z × SE(β)]/{1 + exp[Xn × βn + z × SE(β)]}.

Therefore, the formula for calculating the mortality risk is as follows: mortality risk = 100 * (1/(1 + exp(−x))), 
where (x) is derived from the equation: (Anosmia*−1.273) + (Dyspnoea*0.521) + (Loss of Conscious-
ness*1.525) + (SpO2*-0.074) + (MAP*−0.019) + (Neutrophil Percentage*0.033) + (Serum Urea*0.018) + (ALA 
Score*0.026) + 3.749.

IMPACT mortality score performance
The predictive value for IMPACT score from the derivation cohort was 0.815 (95% CI 0.774–0.856), which was 
categorized as a model with a good predictive ability (Fig. 3 panel a). The AUROCs of IMPACT sore for Air-
langga University Hospital and dr. Sardjito General Hospital were 0.839 (95%CI 0.768–0.910) and 0.793 (95%CI 
0.741–0.845), respectively.

IMPACT mortality score validation
The internal validation of IMPACT score in the RSCM hospital yielded AUROC score of 0.770 (95%CI 
0.661–0.879) with a fair predictive ability (Fig. 3 panel b). The baseline and clinical characteristics of the valida-
tion cohort are presented in Table 4.

As previously stated in the Methods section, the disparity in the hospitalization periods between the validation 
cohort and derivation cohort for COVID-19 patients could raise concerns about the validity of our findings. To 
address this issue, we conducted a stratified analysis of the AUROC of the IMPACT score based on the year of 

Figure 2.   Variable selection for model construction using the least absolute shrinkage and selection operator 
(LASSO) binary logistic regression model. (a) LASSO coefficient profiles of the 66 baseline variables. (b) Tuning 
parameter selection for the LASSO model using tenfold cross-validation and minimum criteria.

Table 3.   Multivariate logistic regression model for predicting in-hospital mortality 512 COVID-19 inpatients. 
OR odds ratio, GCS glasgow coma scale.

Variables B OR (95% CI) P value

Anosmia/hyposmia − 1.273 0.280 (0.095–0.826) 0.021

Dyspnoea 0.521 1.684 (1.049–2.705) 0.031

Loss of consciousness, GCS 1.525 4.593 (1.702–12.396) 0.003

Mean arterial pressure, mmHg − 0.019 0.928 (0.900–0.957) 0.000

Peripheral oxygen saturation, % − 0.074 0.981 (0.967–0.996) 0.012

Neutrophil, % 0.033 1.034 (1.013–1.055) 0.001

Serum urea, mg/dL 0.018 1.018 (1.010–1.026)  < 0.001

Affected lung area score, % 0.026 1.026 (1.014–1.038)  < 0.001

Constant 3.749 42.480 0.036
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admission in the derivation cohort. Our analysis revealed no significant differences in the AUROC among the 
admission years 2020, 2021, and 2022 (Fig. 4 and supplementary material Table 1).

Ethics approval and consent to participate
Ethical approval for this study was obtained from the University of Gadjah Mada (IRB Approval Number: KE/
FK/0900/EC/2022), the University of Airlangga (IRB Approval Number: 073/KEP/2022), and the University 
of Indonesia’s Faculty of Medicine Internal Review Board (IRB Approval Number: KET-1334/UN2.F1/ETIK/
PPM.00.02/2022). The internal review board waived the consent to participate due to the retrospective nature 
of this study.

Discussion
In this study, we developed and internally validated the IMPACT Mortality score. The AUROC scores obtained 
from the derivation and validation cohorts were 0.815 and 0.770, respectively. To the best of our knowledge, this 
is the first scoring system that integrates clinical and laboratory data with AI-related parameters.

The developed model offers two advantages. Firstly, the scoring system incorporates basic laboratory indices 
that are accessible even in primary care clinics and small hospitals. This sets it apart from other scoring systems 
like COVID-Gram, which utilize numerous laboratory parameters that are often unavailable in small/rural hos-
pitals, especially in developing countries. Secondly, the model includes an AI-based parameter called the ALA 

Table 4.   Baseline characteristics of the validation cohort (n[%]; mean ± SD; median [Q1–Q3]). Categorical 
data are summarized using frequencies and percentages n (%). Continuous data are presented either as mean 
values with standard deviation (mean ± SD) for normally distributed data, or as median values with the first 
and third quartiles [median (Q1–Q3)] for data that are not normally distributed.

Baseline characteristics Validation cohort (n = 137)

Mortality

Survived (n = 110) Deceased (n = 27)

Anosmia/hyposmia 25 (18.2) 22 (20.0) 3 (11.1)

Dyspnoea 79 (57.7) 57 (51.8) 22 (81.5)

Loss of consciousness 12 (8.8) 3 (2.7) 9 (33.3)

Mean arterial pressure, mmHg 95.09 ± 15.09 96.40 ± 13.63 89.73 ± 19.37

Peripheral oxygen saturation, % 97.00 (92.00–98.00) 97.00 (93.75–98.00) 95.00 (85.00–98.00)

Neutrophil, % 72.15 ± 13.65 70.39 ± 13.29 79.34 ± 12.94

Serum urea, mg/dL 25.60 (17.70–44.85) 24.50 (17.38–36.75) 47.70 (24.40–120.60)

Affected lung area score, % 8.0 (1.0–26.5) 7.0 (1.0–20) 31.0 (2.0–45.0)

Figure 3.   IMPACT in-hospital mortality scoring system area under the receiver—operating characteristic 
(AUROC) curve: (a) Derivation cohort, (b) validation cohort.
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Figure 4.   Area under the receiver—operating characteristic of impact score stratified according to the 
Admission Year.

score, derived from analysed chest X-rays (CXRs). The ALA score is generated by the CAD4COVID software, 
providing rapid results after uploading the image to the cloud-based system.

While CT-scan is the preferred imaging modality for aiding COVID-19 diagnosis, it may not be accessible 
in many developing countries. On the other hand, CXR is readily available even in small hospitals. Additionally, 
logistical challenges such as patient transportation and the need for resuscitation in severe cases make CT-scan 
impractical15.

In the final model, several variables were identified as protective against in-hospital mortality due to COVID-
19. These variables include mean arterial pressure (MAP), peripheral oxygen saturation (SpO2), and anosmia. 
Higher MAP and SpO2 as protective variables may indicate a milder course of COVID-1916.

Anosmia is considered a protective factor against in-hospital mortality of COVID-19 disease. A retrospective 
study involving 576 patients found that those with anosmia had higher levels of lymphocytes, haemoglobin, and 
GFR, and lower levels of D-dimer and CRP, indicating a milder immune and inflammatory response to SARS-
CoV-2 infection17. Hendawy et al. also showed that anosmia is associated with mild chest infection18.

Conversely, our model identified several risk factors for mortality, including dyspnoea, loss of consciousness 
(LOC), higher neutrophil count, and higher serum urea levels. These factors are well-known indicators of poor 
prognosis, even in community-acquired pneumonia19,20. Significantly, elevated neutrophil levels contribute to 
COVID-19-associated coagulopathy by activating neutrophil extracellular traps (NETs)21. NETosis, the process 
where neutrophils release DNA structures to trap and kill pathogens, plays a crucial role in the immune response 
against infections, including viral infections. Excessive NET release leads to inflammation, tissue damage, and 
contributes to the cytokine storm observed in severe cases.

Notably, our study emphasizes the importance of quantifying parenchymal abnormalities with the help of an 
AI-based parameter for the purpose of determining mortality risk.

Many studies have evaluated the diagnostic ability of artificial intelligence against human readers. For exam-
ple, Murphy et al. found that CAD4COVID X-ray which was trained on 24,678 radiographs, including 1540 
radiographs for validation, had a comparable performance against six radiologists8.

Another study by Kapoor et al. showed that AI utilization improved triaging system of COVID-19 cases in 
the emergency department when faced with patients presenting with Flu-like symptoms. Combined with the 
high resolution CT AI analysis, CXR AI analysis had 97.9% sensitivity and 99% specificity22.

In another study, AI parameters derived from CT-scan namely CT—severity score (CT-SS) and affected lung 
area (%AA)23. These parameters associated with poor outcomes such as length of stay, risk of ICU admission, 
ICU LOS, and risk of mechanical ventilation. The CT-SS had a good predictive ability for ICU admission in 
COVID-19 patients (AUROC = 0.84; 95%CI 0.79–0.90).

In contrast, the evidence supporting the use of artificial intelligence for disease prognosis is limited. To date, 
only one published study has specifically investigated this area. In their study, Shamout et al. developed a prog-
nostic model using an artificial intelligence system24. The model demonstrated the ability to predict deterioration 
within 96 h, achieving an AUROC of 0.786 (95% CI 0.745–0.830). To construct the model, the AI system utilized 
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a dataset comprising clinical variables extracted from electronic health records and CXR images. Notably, the 
model effectively estimated the temporal risk evolution and considered relevant clinical endpoints, such as ICU 
admission, intubation, and in-hospital mortality.

Comparatively, our model and the model by Shamout et al. differ in terms of the clinical variables incorpo-
rated. Their model encompassed a larger set of clinical variables, potentially presenting challenges for replica-
tion in developing countries. In contrast, our model included a greater number of clinical variables known to 
be significant risk factors for COVID-19 outcomes. Consequently, our model may offer more advantages when 
employed in resource-limited areas.

While the WHO has lifted the pandemic status for COVID-19, this study aims to emphasize the importance 
of not forgetting the lessons learned from the past. Specifically, the dire need for utilizing artificial intelligence 
to enhance triaging capabilities, particularly during the peak of the pandemic when resources and manpower 
were scarce, should be highlighted.

Limitations
This study has several limitations. Firstly, the number of subjects included in both the derivation and validation 
cohorts is relatively small. Secondly, the study utilized retrospective data, highlighting the need for prospective 
validation. Thidrly, we did not utilize control group. Finally, we did not analyse the impact of COVID-19 variants 
on the discriminative ability of the IMPACT scoring system.

Conclusion
Our multicentre study introduces the Integrated Inpatient Mortality Prediction Score for COVID-19 (IMPACT), 
a clinical risk tool that integrates clinical, laboratory, and CXR data. This study provides valuable evidence on 
the real-world application of AI in clinical settings, demonstrating its potential for enhancing decision-making 
and improving patient care. The derivation and validation of IMPACT highlight the transformative role of AI in 
healthcare, enabling more personalized and effective treatment strategies for COVID-19 patients. Our research 
aims to bridge the gap between AI advancements and practical use, facilitating wider adoption of AI-based tools 
and revolutionizing disease prognostication in healthcare. However, it is imperative to conduct prospective vali-
dation of our findings, preferably utilizing a control group and extending the application to broader populations.

Data availability
Data is available upon a reasonable request to corresponding author.

Code availability
Please note that the code used for CAD4COVID is proprietary and not publicly available. For inquiries or ques-
tions regarding CAD4COVID, kindly refer to the Delft Imaging website at https://​www.​delft.​care/​cad4c​ovid/.
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