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Abstract
Increasing evidence suggests that key cancer-causing driver genes continue to exert a sustained influence on the tumor 
microenvironment (TME), highlighting the importance of immunotherapeutic targeting of gene mutations in governing 
tumor progression. TP53 is a prominent tumor suppressor that encodes the p53 protein, which controls the initiation and 
progression of different tumor types. Wild-type p53 maintains cell homeostasis and genomic instability through complex 
pathways, and mutant p53 (Mut p53) promotes tumor occurrence and development by regulating the TME. To date, it has 
been wildly considered that TP53 is able to mediate tumor immune escape. Herein, we summarized the relationship between 
TP53 gene and tumors, discussed the mechanism of Mut p53 mediated tumor immune escape, and summarized the progress 
of applying p53 protein in immunotherapy. This study will provide a basic basis for further exploration of therapeutic strate-
gies targeting p53 protein.
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Introduction

Tumors are complex diseases involving multiple factors and 
stages. Immune escape plays a key role in tumorigenesis 
and tumor progression. The complex interaction between 
the immune system and tumor cells determines the tumor 
state through a process called “tumor immune editing,” 
which includes three phases: clearance, homeostasis and 
escape [1, 2]. In the immune clearance phase, the immune 
system recognizes, monitors, and removes most malignant 
cells; however, a small number of malignant cells survive 
and enter the homeostasis phase. At this stage, although 

continuous pressure from the adaptive immune system pre-
vents tumor cell growth and expansion, tumor cells with 
genetic instability form immunogenically reduced tumor 
subclones under pressure, Finally, the tumor cells evade 
the antitumor immune mechanism and enter the immune 
escape stage [3, 4].The tumor microenvironment (TME) 
is a dynamic and complex environment where tumor cells 
arise, and its composition varies by tumor type.[5]. During 
the “tumor immune editing” process, each cellular and non-
cellular component of the TME uniquely regulates tumor 
immune escape. Therefore, the goal of tumor immunother-
apy is to counteract this immune escape by both maintaining 
the tumor-immune cycle in the TME and reactivating the 
anti-tumor immune response [6].

Specific genetic alterations in different types of cancer 
can influence tumor growth and metastasis in vivo by regu-
lating the TME. The human melanoma model with progres-
sive genome editing constructed by Regev et al. [7] revealed 
that the combination of tumor gene mutations can not only 
impact the cellular composition of the TME but also re-edit 
the cellular state of the individual cell types that constitute 
it, thus affecting tumorigenesis and progression. TP53 muta-
tions are prevalent in tumor progression. TP53 encodes the 
p53 protein, which is a prominent core tumor suppressor [8]. 
As a transcription factor, p53 regulates the transcription of 
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target genes by directly binding to p53 DNA-binding ele-
ments in their promoter regions [9]. wild-type p53 (WT 
p53) regulates cell apoptosis, cellular senescence, cell cycle 
arrest, DNA damage repair, metabolic adaptation, and other 
cellular stress responses to exert tumor-suppressive effects 
[10]. However, TP53 missense mutations could disrupt the 
structural domain of the p53 protein, thereby impairing the 
expression or function of WT p53 and depriving it of its 
tumor-suppressive activity [11]. Tumor-derived mutant p53 
(Mut p53) proteins contain missense, frameshift, truncation 
and deletion mutations; of which, approximately 74% are 
missense mutations mostly occurring within the p53 DNA-
binding domain (DBD) [12]. Mut p53 has traditionally been 
classified as a “conformational” or “DNA contact” mutation. 
The former mainly interferes with folding of the core domain 
of p53 and is unable to bind to DNA or activate target genes. 
The latter directly mutates the amino acid residues that bind 
to DNA [13]. Both types of Mut p53 are unable to trans-
activate the target genes of WT p53 and therefore cannot 
mediate tumor-suppressive processes.

In addition to the loss of the tumor suppressor function 
of WT p53, Mut p53 promotes tumor progression through 
a gain-of-function (GOF) mechanism. To date, various Mut 
p53 GOF activities have been reported, including the pro-
motion of tumor cell proliferation and metastasis, genomic 
instability, metabolic reprogramming, cell dryness, tumor 
microenvironment remodeling, immunosuppression and can-
cer treatment drug resistance [14]. Mut p53 usually exhibits 
different GOF activities through different molecular mecha-
nisms. Further, Mut p53 forms complexes with the transcrip-
tion factor NF-Y and cofactor p300 and transcribes and acti-
vates target genes of NF-Y, such as cyclin A, cyclin B1 and 
cyclin-dependent kinase 1 (CDK1), to promote cancer cell 
proliferation [15]. Specifically, most studies on the molecu-
lar mechanism of Mut p53 promoting metastasis have been 
found in rectal and pancreatic cancer cells. Mut  p53R248W 
stabilizes proteins through a heat shock protein 90 chaper-
one mechanism in pancreatic cancer and selectively binds 
to phosphorylated STAT3 in pancreatic cancer cells to form 
the Mut p53-pSTAT3 complex, which promotes tumor cell 
migration [16]. This evidence paves way for novel avenues 
for using Hsp90 inhibitors in patients with Mutp53 muta-
tions. Notably, the metabolic changes in glucose, lipids and 
nucleotides are not only markers of tumor cells but are also 
key factors in tumor development [17]. Innate immune cells 
promote insulin resistance by secreting cytokines to regulate 
metabolism, reflecting the complex role between metabo-
lism and immunity [18]. The Warburg effect is defined as a 
faster glucose uptake and lactic acid accumulation in tumor 
cells than in normal cells under aerobic conditions [19]. Mut 
p53 promotes the translocation of glucose transporter 1 to 
the cell membrane by activating RhoA, thereby promot-
ing the Warburg effect in cancer cells [20]. Glycolysis and 

metabolism reshape the tumor microenvironment, and both 
computational and experimental analyses have shown that 
glycolysis increases PD-L1 expression in tumor [21]. Gly-
colytic lactic acid production can promote tumor cells and 
tumor-associated macrophages (TAMs) to secrete a series 
of factors supporting angiogenesis, whereas glucose dep-
rivation and extracellular acidosis significantly inhibit the 
antitumor function of macrophages, CD4 + T cells, CD8 + T 
cells, and dendritic cells (DCs). However, they have little 
effect on immunosuppressive cells such as myeloid-derived 
suppressor cells (MDSCs) and regulatory T cells (Tregs), 
and cancer-associated fibroblasts (CAF) and tumor cells can 
promote glycolysis [22]. Therefore, tumors carrying Mut 
p53 protein may promote the transition from metabolism to 
glycolysis through the abovementioned mechanisms, leading 
to tumor progression. In addition, Mut p53 can increase the 
expression and activity of manganese superoxide dismutase, 
a key antioxidant detoxification enzyme, in melanoma cells 
through SIRT3-mediated deacetylation, which helps regu-
late the level of reactive oxygen species (ROS) and prevent 
its cytotoxicity [23]. Damages to the glycolysis pathway in 
tumor cells leads to the increase in ROS level, which down-
regulates c-FLIP, the key inhibitor of tumor necrosis factor-
α-induced cell death and enhances CTLs-mediated bystander 
killing [24]. Therefore, the above results indicate a potential 
molecular mechanism of the Mut p53-induced glycolysis 
pathway in promoting tumor immune escape. Mevalonate 
pathway is important for lipid metabolism. Its metabolic 
intermediate mevalonate-5-phosphate (M5p) promotes the 
stability of Mut p53 by inhibiting the proteasomal degra-
dation of Mut p53 mediated by the ubiquitin ligase CHIP, 
whereas Mut p53 binds to SREBP2 and promotes the meva-
lonate pathway to increase M5p levels, thus forming a posi-
tive feedback loop [25, 26]. In addition, Mut p53 binds to the 
ETS2 site in the target gene promoter to activate the expres-
sion of several nucleotide metabolic genes, such as dCK, 
TK1, and GMPS and promote nucleotide synthesis [27]. The 
activation of GMPS can mediate the production of inflam-
matory cytokines, INF-α, and tumor necrosis factor (TNF), 
thus activate STAT and NF-κB pathways in cancer cells, 
stimulate their growth, and increase chemotherapy resistance 
[28]. Therefore, to a large extent, Mut p53 achieves its GOF 
activity through metabolic reprogramming, thereby promot-
ing tumor immune escape. Further studying the mechanism 
through which Mutp53 promotes tumor immune escape is 
crucial to identify potential antitumor therapeutic targets.

Recent studies have suggested that WT p53 protein plays 
an important role in the immune clearance phase of tumors. 
The Mut p53 can disrupt this function, thus affecting the 
tumor immune microenvironment [29]. Major histocom-
patibility complex-I (MHC-I)-mediated antigen presen-
tation plays a key role in the antitumor adaptive immune 
response. WT p53 upregulates the expression of Tap1 and 
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the aminotransferase Erap1, which are peptide transport 
proteins essential for MHC-I transport to the cell surface 
[30]. The expression of MHC-I on the cell surface decreased 
under TP53 mutation conditions. In addition, Ghosh et al. 
[31] found that Mut p53 inhibits the function of the cGAS-
STING-TBK1-IRF3 pathway, a cytoplasmic DNA-sensing 
mechanism in the natural immune response, by binding to 
TANK-binding kinase-1 (TBK1) and reducing the infiltra-
tion of lymphocytes, such as natural killer (NK) cells and 
 CD8+ T cells, in the TME, thereby contributing to tumor 
immune escape. Therefore, Mut p53 may promote immune 
escape by inhibiting the antitumor immune response to form 
an immunosuppressive TME.

A review of related studies revealed that Mut p53 forms 
a tumor-promoting immunosuppressive microenvironment 
by damaging its function, reducing its number, and inhibit-
ing the recruitment of immune cells to the TME [32–34]. In 
addition, Mut p53 has been reported to regulate the func-
tion of tumor stromal cells, other than immune cells, to pro-
mote tumor immune escape [35–37]. This review aimed to 
describe how Mut p53 regulates the immune landscape in 
the TME to create an ecological niche for tumor immune 
escape and summarize the current status of research on 
immunotherapy related to targeting the p53 pathway.

Mut p53 mediates immune escape 
by regulating the immune cell component 
in TME

Mut p53-mediated tumor immune escape is dominated by 
tumor-induced immunosuppressive effects, resulting in an 
immunosuppressive TME [38]. The immune ecological 
niche of the TME is regulated by cytotoxic T lymphocytes 
(CTLs), NK cells, MDSCs, TAMs and Tregs. The abun-
dance and composition of each immune cell type are differ-
ent in different tumor types. Mut p53 can regulate the TME 
by affecting single-cell functions, such as reducing CTL and 
NK cell infiltration and inhibiting their antitumor activity 
while recruiting large numbers of immunosuppressive cells 
(MDSCs, TAMs and Tregs) into the TME, ultimately cre-
ating a pro-tumor immune ecological niche by controlling 
cytokine secretion.

Mut p53 attenuates CTL cell‑mediated antitumor 
immune response

CTLs are important effector cells involved in killing tumor 
cells. Recent studies have suggested that Mut p53 promotes 
tumor immune escape by disrupting CTL function or reduc-
ing the number of CTLs in the TME. Activated CTLs kill tar-
get tumor cells mainly through two pathways [39–41]: first, 
CTL release perforin (PFN) to transport secreted granzymes 

A and B (GzmA and GzmB) into tumor cells after forming 
pores in the tumor cell membrane, triggering an enzyme 
chain reaction that leads to apoptosis of tumor cells. Second, 
the death factor Fas ligand (FasL) on the surface of CTL 
binds to the Fas receptor (FasR) on the surface of tumor 
cells and activates cystatin 8 to initiate apoptosis. Studies 
have shown that GzmB can induce the accumulation of WT 
p53 in the mitochondria of target tumor cells and interact 
with the anti-apoptotic protein B-cell lymphoma-2 (BCL-2), 
thereby antagonizing the inhibitory effect of BCL-2 on the 
pro-apoptotic factors Bcl-2 Associated X-protein (BAX) and 
truncated Bid (tBid), contributing to a large release of BAX 
and tBid, thereby facilitating the release of cytochrome C 
from mitochondria and triggering the apoptosis of tumor 
cells [42]. Blocking the WT p53/BCL-2 interaction signifi-
cantly reduced CTL/NK-mediated cytotoxicity of WT p53 
target cells. Hence, further research is needed to determine 
whether Mut p53 is related to the resistance of tumor cells to 
PFN/GzmB-and CTL/NK-mediated cell death. Additionally, 
WT p53 positively regulates TNF-related apoptosis-induc-
ing ligand-induced apoptotic pathways by directly upregulat-
ing FasR and death receptors 4 and 5 [43]. Mut p53 was also 
found to reprogram TNF-α signal transduction in tumor cells 
by binding tumor suppressor DAB2IP and downregulate its 
expression, that is, it promoted the activation of NF-κB and 
inhibited the activation of TNF-α on ASK1/JNK and finally 
promoted the survival of tumor cells and resisted the tumor 
killing effect mediated by CTL [44]. Mutp53 also activates 
Rac1, promotes AKT activation, and promotes the survival 
of tumor cells [45]. However, the mechanism through which 
AKT activation promotes the survival of tumor cells remains 
unclear and requires further investigation; therefore, Mut 
p53 may diminish the killing effect of CTL on tumor cells 
and promote tumor immune escape (Fig. 1).

It was also found that the number of bone marrow-infil-
trating CTLs and T helper (Th) cells was reduced in patients 
with acute myeloid leukemia with Mut p53, whereas the 
number of Treg cells, which promote immune escape, was 
increased [46]. Mechanistically, Mut p53 reduced the num-
ber of CTLs and Th cells by downregulating the expres-
sion of the costimulatory molecule OX40 and increased the 
infiltration of Treg cells by upregulating the expression of 
the costimulatory molecule ICOS [47, 48]. In summary, 
Mut p53 may influence the immunosuppressive microenvi-
ronment by regulating immune cell function and numbers. 
Moreover, the reactivation of WT p53 function may be a 
novel approach to optimize CTL-mediated tumor killing.

Mut p53 inhibits normal NK cell function

Activation of NK cells by effector molecules, such 
as interleukin (IL)-2, IL-12, IL-15 and IL-18. Down-
regulation of NK cell-inhibitory receptors (NK-IRs) or 
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upregulation of NK cell-activating receptors (NK-ARs) 
can trigger the release of TNF-α and interferon (IFN)-γ 
from NK cells, which in turn exert antibody-dependent 
cell-mediated cytotoxic effects to kill tumor cells [49, 
50]. NK cell-mediated tumor cell recognition and lysis is 
mainly dependent on the expression of NK-ARs NKG2D 
and DNAM-1. WT p53 upregulates the expression lev-
els of ULBP1 and ULBP2, members of the ligand of the 
NKG2D (NKG2DL) family, on the surface of tumor cells 
and enhances the NK cell-mediated antitumor immune 
response [51]. Similarly, in oncogenic MYCN-amplified 
neuroblastoma, JQ1, a BET-bromo structural domain 
inhibitor of MYCN, downregulates c-MYC and p53 levels, 

which in turn downregulate NKG2DL expression and 
render neuroblastoma cells resistant to NK cell-mediated 
killing [52]. In addition, the glycolysis inhibitor dichloro-
acetate downregulates the expression of NKG2DL fam-
ily members MICA, MICB, and ULBP-1 in tumor cells 
lacking WT p53 or expressing Mut p53, thereby medi-
ating immune escape [53]. The above evidence suggests 
that Mut p53 inhibits the tumor-killing effect of NK cells, 
mainly by regulating the expression of stress ligands on 
the surface of tumor cells (Fig. 2). Therefore, increasing 
the number of NK cells, enhancing NK cell activity, and 
promoting NK cell infiltration have become major strate-
gies for immunotherapy.

Fig. 1  Schematic diagram of Mut p53 blocking anti-tumor immune 
response. Mut p53 down-regulates the expression of Tap1 and Erap1, 
which are necessary for MHC-I to be transported to the cell surface. 
The expression of MHC-I on the cell surface decreases and MHC-
antigen complex decreases, which can not be recognized by T cells 
and finally blocks the anti-tumor adaptive immune response. On the 

other hand, Mut p53 inhibits TBK1 phosphorylation by binding with 
TBK1, thus inhibiting the function of cGAS-STING-TBK1-IRF3 
pathway, which is a cytoplasmic DNA sensing mechanism in natural 
immune response, and reducing the infiltration of NK cells,  CD8+T 
cells and other lymphocytes in TME, leading to tumor immune 
escape

Fig. 2  Schematic diagram 
of Mut p53 participating in 
regulating CTL cell-mediated 
anti-tumor immunity. Mut 
p53 reprogrammed the signal 
transduction of TNF-α in tumor 
cells by binding with tumor 
suppressor DAB2IP and down-
regulating its expression, that 
is, it promoted the activation of 
NF-κB and inhibited the activa-
tion of TNF-α on ASK1/JNK at 
the same time, finally promoted 
the survival of tumor cells and 
resisted the tumor killing effect 
mediated by CTL. Mut p53 
can also inhibit DAB2IP-AKT 
interaction by activating Rac1, 
promote AKT activation and 
lead to tumor cell survival
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Mut p53 regulates the cell proliferation 
and differentiation of TAMs

As the most widely distributed type of immune cells in the 
TME, TAMs are mainly derived from circulating monocytes, 
which would differentiate into TAMs after being recruited 
to the TME and are stimulated by various cytokines [54]. 
TAMs are a highly plastic class of mixed phenotype cells, 
and consistent with the specific differentiation of activated 
macrophages into M1 and M2 types, TAMs are also polar-
ized into M1-like and M2-like TAMs. M1-like TAMs are 
primarily activated by IFN-γ, transforming growth factor-α 
(TGF-α) or granulocyte–macrophage [55]. They are acti-
vated by IFN-γ, TGF-α or granulocyte–macrophage colony 
stimulating factor (GM-CSF); express CD68, CD80 and 
CD86; and secrete IL-1β, IL-6 and chemokine CXCL9, 
which exert antitumor effects. M2-like TAMs are primarily 
activated by IL-10 and TGF-β, expressing CD163, CD204 
and CD206, secrete IL-10, TNF, CCL17, among others, 
which exerting pro-tumor effects [56].

In a mouse model of colorectal cancer, alterations in 
p53 function affect the proliferation of TAMs and regulate 
macrophage polarization. First, p53 affects the recruitment 
of TAMs in primary colorectal cancer cells. The intrinsic 
mechanism is that p53 inhibits colony-stimulating fac-
tor 1 receptor (CSF1R) expression by inducing miR-34a, 

which further inhibits the first step of the STAT3-mediated 
tumor cell metastatic cascade epithelial–mesenchymal 
transformation and promotes tumor cell migration [57]. 
In contrast, the high expression of CSF1R caused by TP53 
mutation is considered to affect both the differentiation 
and proliferation of TAMs. The overexpression of NAD-
dependent deacetylase sirtuin 1 (SIRT1) in colorectal can-
cer promoted the expression of CXCL12 and CXCR4 on 
the surface of tumor cells and macrophages, respectively, 
facilitated the recruitment of M2-like TAMs and inhibited 
the cell proliferation and activity of CD8 + T cells, thus 
promoting colorectal cancer progression [58]. Simultane-
ously, Mut p53 colorectal cancer cells selectively release 
miR-1246-rich exosomes, and uptake of these exosomes 
by macrophages triggers miR-1246-dependent self-repro-
gramming, resulting in a pro-tumor state phenotype [59]. 
Using a set of 16 different genetically engineered mouse 
models of breast cancer, Wellensten et al. [60] revealed 
that p53-deficient tumor cells can induce WNT-secreted 
ligands, increase circulating neutrophils and stimulate 
TAMs to produce IL-1β, thereby triggering CXCR4 
systemic inflammation and leading to breast cancer cell 
metastasis. In summary, loss of function or mutation of 
TP53 reprogrammed TAMs to promote tumor immune 
escape through different regulatory mechanisms (Fig. 3).

Fig. 3  Schematic diagram of tumor cells lacking WT p53 or express-
ing Mut p53 against NK cell killing. WT p53 can directly up-reg-
ulate the expression levels of ULBP1 and ULBP2, members of the 
ligand family of NKG2D on the surface of tumor cells and enhance 
the anti-tumor immune response mediated by NK cells. JQ1, a BET-
bromine domain inhibitor of oncogene MYCN, can down-regulate the 

levels of c-MYC and p53, and then down-regulate the expression of 
NKG2DL, making tumor cells resistant to NK cell-mediated killing. 
Dichloroacetate (DCA), a glycolytic inhibitor, can also down-regulate 
the expression of MICA, MICB and ULBP-1 of NKG2DL family in 
tumor cells lacking WT p53 or expressing Mut p53, thus mediating 
immune escape
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TP53 regulates the cell proliferation 
and differentiation of immunosuppressed cells

MDSCs, which are a diverse group of myeloid-like cells 
in the TME, play a crucial role in anti-tumor activities 
by suppressing CTL activation [61]. The Fas–FasL cell 
death pathway was initially identified as a key regulator of 
CTL activity, and Fas-mediated apoptosis has been found 
to regulate MDSC homeostasis. In human colon cancer 
cells, activation of p53 upregulates Fas on the surface of 
MDSCs, which increases the sensitivity of MDSCs to FasL-
induced cell apoptosis, that is, by activating the intrinsic 
p53–Fas–FasL pathway of MDSCs, promotes cell apopto-
sis, and reactivates CTL-mediated antitumor immunity [62]. 
DLEC1, a tumor suppressor linked to p53, interacts with the 
oncogenic signaling molecule, STAT3, in response to IL-6 
stimulation, blocks the JAK2/STAT3 signaling pathway, and 
inhibits STAT3 phosphorylation, thereby controlling tumor 
progression [63]. Although Katz et al. [64] found that the 
GM–CSF/JAK2/STAT3 axis drives the cell proliferation of 
liver-associated MDSCs, and inhibition of STAT3 activates 
cell apoptotic signaling pathways in MDSCs, including the 
upregulation of the pro-apoptotic factor Bax and downregu-
lation of the expression of the anti-apoptotic factor BCL-2. 
Thus, Mut p53 induces the cell proliferation by promoting 
STAT3 phosphorylation, leading to tumor immune escape. 
Ferroptosis is an iron,and ROS-dependent regulation of 
cell death induced by the degradation of heme oxygenase 
1 (Hmox1), a downstream molecule of p53, and the release 
of free iron to produce ROS in the mitochondrial membrane 
[65]. Reportedly, ASAH2, a molecule highly expressed on 
the surface of tumor cells in a mouse colon cancer model, 
was also upregulated on the surface of MDSCs in TME and 
affected ferroptosis to promote the survival and accumu-
lation of MDSCs by inhibiting the p53-Hmox1 pathway, 
consistent with the finding that silencing p53 reduced ROS 
levels in MDSCs and inhibited ferroptosis in MDSCs [66]. 

Thus, Mut p53 leads to the accumulation of immunosuppres-
sive cellular MDSCs in the TME, mainly by blocking the 
apoptotic signaling pathway of MDSCs (Fig. 4).

Treg cells, an immunosuppressive subset of CD4 + T 
cells, primarily ensure immune balance and self-tolerance. 
They are abundant in the TME and inhibit CTL-driven anti-
tumor responses.Currently, there are fewer studies on the 
mechanisms through which p53 regulates Tregs to influ-
ence antitumor immunity; however, in recent years, increas-
ing evidence has suggested that Mut p53 promotes tumor 
immune escape by affecting Treg cell differentiation. p53 
interacts with non-coding RNAs (lncRNAs and miRNAs) to 
regulate tumor immune escape. LncRNA MEG3 suppresses 
tumor immune escape by upregulating the expression of 
miR-149-3p through MDM2-mediated p53 and decreasing 
the expression of FOXP3, which ultimately reduces the dif-
ferentiation and maturation of Treg cells [67]. In addition, 
miR-34, which is positively regulated by p53, can take part 
in the feedback loop of TGF-β. Elevated TGF-β activity 
inhibits miRNA-34a expression, leading to enhanced pro-
duction of chemokine CCL22, which recruits Treg cells to 
promote immune escape [68]. p53 deficiency in prostate, 
ovarian, and pancreatic cancers increases the number of 
Tregs in TME. In conclusion, Mut p53 can promote tumor 
immune escape by regulating Treg cell differentiation and 
recruiting Treg cells, and immunotherapy targeting Mut p53 
and Treg cells plays an essential role in suppressing tumor 
immune escape.

In summary, Mut p53 mediates tumor immune escape by 
regulating immune cells through different mechanisms in 
different tumor types, providing a basis for the development 
of different immunotherapeutic strategies. However, Mut 
p53 ultimately promotes tumor immune escape by regulating 
the secretion of different cytokines by tumor and immune 
cells, making it an immunosuppressive signaling molecule. 
The literature sources of the molecules involved in the above 
mechanisms are shown in Table 1.

Fig. 4  Schematic diagram 
of Mut p53 reprogramming 
TAMs. Over-expressed histone 
deacetylase SIRT1 in tumor 
cells promotes the expression 
of CXCL12 on the surface 
of tumor cells, promotes the 
high expression of CXCR4 on 
the surface of macrophages, 
and promotes the recruitment 
of M2-like TAMs. Mut p53 
tumor cells selectively release 
exosomes rich in miR-1246. 
Macrophages ingest these 
exosomes and trigger miR-
1246-dependent self-reprogram-
ming, forming M2-like TAMs
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Mut p53 promotes immune escape 
by regulating non‑immune cell components

In the TME, CAFs are the main components of the tumor 
stroma and exert immunosuppressive effects by secreting 
growth factors, extracellular matrix proteins and inflam-
matory ligands, thereby promoting non-restrictive tumor 
cell growth, angiogenesis and therapeutic resistance [69]. 
Mut p53 can affect tumor progression by altering the 
activity and function of CAFs. Mut p53 binds to STAT3 
to promote STAT3 phosphorylation and upregulates the 
expression of α-smooth muscle actin, fibroblast-derived 
factor 10 and CXCL12 to activate CAFs [70]. CAFs of 
Mut p53 significantly affect the composition and func-
tion of immune cells in the TME by secreting cytokines, 
including CXCL12, stromal cell-derived factor 1 (SDF-1) 
and IL-6, mainly manifesting tumor-suppressive effects 
[71]. In addition, in colorectal cancer, ROS produced by 
mutant p53 tumor cells facilitate CAF-secreted vascular 
endothelial growth factor to regulate angiogenesis and 
ultimately promote tumor growth [72]. Therefore, Mut 

p53 promotes tumor immune escape by activating CAFs 
and regulating their secretion of growth factors. In recent 
years, CAFs have emerged as novel targets for cancer ther-
apy, and mutated p53, a key regulator of CAF activation, 
has shown potential as a key pathway for novel therapeutic 
interventions. mesenchymal stem cells (MSCs) are also 
important cellular components of the TME that contribute 
to tumor growth and metastasis [73]. Mut p53 promotes 
tumor growth and proliferation by recruiting MSCs to 
the TME through a CXCL12-dependent mechanism [74]. 
Meanwhile, MSCs with Mut p53 are considered the cells 
of origin of bone tumors, affecting osteogenic differen-
tiation and influencing the properties of osteosarcoma 
TME components such as inducible nitric oxide synthase, 
CCL5, IL-6 and TGF-β expression at higher levels, ulti-
mately promoting osteosarcoma development [75].

In summary, Mut p53 induces the production of an 
immunosuppressive TME by promoting the secretion of 
various cytokines by non-immune cells in the TME, inter-
acting with tumor cells, and ultimately promoting immune 
escape.

Table 1  The action mechanism of some molecules described in this paper and its literature sources

Immune cells 
regulated by Mut 
p53

Mutp53-
regulated 
protein

Regulation by Mut p53 Fuction References

CTL cell BCL-2 Interact with BCL-2 Pro-cancer: can reduced GzmB-mediated 
CTL killing

Ben Safta et al. [42]

DAB2IP Down-regulating DAB2IP Pro-cancer: can promote the activation 
of NF-κB and inhibited the activation 
of TNF-α on ASK1/JNK, and finally 
promoted the survival of tumor cells

Di Minin et al. [44], Sorrentino 
et al. (2022)[112]

OX40 Down-regulating OX40 Pro-cancer:can reduce the number of 
CTL and Th cells

Buchan et al. [47]

ICOS Up-regulating ICOS Pro-cancer: can increase the infiltration 
of Treg cells

Amatore et al. [48]

NK cell ULBP1/2 Down-regulating ULBP1/2 Pro-cancer:can attenuat NK cell-medi-
ated anti-tumor immune responses

Duan et al. [51]

MDSCs cell STAT3 Promote STAT3 phosphorylation Pro-cancer:can induce the cell prolifera-
tion of MDSCs

Li et al. [51], Guha et al. [64]

ROS Down-regulating ROS Inhibit ferroptosis in MDSCs Chang et al. [65], Zhu et al. [66]
TAMs cell miR-1246 Up-regulating miR-1246 Pro-cancer:can promote polarization of 

M2 macrophages
Cooks et al. [59]

CSF1R Up-regulating CSF1R Pro-cancer: can promote the first step of 
STAT3-mediated tumor cell meta-
static cascade epithelial-mesenchymal 
transformation

Shi et al. [57]

IL-1β Up-regulating IL-1β Trigger CXCR4 systemic inflammation 
and lead to breast can Pro-cancer: can 
cer cell metastasis

Wellenstein et al. [60]

Treg cell miR-149-3p Down-regulating miR-149-3p Pro-cancer: can promote Treg cell dif-
ferentiation and maturation

Xu et al. [67]

miR-34 Down-regulating miR-34 Pro-cancer: can recruit Treg cells to 
promote immune escape

Yang et al. [68]
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Strategies for targeting Mut p53

The current mechanism of therapeutic action targeting Mut 
p53 involves the activation or restoration of WT p53 func-
tion in tumor cells. As mentioned above, Mut p53 forms 
an immunosuppressive microenvironment through different 
pathways. Therefore, WT p53 reactivation in the TME rep-
resents a promising therapeutic strategy to reverse immu-
nosuppression and reshape the immunological landscape to 
support antitumor immunity.

p53‑based vaccines and specific antibodies

P53-derived peptides have been investigated as targets for 
various immunotherapeutic strategies, including vaccines, 
bipotent antibodies and TCR-like antibodies. Researchers 
have tested a modified cowpox virus (MVA) vaccine encod-
ing WT p53 in combination with gemcitabine in patients 
with platinum-resistant ovarian cancer, and five of eleven 
subjects were able to induce CD8 + and CD4 + T cell 
responses [76]. In addition, studies on the p53 MVA vaccine 
in combination with immune checkpoint inhibitors, includ-
ing PD-1/PD-L1 and CTLA-4 antibodies, are also under-
way. Although the vaccine was safe, induced an anti-Mut 
p53 immune response and achieved disease stabilization in 
some patients, there were no clinically significant benefits. 
Bispecific antibodies are innovative cancer immunotherapies 
with dual specificity for tumor antigens and TCR-CD3 com-
plexes [77]. A Mut p53-based bispecific antibody recognizes 
neoantigens from the TP53 R175H mutation site and TCR-
CD3 complex, overcoming the lack of neoantigen presen-
tation and selectively redirecting T cells to recognize Mut 
p53 tumor cells [78]. Because of its intracellular localization 
p53, it is not recognized by classical therapeutic antibodies. 
TCR-like antibodies mimic the ability of T cells to recognize 
MHC I-presenting peptides and are specific to pMHCs that 
present WT and Mut p53 antigens [79]. TCR-like antibodies 
have shown promising in vitro and in vivo antitumor effects 
in animal models [80]. In conclusion, most vaccines and 
antibodies against Mut p53 are currently only validated in 
animal models but provide avenues for future tumor therapy. 
Simultaneously, current antibody therapies have overcome 
the previous limitation of not recognizing intracellular anti-
gens, which provides new evidence for further development 
of antibodies targeting solid tumors.

Molecular delivery targeting Mut p53

Although p53-based vaccines and specific antibodies have 
shown antitumor activity, they do not show clinical ben-
efits; therefore, therapeutic strategies for Mut p53 proteins 

in tumor cells remain limited. Identifying effective and safe 
therapeutic strategies for Mut p53 is of great significance. 
Marco et al. [81] found that the delivery of oligonucleotides 
through modified nanomaterials can overcome the cancer 
resistance of refractory tumors carrying Mut p53 apoptosis 
because these nanostructures can inhibit the mTOR sign-
aling pathway and anti-apoptotic protein Bcl-2. Resistance 
to temozolomide in the treatment of glioblastoma (GBM) 
is related to the upregulation of O6-methylguanine-DNA 
methyltransferase (MGMT), whereas the expression of 
MGMT in tumor cells is negatively regulated by WT p53 
[82–84]. Researchers have developed a systemic nanode-
livery platform (scL) for tumor-specific targeting that can 
deliver WT p53 through the blood–brain barrier, effectively 
target GBM and cancer stem cells (CSC), downregulate 
MGMT and induce GBM cell apoptosis. Simultaneously, the 
combination of scL-p53 and TMZ increased the antitumor 
efficacy of TMZ [85]. Therefore, scLs may provide a novel 
antitumor therapeutic approach that targets the delivery of 
molecules. In addition, researchers have developed a redox-
responsive nanoparticle (NP) platform that can effectively 
deliver p53-encoded mRNA to induce cell cycle arrest and 
apoptosis, significantly delay the proliferation of p53-null 
hepatocellular carcinoma and non-small cell lung cancer 
cells, and considerably improve the sensitivity of tumor 
cells to mTOR inhibitors [86]. The mechanism of NP-medi-
ated p53 gene delivery to decrease tumor progression is to 
inhibit tumor angiogenesis [87]. KRAS-TP53 co-mutation is 
closely related to poor prognosis of gastrointestinal tumors. 
Researchers have proposed a novel double-targeted HA-
TPP/A nanocomplex that leads to the ubiquitin-dependent 
proteasomal degradation of Mut p53 by targeting mitochon-
drial damage, destroying its GOF activity, increasing the 
sensitivity of AMG510-induced tumor cell killing, and thus 
reducing the proliferation and migration of gastrointestinal 
cancer cells with KRAS-TP53 co-mutation [88]. There-
fore, the delivery of molecular-targeted Mutp53 through 
nanocomposites has become a novel antitumor therapeutic 
approach, and the study of combined drug transformation 
based on its different mechanisms will also be focused on 
further improving the antitumor efficacy.

WT p53 reactivation synergistic immunotherapy

Currently, combination drug therapy is an effective anti-
tumor treatment strategy. In response to the variability in 
immune cell abundance in different tumor cells, it is cru-
cial to explore immunotherapy for WT p53 reactivation 
in combination with other effective immunotherapeutic 
approaches to enhance immune cell recruitment and main-
tain the normal function of antitumor immune cells. Several 
p53 activators have been reported, but most studies are in 
the preclinical stage owing to the lack of specificity. The 
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ubiquitin ligase mouse double minute 2 homolog (MDM2) 
is a major negative regulator of p53 and closed-loop negative 
feedback regulation of MDM2-p53 in normal cells main-
tains a dynamic balance between MDM2 and p53 expression 
levels [89]. Data from cancer cell lines, a cholera mouse 
model, and patients with melanoma suggest that MDM2 
inhibitor-mediated pharmacological p53 reactivation trig-
gers the ERV-dsRNA-IFN pathway in tumor cells, thereby 
altering the TME to a therapeutically responsive phenotype 
and triggering tumor immune surveillance [90]. Immune 
checkpoint PD-L1 on the surface of tumor cells binds to 
PD-1 on the surface of CTL to inhibit CTL activation and 
induce tumor immune escape [91]. The MDM2 inhibitor 
HDM201 triggered antitumor adaptive immunity in WT p53 
tumors alone and further enhanced adaptive immunity by 
blocking the PD-1/PD-L1 pathway [92]. It suggests that WT 
p53 is required for the antitumor immune response, which 
explains the potential mechanism of MDM2 inhibitor com-
bined with immune checkpoint inhibitor therapy. In addition, 
the team of professors Duda DG and Shi J jointly developed 
an mRNA tumor-targeting nanoparticle strategy to restore 
the function of WT p53, which inhibited the proliferation 
of Mut p53 hepatocellular carcinoma cells while inhibiting 
tumor growth in combination with anti-PD-1 therapies and 
significantly enhanced antitumor immunity in hepatocellular 
carcinoma [93]. This finding reaffirms the importance of WT 
p53 activators in combination with PD-1/PD-L1 antibodies 
against tumors. Among the patients with diffuse large B-cell 
lymphoma receiving CD19 chimeric antigen receptor (CAR) 
therapy, those with Mut p53 have poorer overall survival 
rates than those with WT p53; therefore, TP53 is a valuable 
prognostic biomarker [94]. This suggests that the impact of 
TP53 abnormalities on CAR-T cell therapy and the need for 
further research on the related signaling pathways should 
be considered when assessing the likelihood of success of 
CAR-T therapies in future and designing the clinical trials 
for high-risk patients.

In conclusion, Mut p53 can affect the immune ecological 
site of the TME, WT p53 expression is beneficial for immu-
notherapy, and the current therapeutic strategy for WT p53 
reactivation in synergistic immunotherapy has shown prom-
ising antitumor efficacy in animal experiments. Therefore, 
combining small-molecule drugs that restore WT p53 activ-
ity with immunotherapy for tumor patients may improve the 
success rate of antitumor therapy.

Discussion

At present, the TME, which is composed of the ECM, 
stromal cells, immune cells and blood vessels, plays a 
key role in tumor development and chemotherapy resist-
ance [95]. It is usually associated with the evasion of the 

immune system. The loss of function of WT p53 is key 
to the formation of an immunosuppressive microenviron-
ment, which not only suppresses the antitumor immune 
response but is also beneficial to the proliferation of tumor 
cells [33]. Mut p53 can produce not only a proinflamma-
tory but also an antiinflammatory environment. Mut p53 
subtypes can have a profound impact on gene expression 
patterns, many of which lead to tumor cell proliferation 
and chemotherapy resistance in various ways [96]. Mut 
p53 regulates immune escape by increasing the expression 
of programmed death ligand 1 (PD-L1) in tumor cells [97]. 
Mut p53 decreases the expression of miR-34/miR-200 dur-
ing mesenchymal transformation, resulting in an increase 
in PD-L1 expression in NSCLC cells [98]. Higher PD-L1 
levels show significant benefits for PD-1/PD-L1 block-
ing therapy, highlighting Mut p53 as a potential target for 
immunotherapy. In cervical cancer, PD-L1 levels can be 
increased by miR-18a by targeting SOX6 to activate the 
Wnt/β-catenin pathway and inactivate p53 signaling [99]. 
Therefore, immune checkpoint inhibitors have potential 
efficacy in Mut p53 tumors. In addition, inflammation may 
promote the occurrence and development of cancer and 
induce the formation of immunosuppressive microenviron-
ment, which is affected by the coordination of several pro-
inflammatory cytokines and carcinogenic pathways, which 
include NF-kB, MAPK, mTOR and STAT3 signaling path-
ways. These carcinogenic pathways promote the stabil-
ity of Mut p53, thus blocking the interaction between the 
carcinogenic pathways and proinflammatory cytokines to 
reduce carcinogenic inflammation and Mut p53 expression 
[100]. Therefore, inhibitors targeting these carcinogenic 
pathways, such as AG490 and WP1066 [101, 102], mTOR 
inhibitors [103] targeting the STAT3 pathway, LY3007113 
[104] targeting p38MAPK and 17-AAG [105] targeting 
HSP90, may have promising antitumor efficacy alone or 
in combination. Many of these inhibitors are already in 
preclinical or clinical trials and have shown promising 
results. In addition, patients with Mut p53 appear to be 
more sensitive to immunosuppressant therapy. Mut p53 
can affect immune cell infiltration, cytokine secretion, and 
inflammatory pathways in the TME and thus significantly 
affect the antitumor immune response. Mutated p53 cells 
increase the load of novel antigens and improve the inhibi-
tory response to immune checkpoints. The recovery of WT 
p53 can induce an antitumor immune response in immune 
cold tumors, but antitumor immune activation and tumor 
regression of Mut p53 are heterogeneous in cancer types 
[106]. At present, other immunotherapies such as adoptive 
cell therapy, monoclonal antibodies, oncolytic viruses, and 
immune system regulators have shown efficacy in vari-
ous types of cancer; however, their efficacy needs to be 
explored in combination with WT p53 reactivation ther-
apy. In summary, exploring the mechanism through which 
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Mut p53 promotes tumor immune escape is highly signifi-
cant to further improve the efficacy of antitumor immunity.

Cell-to-cell interactions are crucial for cellular commu-
nication; therefore, choosing appropriate tools to evaluate 
the role of p53 is a prerequisite for exploring the mecha-
nism of tumor immune escape promoted by Mutp53. Bulk 
RNA-sequencing (RNA-seq), single-cell RNA sequencing 
(scRNA-seq), and other RNA-seq techniques have emerged 
to reveal transcriptome heterogeneity. Bulk RNA-sequenc-
ing involves transcriptome sequencing of a large number 
of mixed cells; however, this method could only obtain the 
average level of gene expression [107]. ScRNA-seq enables 
the study of gene expression at the single-cell level and 
has shown advantages in discovering novel cell types and 
revealing cell heterogeneity; however, single-cell sequencing 
has lost tissue spatial location information [108]. The latest 
developments in the spatial transcriptome (ST) can indicate 
both the level of gene expression and the spatial location of 
cells [109]. Researchers have tested 16 cell–cell interaction 
methods by combining scRNA-seq and ST data and have 
shown that the interactions predicted using different tools 
are highly random [110]. This tool, named CellTrek, can 
map single cells to the spatial coordinates of tissue sections 
according to scRNA-seq and ST data, and study single-cell 
data with spatial information more flexibly and directly 
[111].

In summary, there is a very high probability of TP53 
mutations in tumors. We described the specific mechanism 
through which Mut p53 mediates tumor immune escape by 
forming an immunosuppressive microenvironment, high-
lighting the key tumor-suppressive role of p53. p53 is con-
sidered an important target for antitumor immunotherapy, 
and various small-molecule drugs have been developed. 
Targeting Mut p53 therapy in combination with other immu-
notherapeutic approaches is also being explored. However, 
many questions remain unanswered, such as the types of 
TP53 mutations and factors affecting their mutation profiles, 
the specific mechanisms regulating TP53 mutations, and 
the mechanisms through which the p53 pathway interacts 
with other pathways to affect tumor progression. Currently, 
therapeutic agents targeting Mut p53 are under experimental 
and clinical investigations. In addition to drug combination 
therapy, WT p53 drug resistance, complex changes within 
tumor cells after drug administration to cope with off-target 
effects and toxicity, and interspecies variability between 
animals and humans leading to the need for in vitro models 
to verify drug efficacy are all issues that need attention in 
future research.
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