Table 1.
Method | Evaluation | Centre A | Centre B | Centre C | Centre D |
---|---|---|---|---|---|
FedAvg | AUC | 0.672 | 0.726 | 0.711 | 0.798 |
Accuracy | 0.634 | 0.536 | 0.660 | 0.639 | |
FedProx | AUC | 0.658 | 0.718 | 0.731 | 0.766 |
Accuracy | 0.607 | 0.681 | 0.660 | 0.557 | |
Moon | AUC | 0.663 | 0.661 | 0.724 | 0.775 |
Accuracy | 0.634 | 0.565 | 0.679 | 0.689 | |
HarmoFL | AUC | 0.684 | 0.723 | 0.707 | 0.773 |
Accuracy | 0.616 | 0.696 | 0.604 | 0.820 | |
pFedMe | AUC | 0.689 | 0.706 | 0.744 | 0.769 |
Accuracy | 0.634 | 0.681 | 0.623 | 0.787 | |
pFedFSL | AUC | 0.649 | 0.742 | 0.728 | 0.796 |
Accuracy | 0.652 | 0.623 | 0.679 | 0.656 | |
RFLM | AUC | 0.710 | 0.798 | 0.809 | 0.869 |
Accuracy | 0.598 | 0.710 | 0.755 | 0.689 |
RFLM robust federated learning model.