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Abstract

Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD) is a relatively 

common inborn error of metabolism, but due to difficulty in accurately predicting affected status 
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through newborn screening, molecular confirmation of the causative variants by sequencing of 

the ACADVL gene is necessary. Although the ACMG/AMP guidelines have helped standardize 

variant classification, ACADVL variant classification remains disparate due to a phenotype that 

can be nonspecific, the possibility of variants that produce late-onset disease, and relatively high 

carrier frequency, amongst other challenges. Therefore, an ACADVL-specific variant curation 

expert panel (VCEP) was created to facilitate the specification of the ACMG/AMP guidelines for 

VLCADD. We expect these guidelines to help streamline, increase concordance, and expedite the 

classification of ACADVL variants.
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1. Introduction

Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD)(OMIM 

201475) is an autosomal recessive disorder caused by biallelic pathogenic variants in 

the ACADVL gene. The VLCAD (EC 1.3.8.8) enzyme, encoded by the ACADVL gene, 

catalyzes the mitochondrial beta-oxidation of long-chain fatty acids with a carbon length 

chain of 14–20 [1,2]. The frequency of VLCADD is about 1:30,000 to 1:100,000 live births 

[3,4].

Symptoms of VLCADD include hypoglycemia, cardiomyopathy, hepatopathy, 

rhabdomyolysis, myoglobinuria, and myopathy and can present in infancy or later in 

childhood or adulthood. The disease continuum varies from a severe early-onset form with a 

high incidence of cardiomyopathy and high mortality; an intermediate form with childhood 

onset, usually with hypoglycemia; and a milder late onset form primarily presenting with 

myopathy in adulthood. Symptoms can be triggered by prolonged fasting, exercise or fever, 

and other stressors [5–8].

Treatment includes a low-fat diet, addition of medium chain triglyceride oil (MCT) or 

triheptanoin, and avoidance of precipitating factors such as prolonged fasting, stress, and 

dehydration. Standard care for hypoglycemia, rhabdomyolysis, and cardiomyopathy is 

indicated. Long-term outcomes have improved with early identification and treatment of 

disease [9–11].

Patients with VLCADD are now typically identified through newborn screening (NBS) by 

tandem mass-spectrometry analysis of acylcarnitines in dried blood spots. The NBS marker 

for VLCADD is elevated C14:1-acylcarnitine. Plasma acylcarnitine profile, performed as 

part of confirmatory tests to follow-up an abnormal newborn screen result, may also reveal 

the classic profile, but often, the plasma acylcarnitine profile is non-informative, because 

the patient is metabolically stable. For this reason, follow up testing usually includes 

molecular analysis. However, not all ACADVL variants have been completely curated 

or investigated to show or prove pathogenicity. In fact, many ACADVL variants remain 

classified as variants of uncertain significance (VUS) [12,13]. For example in Clinvar, a 

publicly accessible database of classified sequence variants (https://www.ncbi.nlm.nih.gov/
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clinvar/) [14,15], there are 499 ACADVL VUSs as of February 2023. The presence of so 

many VUSs confuses and delays diagnosis and therapy. Additionally, biochemical functional 

analysis of each variant is not commonly available at the clinical level and the enzyme assay 

in patient cultured skin fibroblasts or blood cells is onerous and may delay the diagnosis 

[16,17]. More recently, D’Annibale et al [18] have described a microtiter plate assay to study 

and reclassify inactivating variants expressed in ACADVL null HEK293T cell lines.

Harmonization of variant interpretation and classification is a desired step to improve 

the quality of genetic services across clinical laboratories. In response to an expanding 

repertoire of sequence variants encountered by massively parallel sequencing, a consensus 

framework for sequence variant interpretation was endorsed and published by the 

American College of Medical Genetics and Genomics (ACMG) and Association for 

Molecular Pathology (AMP) [19]. Although many laboratories have adopted this framework, 

inconsistencies in sequence variant classification within and between laboratories have been 

highlighted [20–23], prompting many to refine and/or expand the framework within the 

United States and internationally [24,25]. As part of the strategic goals of the Clinical 

Genome Resource (ClinGen) [26], an expert assessment of gene-level sequence variant 

interpretation using a standardized approach by convening a Variant Curation Expert Panel 

(VCEP) [27] can facilitate high quality curation within ClinVar. Additionally, the U.S. Food 

and Drug Administration (FDA) now recognizes and supports the ClinGen VCEPs as a 

source of validated information (https://www.fda.gov/media/119313/download). Together, 

these activities can help facilitate and expedite the clinical reporting of pathogenic variants.

Here we report the work of ClinGen’s Metabolism Expert Panel’s Acyl-CoA Dehydrogenase 

Very Long Chain (ACADVL) VCEP, which adapted the ACMG/AMP framework and best 

practices from ClinGen’s Sequence Variant Interpretation (SVI) working group.

2. Methods

The ACADVL VCEP is a subset of the Inborn Errors of Metabolism Clinical Domain 

Working Group (CDWG) consisting of a diverse team of individuals with expertise 

in various aspects of clinical genomics and molecular diagnostics, including clinicians, 

genetic counselors, coordinators, clinical geneticists, and laboratory diagnosticians (https://

clinicalgenome.org/affiliation/50048/). A small leadership team consists of two co-chairs 

and two ClinGen coordinators, serving as a primary point of contact for the group. These 

individuals represent multiple distinct backgrounds and two different countries, including 

Canada and the United States. The ACADVL VCEP meets biweekly via teleconferencing 

software, as well as communicating individually through email, and document sharing 

websites. Our ACMG/AMP specifications are updated periodically, to find the most current 

information please visit https://cspec.genome.network.

The ACADVL VCEP assigned small groups of individuals to review each criteria present 

in the general ACMG/AMP framework and determine whether they were applicable to 

interpreting variants in ACADVL given the associated condition’s inheritance pattern, 

phenotypic data, and prevalence. Each of these groups reviewed the available published data, 

as well as limited internal data provided by clinicians and group members, and presented 
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their findings to the VCEP accordingly. Those criteria that were deemed not applicable to 

ACADVL variant interpretation were excluded, while other criteria that required gene or 

disease-specific modifications were adapted accordingly. Additionally, the general guidance 

provided by the SVI working group to all VCEPs provided further specifications for certain 

criteria. An ACADVL-specific consideration that was established prior to piloting the codes 

was the requirement that the variant to be described with HGVS cDNA nomenclature as well 

as HGVS protein nomenclature as there are publications that utilize protein naming from 

the processed protein and confusion may occur if the HGVS cDNA nomenclature is not 

specified.

A collection of 41 variants were chosen as a pilot study based on expert recommendation 

to determine the VCEP’s concordance with published classifications. A team of ClinGen 

biocurators consisting of both community volunteers and paid employees compiled all 

published information on each variant and applied the ACADVL-specific framework to 

determine each variant’s classification. This information was presented to the VCEP and 

contrasted to already-published and classifications from external labs, allowing further 

refinement of the specifications based on the results of these curations. These guidelines 

were approved by the ClinGen SVI.

3. Results

Existing ACMG/AMP classification guidelines were specified for ACADVL based on 

VLCADD, including determining frequency thresholds, functional assay specifications, and 

specificity of the disease presentation, as well as modifying the strength for several criteria 

(Table 1).

3.1 BA1/BS1/PM2

BA1 and BS1 are codes utilizing large population databases to determine if a variant is 

too frequent to be plausibly pathogenic. PM2 is a population code used to determine if 

a variant is sufficiently rare that it could plausibly be pathogenic. The strength of PM2 

was originally intended to be used as a moderate strength, but based on SVI guidance, 

the ACADVL VCEP utilized the evidence at the supporting strength (PM2_Supporting, 

https://clinicalgenome.org/docs/pm2-recommendation-for-absence-rarity/). To determine the 

allele frequency cutoffs for BA1, BS1, and PM2, we utilized an allele frequency calculator 

(https://cardiodb.org/allelefrequencyapp/) and used the estimated prevalence of VLCADD 

of 1:30,000 to 1:100,000 births [28]. We used 0.75 for penetrance to account for mild or 

late onset VLCADD that may develop at adulthood. The maximum genetic contribution 

was set to 1 as all cases of VLCADD are caused by pathogenic variants in ACADVL. 

The BA1 threshold was calculated conservatively by utilizing a prevalence of 1:30,000 

and a maximum allelic contribution of 1; this results in a conservative allele frequency 

estimate of greater than or equal to 0.007 (0.7%) for application of BA1 (Table 2). The 

BS1 threshold was also calculated conservatively utilizing a prevalence of 1:30,000 and a 

maximum allelic contribution of 0.5, which results in an allele frequency of greater than 

or equal to 0.0035 (0.35%) for application of BS1. The most common pathogenic variant, 

c.848T>C (p.Val283Ala), accounts for approximately 20% of all pathogenic alleles, which 
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helped guide the maximum allelic contribution for calculating PM2 [29]. The maximum 

credible population allele frequency was calculated considering a prevalence of 1:100,000 

for PM2, maximum allelic contribution of 0.2, with maximum genetic contribution and 

penetrance remaining static as previously established, which results in a frequency of 0.0007 

(0.07%), and the ACADVL VCEP multiplied this by 1.5 to account for mildly pathogenic 

variants being present in carriers within the population databases and reached a cut off of 

0.1% for PM2. Therefore, variants with a highest population minor allele frequency (MAF) 

<0.001 (0.1%) in any continental population with >2000 alleles in gnomAD will meet 

PM2_Supporting.

3.2 PP3/BP4

For utilizing in silico predictors, we recommend the meta-aggregator REVEL to avoid 

relying on any one specific computational tool or method [30]. Additionally, REVEL is 

easily available to any curator utilizing the ClinGen Variant Curation Interface (VCI) and 

other variant curation platforms. To determine our score thresholds for PP3/BP4, we took 

into account the known scores for ACADVL Pathogenic (P)/Likely Pathogenic (LP) and 

Benign (B)/Likely Benign (LB) variants in ClinVar. Over 80% of the collected P/LP variants 

had a REVEL score ≥0.75 and the majority of B/LB variants had a REVEL score ≤0.5 

(Figure 1), although this analysis was impeded by the low number of B/LB missense 

ACADVL variants. Based on this analysis, we set the PP3 threshold for missense variants at 

≥0.75 and the BP4 threshold for missense variants at ≤0.5. These thresholds are concordant 

with those established by other VCEPs (https://cspec.genome.network/cspec/ui/svi/) [32–

34]. In-frame deletions and insertions are not supported by many of the predictors in 

REVEL, so for these variants, PROVEAN and MutationTaster are used instead. Predictions 

from these two tools must be concordant to invoke PP3/BP4 for in-frame deletions and 

insertions.

For splicing predictors we recommend a combination of SpliceAI, MaxEntScan, and 

NNSplice. This criteria can only be applied if the variant does not meet criteria for PVS1, 

in order to prevent counting the same type of evidence multiple times. All three of these 

predictors are publicly available and easily accessible through the ClinGen VCI and other 

variant curation platforms. PP3 can be applied if the variant meets two of three of the 

following thresholds: a SpliceAI “high score” (Δ Score ≥0.5 “confidently predicted splice 

variants”), >15% reduction using MaxEntScan, or >5% reduction using NNSplice. If a new 

splice-site is predicted to be created, PP3 can be applied if the newly generated splice site is 

significantly stronger than the wild type site (Δ Score ≥ 0.5 using SpliceAI; >15% difference 

using MaxEntScan). BP4 can be applied if the variant meets two of three of the following 

thresholds: a SpliceAI Δ Score ≤0.2, <10% reduction using MaxEntScan, or <2% reduction 

using NNSplice. These guidelines are consistent with developer-recommended thresholds 

[35–37].

3.3 PVS1

According to SVI Guidance, ACADVL fulfills the three criteria to be eligible to apply 

PVS1: It has a definitive association with VLCADD, >3 loss of function (LoF) variants are 

classified as pathogenic without the use of PVS1, and LoF variants make up >10% of the 
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known variation in this gene. As such, we customized the guidance of the SVI according to 

the precise structure of ACADVL (Figure 2) [38].

The C-terminus region of ACADVL is not known to be essential for VLCAD function, 

therefore we only utilize PVS1_moderate for any variant that is not predicted to undergo 

nonsense-mediated decay. Any variants that result in a predicted in-frame consequence (such 

as splice dinucleotide variants or gross exon deletions) are also classified as PVS1_moderate 

unless predicted to disrupt a region critical to protein function, in which case this can be 

upgraded to PVS1_strong. There are no known biologically-relevant alternate transcripts for 

ACADVL that would impact interpretation or utilization of this criteria.

3.4 PM1

Mutational hot spots and well-established functional domains can be included at the 

moderate strength level. For the ACADVL VCEP, critical well-established functional 

domains were defined and utilized based on the known function of the protein as well 

as basic research defining the domains. These domains included nucleotide and substrate 

binding sites from amino acids 214–223, 249–251, 460–466, and 562, membrane binding 

domain from amino acids 481–516, and the mitochondrial signal peptide from amino acids 

1–40 [39,40]. Additionally, the CpG dinucleotides at arginine 326 and 429 have been 

defined as mutational hotspots and therefore meet PM1 [41].

3.5 BS3/PS3

The ClinGen SVI recommendations for utilizing functional evidence was published as 

the ACADVL VCEP was establishing these specifications [42]. The VCEP adapted 

these recommendations for ACADVL by requiring functional evidence be generated in 

non-patient derived material expressing a single ACADVL variant while testing of patient-

derived material can be considered under PP4. The VCEP uses the validation parameters 

established in Brnich et al. to set the strength level of the functional evidence and established 

that if a VLCAD enzyme assay shows ≥20% activity, PS3 can only be utilized at the 

supporting level. The ACADVL VCEP also established that splicing assays of variants in 

non-canonical splice sites can be used as PS3 evidence if there is no evidence of normal 

splicing, taking into account the impact of the splice defect in creating an in frame or out of 

frame product.

3.6 PP4

Application of the PP4 criterion provides strength of evidence based on individuals that meet 

a specific phenotype. This can present difficulties for VLCADD as the overt phenotypes, 

such as hypoglycemia, cardiomyopathy, rhabdomyolysis, and myopathy, are easily conflated 

with other disorders such as primary muscular dystrophies and cardiomyopathies. Further 

elevating the difficulty of distinction is that VLCADD has a wide spectrum of severity, 

which combined with the nonspecific nature of the clinical findings can make phenotypic 

identification difficult. As such, the general method of diagnosis for VLCADD is 

biochemical and genetic testing rather than presence of physical features. Dried blood spot 

acylcarnitine analysis performed during NBS is an important first-line test for VLCADD, 

with levels of C14:1 being the specific marker for the condition. However, even this results 
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in a high number of false positive results [43]. Therefore, the results based on NBS alone 

are not enough to be considered “highly specific” to VLCADD. Specialized biochemical 

testing, such as confirmatory plasma acylcarnitine profiles and direct analysis of VLCAD 

enzyme activity in fibroblasts or leukocytes, is widely accepted to clarify the diagnosis of 

VLCADD. While the former method is less specific, it is also far more clinically available 

than the specific VLCAD enzyme activity method. Therefore, when specifying this criteria, 

the general availability and specificity of clinical data was taken into account.

Different strength levels of PP4 can be applied based on the specificity of the biochemical 

results for any given affected individual that harbors the variant in question. The base 

level, PP4_Supporting, can be applied if at least one individual has a clinical assertion of 

reduced VLCAD enzyme activity, enzyme activity 21–27% of normal, NBS C14:1 levels 

>0.8 μM, or the combination of abnormal NBS “consistent with VLCADD” without specific 

levels and follow-up plasma acylcarnitine analysis “consistent with VLCADD” without 

specific levels. PP4_moderate requires a higher threshold and can only be applied if at 

least one individual has enzyme activity ≤20% of normal or a combination of NBS C14:1 

levels ≥1.0 μM with one of the following: enzyme activity 21–27% of normal, abnormal 

NBS “consistent with VLCADD” without specific levels, or follow-up plasma acylcarnitine 

analysis “consistent with VLCADD” without specific levels. To establish C14:1 cutoff 

values the working group reviewed the relevant literature including longitudinal multicenter 

NBS studies reporting population statistics for C14:1 levels as well as targeted studies 

reporting NBS findings in symptomatic VLCADD cases. Individuals with C14:1 values 

greater than or equal to 0.8 uM were found to be very rare in the general NBS population 

with a frequency of less than 1 in 10,000 whereas the majority of symptomatic VLCAD 

cases had a C14:1 level exceeding this threshold [44–47]. Therefore, a C14:1 threshold of 

greater than or equal to 0.8 uM was established as the criteria to invoke PP4_Supporting. 

Higher C14:1 levels provide even greater specificity for VLCADD detection but with a 

concomitant reduction in sensitivity. Considering these tradeoffs, a C14:1 threshold of 

greater than or equal to 1 uM was determined appropriate to invoke PP4_moderate. At 

this level, the positive predictive value for VLCAD detection has been reported to be 54% 

[46].

3.7 PP1/BS4/PM3

PP1 (segregation in affected family members) is utilized following the guidance developed 

by the Hearing Loss VCEP in conjunction with the SVI, which takes into account the 

logarithm of the odds (LOD) score and number of affected and unaffected segregations 

to determine if PP1 can be used at the supporting, moderate, or strong level [48]. 

BS4 (lack of segregation in affected family members) is utilized as established. Briefly, 

affected segregations and unaffected segregations are considered to calculate the LOD score. 

Affected segregations are affected individuals in a family, typically consisting of siblings, 

who harbor the variant in question and an additional variant and is calculated in the LOD 

by using the number of affected individuals that carry the variant minus 1. To utilize PP1 

at a supporting level, the LOD score must be ≥0.6, for the moderate level the score must 

be ≥1.2 and for strong, the score must be ≥1.5. For utilization of PM3 (detected in trans 
to a pathogenic variant), the ACADVL VCEP utilized SVI guidance for points per proband 
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without considering uncertain variants detected in trans (https://clinicalgenome.org/docs/

pm3-recommendation-for-in-trans-criterion-pm3-version-1.0/). This guidance considers the 

number of probands who carry a pathogenic or likely pathogenic variant confirmed in trans 
by either parental testing or cloning assays at a greater point value, while suspected in trans 
or homozygous occurrence is considered at a lower point value.

3.8 Codes not used

PS2 (de novo variant with paternity confirmed in an affected patient without family history) 

was not used as de novo variants in ACADVL are very rare but the possibility of de novo 

variation cannot be excluded and can therefore be considered under PM6. The maximum 

contribution of a de novo variant, even with maternity and paternity confirmed, can only 

be used at a moderate level. PS4 (prevalence in affected individuals versus controls) was 

not used due to a paucity of case controlled studies for VLCADD. BS2 (observed in the 

homozygous state in a healthy adult) was not used as there are mildly pathogenic variants 

that may have a difficult to diagnose adult-onset phenotype and individuals homozygous 

for such variants cannot be considered unaffected. BP5 (variant found in a case with an 

alternative molecular basis for disease) was not used as an individual could be a carrier of 

a pathogenic ACADVL variant and also be affected with a different disorder. PP2 (missense 

variant in a gene with few benign missense variants) was not used as there are benign 

missense variants in ACADVL. Similarly, BP1 (missense variant in a gene where loss of 

function is disease-causing) was not used as both missense and loss of function variants 

are pathogenic in ACADVL. BP3 (in-frame insertions/deletion in a repetitive region without 

known function) was not used as there are no repetitive regions without known function in 

ACADVL. BP6 and PP5 (reputable source classification) were not used due to ClinGen SVI 

guidance.

3.9 Piloting ACADVL-Specific Criteria

We applied our modified ACADVL-specific criteria to a pilot set of 41 variants to test 

our specifications. The variants were selected from private laboratory data or from the 

ClinVar database and included variants with previous assertions of benign/likely benign 

(B/LB), pathogenic/likely pathogenic (P/LP), and variant of uncertain significance (VUS) 

to allow for wide comparison of how our criteria could be utilized. Case, segregation, 

and functional evidence were gathered from limited internal data as well as any available 

published literature. Utilizing these guidelines, 15 variants were assigned a preliminary 

classification of P/LP, 16 as VUS, and 10 as B/LB. Each of these variants were curated in 

the ClinGen Variant Curation Interface [49], the classifications were approved by the general 

ACADVL VCEP, and the classifications submitted to the ClinGen Evidence Repository and 

ClinVar to be published (Table 3).

Compared to the previous ClinVar classifications, application of these criteria results in an 

increased number of VUS classifications and a separate increase in B/LB classifications. 

The elevated VUS rate primarily stems from the more stringent requirements of these 

criteria compared to the general ACMG/AMP guidelines, more accurately reflecting the 

lack of published data for these variants. Each of the B/LB classifications had either the 
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gene-specific BA1 or BS1 population threshold applied, demonstrating that these modified 

thresholds are essential for downgrading high frequency VUSs to a B/LB classification.

4. Discussion

As with other long-chain fatty acid oxidation disorders (LC-FAOD), VLCADD is associated 

with considerable clinical, biochemical, and molecular heterogeneity [9,45,50]. More classic 

or “severe” VLCADD cases tend to have biochemical and clinical features that lead to 

relatively straightforward diagnosis. However, mild or late-onset cases may be problematic; 

in some cases, initially abnormal NBS acylcarnitine results resolve upon repeat analysis, 

molecular testing may be inconclusive, or both [9,46,51]. A particular challenge relates 

to the inability to distinguish mild VLCADD from heterozygous carriers in some cases 

[52]. Furthermore, many children with LC-FAOD tend to be asymptomatic as neonates and 

into early childhood, with disease manifestations developing later in childhood, or even 

in adolescence or adulthood, so early clinical findings may not be present to help guide 

the diagnosis [10,44,50,53]. Therefore, following a positive newborn screen, confirmatory 

testing, primarily involving plasma acylcarnitine analysis and ACADVL gene sequencing, 

is crucial. Functional analyses, such as fibroblast acylcarnitine profiling, immunoblotting, 

and fibroblast or leukocyte enzyme analysis, may also be helpful if initial biochemical and 

molecular results are equivocal [9,44,45,54–57].

Improved second-tier NBS assays, such as the incorporation of a metabolomics approach, 

also have the potential to reduce the number of false positives and improve screening for 

VLCADD and other disorders [58]. In addition, some relatively clear genotype-phenotype 

correlations have been established, such as severe phenotypes related to inactivating or null 

alleles or a late-onset, mild phenotype being typical in those who harbor small in frame 

deletions/insertions or missense variants that are associated with residual enzyme activity, 

e.g., c.848T>C (p.Val283Ala), c.1349G>A (p.Arg450His), or c.1820G>C (p.Cys607Ser) 

[41,44,59–63]. Nevertheless, despite detailed clinical, biochemical, functional, and 

molecular analyses, it may not be possible to arrive at definitive VLCADD diagnosis in 

a given case and false negative diagnoses may also occur [64]. Therefore, the continued 

classification of ACADVL variants using the techniques described herein has the potential to 

provide important data to clinicians caring for potential VLCADD patients, especially those 

identified by NBS.

Due to ambiguity surrounding interpreting newborn screens, the ACADVL VCEP 

established specific guidelines for usage of PP4 in regards to the patient’s phenotype. To 

use PP4 at the supporting level, the NBS C14: levels must be >0.8 μM or an abnormal 

newborn screen must have follow-up plasma acylcarnitine levels. These minimal criteria are 

still often difficult to achieve using current literature search alone as often large cohorts 

of individuals with abnormal newborn screens are published without specifics of individual 

results or if any follow-up studies were performed. Utilizing biochemical results to apply 

PP4 is not unique to the ACADVL VCEP, the Phenylketonuria and Mitochondrial VCEPs 

also utilize laboratory values for application of PP4 while the Cerebral Creatine Deficiency 

Syndromes, Lysosomal Storage Disorders, and Glanzmann Thrombasthenia VCEPs use a 

points-based system that considers laboratory abnormalities for application of PP4 (https://
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cspec.genome.network). Establishing these specific enzymatic guidelines could be modified 

for application in other inborn errors of metabolism with a specific biochemical test used as 

confirmation.

The type of data available to variant curators in the ACADVL VCEP regarding patients 

identified before NBS is significantly different from information available in the NBS 

era. Cloning and characterization of the ACADVL gene and identification of nine variants 

in four patients was initially reported in 1996 [41,65]. Enzymatic activity in fibroblasts 

from patients was used to support the pathogenicity of the variants in addition to several 

biochemical markers including an abnormal acylcarnitine profile in plasma measured by 

MS/MS. Additional biochemical findings, although not specific for VLCAD deficiency 

and not often present, are: dicarboxylic aciduria without glycine conjugates measured 

by gas chromatography/mass spectrometry (GC/MS) analysis of urine, identification and 

quantitation of intermediates of unsaturated fatty acid metabolism in plasma by GC/MS 

analysis, and oxidation of 14C-labeled palmitic acid in intact fibroblasts. As stated 

above this extensive amount of patient information is not available for the majority 

of individuals identified by NBS, often making it difficult to reach likely pathogenic/

pathogenic classification of a variant.

Given the clear genotype-phenotype correlation that has been shown for ACADVL variants, 

functional assays that reflect the enzyme activity of individual variants are invaluable 

for interpretation efforts. However, the most widely available functional assays utilize 

patient-derived lymphocytes or cultured fibroblasts to determine the enzyme activity using 

dehydrogenation of palmitoyl-CoA [41]. While this is useful for patient diagnostic purposes, 

it is less useful in the context of single variant interpretation due to potential confounding 

effects of the other allele. In vitro enzyme activities have also been performed, but are 

comparatively uncommon. Expression systems ranging from COS-7 cells to E. coli have 

been utilized for these purposes [41,56]. These were initially utilized as-is for the functional 

assay criteria (PS3/BS3), however the ClinGen SVI recommendations required stricter 

validation parameters to utilize these assays at the strong evidence level due to concerns 

including consistent experimental environments and lack of proper controls [42]. The 

difficulty of securing reliable results for single variant enzyme activity is not unique to the 

ACADVL VCEP, with others such as the Phenylketonuria VCEP requiring mutant enzyme 

activity studies in mammalian cells to closely resemble the in vivo environment [66]. As 

such, broader adoption of these single variant expression assays for ACADVL and other 

metabolic genes is warranted and would allow for greater accuracy and precision in variant 

classification.

Establishing the PM2 cutoff for allele frequency low enough to be consistent with 

autosomal recessive VLCADD presented difficulties due to an increased carrier frequency 

for some common ACADVL variants associated with disease. Other VCEPs associated 

with autosomal recessive disorders have established PM2 cutoffs that vary from 0.1% 

for lysosomal storage disorders (GAA), to 0.02% for phenylketonuria (PAH), to 0.002% 

for mitochondrial disorders (ETHE1). This can vary even more widely for the benign 

cutoffs (BA1/BS1), with the Phenylketonuria VCEP utilizing a 1.5%/0.2% threshold and 

the Lysosomal Storage Disorder VCEP utilizing a 1%/0.5% threshold. The wide range of 
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frequency cutoffs reflects the value of disease-specific interpretation; accounting for disease 

prevalence, penetrance, and carrier frequency of variants in each of these specific cases 

allows for increased accuracy for variant classification compared to general interpretation. 

Establishing REVEL cutoffs for BP4 also presented a challenge due to the limited number 

of known benign missense variants. Notably, SVI-recommended thresholds for utilizing 

REVEL were published after our pilot study was completed [31]. Although our current 

recommendations for BP4 are in-line with existing expert panels [32–34], we intend to 

reexamine our REVEL thresholds with a larger dataset to determine how the Pejaver et al 

publication recommendations impact ACADVL-specific interpretation.

Herein we report the ACMG/AMP guideline specifications for ACADVL variant 

interpretation that have been ClinGen approved. Each criteria was thoroughly evaluated 

and either amended or excluded from consideration to allow for the complicated aspects of 

VLCADD. Usage of these guidelines will increase variant classification concordance and 

will assist in correct diagnoses for patients. All of the ACADVL VCEP variants have been 

submitted to ClinVar for public usage.
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Figure 1. 
Comparison of the REVEL score of missense variants to their ClinVar classification. 

Variants classified as pathogenic (P), likely pathogenic (LP), likely benign (LB), and benign 

(B) were compared to their REVEL score.
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Figure 2: Specification of the PVS1 guideline to the ACADVL gene.
This figure was adapted from [38] notations from original publication.
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Table 1

Modifications of the ACMG/AMP guidelines for ACADVL. Categories marked NA are not used for 

ACADVL classification, categories marked None were not modified. Other criteria were modified to be 

specific for the disease, to modify the strength of the code, or both.

Pathogenic criteria

Criteria Criteria Description Specification update

Very Strong Criteria

PVS1 Null variant in a gene where loss of function is a known mechanism of disease. Disease-specific, strength

Strong Criteria

PS1 Same amino acid change as a previously established pathogenic variant regardless of 
nucleotide change.

None

PS2 De novo (paternity confirmed) in a patient with the disease and no family history. NA

PS3 Well-established in vitro or in vivo functional studies supportive of a damaging effect. Disease-specific, strength

PS4 The prevalence of the variant in affected individuals is significantly increased compared with 
the prevalence in controls.

NA

Moderate Criteria

PM1 Located in a mutational hot spot and/or critical and well-established functional domain. Disease-specific

PM3 For recessive disorders, detected in trans with a pathogenic variant. Disease-specific, strength

PM4 Protein length changes due to in-frame deletions/insertions in a non-repeat region or stop-loss 
variants.

None

PM5 Missense change at an amino acid residue where a different missense change determined to be 
pathogenic has been seen before.

Disease-specific

PM6 De novo without confirmation of paternity and maternity. None

Supporting Criteria

PM2_Supporting Absent/rare from controls in an ethnically-matched cohort population sample. Disease-specific, strength

PP1 Co-segregation with disease in multiple affected family members. Disease-specific, strength

PP2 Missense variant in a gene that has a low rate of benign missense variation and where missense 
variants are a common mechanism of disease.

NA

PP3 Multiple lines of computational evidence support a deleterious effect on the gene or gene 
product.

Disease specific

PP4 Phenotype specific for disease with single genetic etiology. Disease specific, strength

PP5 Reputable source reports the variant as pathogenic but the evidence is not available to the 
laboratory to perform an independent evaluation.

NA

Benign criteria

Criteria Criteria Description Specification update

Stand alone criteria

BA1 Allele frequency above 5%. Disease-specific

Strong Criteria

BS1 Allele frequency greater than expected for disease. Disease-specific

BS2 Observed in the homozygous state in a healthy adult. NA

BS3 Well-established in vitro or in vivo functional studies show no damaging effect on protein 
function.

Disease-specific

BS4 Lack of segregation in affected members of a family. None

Supporting Criteria

BP1 Missense variant in a gene where only loss of function causes disease. NA
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BP2 Observed in trans with a pathogenic variant for a fully penetrant dominant gene/disorder; or 
observed in cis with a pathogenic variant in any inheritance pattern.

None

BP3 In-frame deletions/insertions in a repetitive region without a known function. NA

BP4 Multiple lines of computational evidence suggest no impact on gene or gene product Disease-specific

BP5 Variant found in a case with an alternative molecular basis for disease. NA

BP6 Reputable source reports variant as benign but the evidence is not available to perform an 
independent evaluation.

NA

BP7 A synonymous (silent) variant for which splicing prediction algorithms predict no impact to 
the splice consensus sequence nor the creation of a new splice site AND the nucleotide is not 
highly conserved

None
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Table 2.

The criteria utilized for specifying the population cut offs for BA1, BS1, and PM2_Supporting.

gnomAD frequency Prevalence Allelic contribution Genetic contribution Penetrance

BA1 ≥0.0067 (rounded to 0.7%) 1:30,000 1 1 0.75

BS1 ≥0.00333 (rounded to 0.35%) 1:30,000 0.5 1 0.75

PM2 ＜ 0.00073 × 1.5 = 0.1% 1:100,000 0.2 1 0.75
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Table 3

Pilot variants, their ClinVar classification, the classification using the ACADVL VCEP modified ACMG/AMP 

criteria, and the criteria applied. Variants marked as VUS/Conflicting were either classified as variant of 

uncertain significance or the classifications were conflicting. Variants marked NA were not available in 

ClinVar at the time of pilot study.

Variant Information ClinVar Classification ACADVL 
Classification

Codes Applied by ACADVL 
VCEP

NM_000018.4:c.194C>T (p.Pro65Leu) Benign/Likely Benign Benign BA1, BS3_Supporting, BP2, BP4

NM_000018.4:c.49C>T (p.Leu17Phe) Benign/Likely Benign Benign BA1, BP4

NM_000018.4:c.68G>A (p.Arg23Gln) Benign/Likely Benign Benign BA1, BP4

NM_000018.4:c.128G>A (p.Gly43Asp) Benign/Likely Benign Benign BA1, BP2, BP4

NM_000018.4:c.623–8C>T Benign/Likely Benign Benign BA1, BP4

NM_000018.4:c.478–22_478–21delCA Benign/Likely Benign Benign BA1, BP4

NM_000018.4:c.63–35G>A VUS/Conflicting Benign BA1, BP4

NM_000018.4:c.−64T>C VUS/Conflicting Benign BA1, BP4

NM_000018.4:c.1038G>A (p.Ala346=) VUS/Conflicting Benign BA1, BP4, BP7

NM_000018.4:c.1077+15C>T VUS/Conflicting Likely Benign BS1, BP4

NM_000018.4:c.603C>G (p.Tyr201Ter) Pathogenic/Likely 
Pathogenic

Likely Pathogenic PVS1, PM2_Supporting

NM_000018.4:c.1806_1807delCT 
(p.Leu602_Cys603insTer)

Pathogenic/Likely 
Pathogenic

Likely Pathogenic PVS1_moderate, PM2_Supporting, 
PM3_Supporting, PP1, 
PP4_moderate

NM_000018.4:c.433C>T (p.Gln145Ter) Pathogenic/Likely 
Pathogenic

Likely Pathogenic PVS1, PM2_Supporting

NM_000018.4:c.192del (p.Lys64fs) Pathogenic/Likely 
Pathogenic

Likely Pathogenic PVS1, PM2_Supporting

NM_000018.4:c.63–2A>C Pathogenic/Likely 
Pathogenic

Likely Pathogenic PVS1, PM2_Supporting

NM_000018.4:c.1077+1G>T Pathogenic/Likely 
Pathogenic

Likely Pathogenic PVS1, PM2_Supporting

NM_000018.4:c.265C>T (p.Pro89Ser) NA Likely Pathogenic PS3_Supporting, PM2_Supporting, 
PM3, PP3, PP4_moderate

NM_000018.4:c.342+1G>A NA Likely Pathogenic PVS1, PM2_Supporting

NM_000018.4:c.1141_1143delGAG 
(p.Glu381del)

Pathogenic/Likely 
Pathogenic

Pathogenic PM1, PM2_Supporting, 
PM3_strong, PM4, PP4_moderate

NM_000018.4:c.65C>A (p.Ser22Ter) Pathogenic/Likely 
Pathogenic

Pathogenic PVS1, PS3_Supporting, 
PM2_Supporting, PM3, 
PP4_moderate

NM_000018.4:c.753–2A>C Pathogenic/Likely 
Pathogenic

Pathogenic PVS1, PM2_Supporting, PP3

NM_000018.4:c.1077+2T>C Pathogenic/Likely 
Pathogenic

Pathogenic PVS1, PM2_Supporting, 
PM3_Supporting, PP4_moderate

NM_000018.4:c.277+1G>A NA Pathogenic PVS1, PM2_Supporting, 
PM3_Supporting, PP4_moderate

NM_000018.4:c.1077+2T>A NA Pathogenic PVS1, PM2_Supporting, 
PP4_moderate

NM_000018.4:c.103_112dup10 
(p.Arg38ProfsTer24)

NA Pathogenic PVS1, PM2_Supporting, 
PM3_Supporting, PP4_moderate

NM_000018.4:c.308A>G (p.Lys103Arg) Benign/Likely Benign VUS PP4_moderate, BA1, BP4

NM_000018.4:c.117C>T (p.Pro39=) Benign/Likely Benign VUS PM2_Supporting, BP7
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Variant Information ClinVar Classification ACADVL 
Classification

Codes Applied by ACADVL 
VCEP

NM_000018.4:c.260T>C (p.Val87Ala) Pathogenic/Likely 
Pathogenic

VUS PM2_Supporting, 
PM3_Supporting, PP3, PP4

NM_000018.4:c.562G>A (p.Gly188Ser) Pathogenic/Likely 
Pathogenic

VUS PM1_Supporting, 
PM2_Supporting, PP3

NM_000018.4:c.1066A>G (p.Ile356Val) VUS/Conflicting VUS PP4_moderate, BA1

NM_000018.4:c.477+17G>A VUS/Conflicting VUS PM2_Supporting, BP4

NM_000018.4:c.439C>T (p.Pro147Ser) VUS/Conflicting VUS PM2_Supporting, 
PM3_Supporting, PP3, PP4

NM_000018.4:c.881G>A (p.Gly294Glu) VUS/Conflicting VUS PM2_Supporting, 
PM3_Supporting, PP3, 
PP4_moderate

NM_000018.4:c.1183–7A>G VUS/Conflicting VUS PM2_Supporting, 
PM3_Supporting, PP3, PP4

NM_000018.4:c.910G>A (p.Ala304Thr) NA VUS PM2_Supporting, PP3

NM_000018.4:c.1966T>A (p.Ter656Arg) NA VUS PM2_Supporting, PM4

NM_000018.4:c.1968A>C (p.Ter656Cys) NA VUS PM2_Supporting, PM4, PP4

NM_000018.4:c.38_49del12 
(p.Gln13_Arg16del)

NA VUS PM2_Supporting, PM4

NM_000018.4:c.494A>T (p.Glu165Val) NA VUS PM2_Supporting, PP3

NM_000018.4:c.430C>G (p.Leu144Val) NA VUS PM2_Supporting, PP3

NM_000018.4:c.425T>C (p.Phe142Ser) VUS/Conflicting VUS PP3, BS1
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