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Vagus nerve stimulation (VNS) has been approved as an adjunctive treatment for epilepsy and depression. As the prog-
ress of VNS treatment for these neuropsychiatric disorders continues, its applications have expanded to a wide range 
of conditions, including inflammatory diseases to cognitive dysfunctions. The branches of the vagal nerves directly or 
indirectly innervate the anatomical structures implicated in these neuropsychiatric conditions, which has led to promis-
ing results regarding the effectiveness of VNS. Previous studies investigating the effectiveness of VNS have mostly utilized 
invasive forms of stimulation. However, current preclinical and clinical research indicates that non-invasive forms of 
VNS, such as transcutaneous vagus nerve stimulation, hold the promise for treating various neuropsychiatric conditions. 
This review aims to delve into relevant clinical studies of VNS in various illness states, different methods of VNS, and 
the potential mechanisms underlying the therapeutic effects in these neuropsychiatric conditions. 
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INTRODUCTION

Vagus nerve stimulation (VNS) refers to any therapeutic 
technique applying intermittent stimulation on vagus 
nerve, which plays a central role in maintaining homeo-
stasis by connecting the body with the brain through 80% 
of afferent and 20% of efferent pathways. VNS was ap-
proved as a treatment for refractory epilepsy and treat-
ment-resistant depression (TRD) by the US Food and Drug 
Administration (FDA) in 1997 and 2005, respectively. Since 
then, numerous studies have identified and expanded the 
application of VNS through clinical trials and small pilot 
studies. We focused the current review primarily on the 
clinical implication and psychiatric treatment of VNS on 
diverse clinical states from neuropsychiatric illnesses (e.g., 
epilepsy and depression) to relatively less severe health 

problems (e.g., pain and cognitive problems). That is, we 
briefly overview the anatomy of vagus nerve, methods of 
VNS, clinical application of VNS in various illness states, 
and rationale for applying VNS in each clinical condition 
along with its effectiveness. 

ANATOMY AND FUNCTION 
OF VAGUS NERVE

Vagus nerve is a mixed parasympathetic nerve with 
20% of motor efferent fibers responsible for automatic 
regulation of cardiorespiratory and gastric tone [1-3], and 
with 80% of sensory afferent fibers carrying bodily in-
formation (i.e., gustatory, visceral sensory, and other pe-
ripheral information) to the brain (Fig. 1A) [4]. Each vagus 
nerve consisting of efferent and afferent fibers originates at 
the medulla oblongata, exits the brainstem through the 
jugular foramina, and courses along the neck within the 
carotid sheath bilaterally (i.e., right and left vagus nerves). 
They diffuse into numerable branches to innervate the 
body structures including bronchi, lungs, heart, esoph-
agus, stomach, liver, and pancreas [5,6]. Most of the effer-
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Fig. 1. The anatomy of vagus nerve.
(A) Area of the brains to which 
afferent vagus nerve is connected. 
(B) Illustration of areas of application 
in transcutaneous auricular vagus 
nerve stimulation. Adapted from the 
article of Zhu et al. (Front Endocrinol 
(Lausanne) 2022;13:1000758) [3]. 
PFC, prefrontal cortex; Cing, cingulate
cortex; OFC, orbital frontal cortex; 
Hyp, hypothalamus; amy, amygdala;
Hippo, hippocampus; NTS, nucleus 
tractus solitarius. 

ent fibers are parasympathetic projections to these regions 
working as a component of autonomic nervous system, 
but another important function of vagus nerve is on affer-
ent fibers transmitting the sensory vagal inputs throughout 
the different brain regions [7]. Most of the incoming sen-
sory information of vagal afferents are initially integrated 
in the nucleus of the tractus solitarius (NTS) in the me-
dulla, and the NTS relays them directly (e.g., by projecting 
to the reticular formation in the medulla) or indirectly 
(e.g., by projecting through parabrachial nucleus and the 
locus coeruleus [LC]) to the rest of the brain regions in-
cluding the amygdala, hypothalamus, and orbitofrontal 
cortex [8]. Considering the important role of these brain 
regions in numerous neuropsychiatric disorders where 
the afferents of vagus nerve are projected, stimulation on 
these circuits has been suggested and approved as a ther-
apeutic technique, which is the VNS. 

METHODS AND AREAS OF APPLICATION 
OF VAGUS NERVE STIMULATION

The methods of VNS can be roughly classified depend-
ing on whether they are invasive or non-invasive, and 
which of the left or right vagus nerve related areas they are 
applied to (Table 1). The most common clinical applica-

tion of VNS follows an invasive method of implanting a 
pulse generator (e.g., NCP system; LivaNova PLCⓒ[formerly 
Cyberonics]) on the left upper chest or left axillary border, 
which transmits stimulation through the electrode lead 
wire attached to the mid-cervical left vagus nerve [9]. The 
stimulation variables such as signal frequency (20−30 Hz), 
intensity (~mA), pulse width (~us), signal on time (30−
90 seconds), and signal off time are manipulated using the 
programing wand [10]. Because the parasympathetic fibers 
composing the right vagus nerve are more actively en-
gaged in innervating the cardiac atria [11], left vagus stim-
ulation is more favored as an area for stimulation to avoid 
any cardiac risk. Thus, less is known about the effect of 
right vagus stimulation in treating patients with depres-
sion. Instead, prior studies suggest the effectiveness of 
right cervical VNS in treating heart failure [12,13] with de-
vices such as CardioFit System (BioControl Medicalⓒ) and 
FitNeS System (BioControl Medicalⓒ).

Transcutaneous electrical stimulation (t-VNS) is a non- 
invasive method of VNS involving transcutaneous auric-
ular vagus nerve stimulation (ta-VNS) where the electrical 
stimulation is applied to the left cymba conchae of the 
outer ear (Fig. 1B), and non-invasive vagus nerve stim-
ulation (n-VNS) where the electrical stimulation is applied 
on the neck. The area of cymba conchae is known to re-
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Table 1. Methods, application region, and common devices used for vagus nerve stimulation (VNS) 

Invasiveness Device
Region

Left Right

Invasive: 
surgery to 
implant 
generator

Neurocybernetic prothesis (NCP system) Treatment for epilepsy and depression
Generator implanted on the left upper 

chest or left axillary border
The electrode lead wire attached to 

the left mid-cervical vagus nerve

Risk of cardiac effect
Relatively less evidence for treatment of 

epilepsy
Less evidence for treatment of depression

CardioFit System
FitNeS System

Less evidence for treatment of heart 
failure

Treatment for heart failure
Generator implanted on the right chest wall
The electrode lead wire attached to the 

right mid-cervical vagus nerve
Non-

invasive
Transcutaneous 

forms of VNS 
(t-VNS)

ta-VNS NEMOS Left cymba conchae
TENS Unilaterally or bilaterally on cymba conchae

n-VNS Gamma Core Unilaterally or bilaterally on the neck

ta-VNS, transcutaneous auricular VNS; n-VNS, non-invasive VNS.
NCP System (Cyberonics Inc.); CardioFit System (BioControl Medical Inc.); FitNeS System (BioControl Medical Inc.); NEMOS (Cerbomed GmbH); 
TENS (Auri-Stim Medical Inc.); Gamma Core (electro Core Inc.).

ceive the auricular branch of the vagus nerve [14], and 
prior studies targeting the area have revealed the con-
sistent effect on the brain with that of traditional VNS ap-
plied on the left vagus nerve, suggesting the feasibility and 
beneficial effects of using t-VNS to treat various neuro-
psychiatric conditions in a non-invasive way [15,16]. 
Another non-invasive form of t-VNS is conducted using 
the transcutaneous electrical nerve stimulator (TENS; Auri- 
Stim Medicalⓒ) devices applied unilaterally or bilaterally 
on cymba conchae. Device for n-VNS (e.g., gamma Core; 
electroCoreⓒ) targets the cervical path of vagus nerve, 
and is applied unilaterally or bilaterally on the neck. t- 
VNS is useful in that it is a non-invasive and low risk form 
of stimulation selectively targeting the area of vagus nerve 
afferents without any surgery [14], but it lacks established 
administration protocol compared to the traditional in-
vasive form of VNS [17].

CLINICAL APPLICATION OF VNS

Treatment of VNS for Epilepsy
When the sensory information of afferents is integrated 

in the NTS, it projects to the numerous regions of the 
brain. Among the wide range of projection pathways, LC 
is a major source of norepinephrine in connection with 
the amygdala, hypothalamus, orbitofrontal cortex and 
limbic regions [18]. Because the norepinephrine and se-
rotonin responses are known to exert anticonvulsant ef-
fects [19,20]. VNS effects on the LC via NTS may be po-

tentially relevant to the mechanisms of seizure reduction 
in that LC functions as a noradrenergic and serotonergic 
modulation system of the brain [8]. In addition, further 
connection between LC and other limbic regions of the 
brain may contribute to the antiseizure effect of VNS by 
changing the levels of gamma-aminobutyric acid (GABA) 
and glutamate concentrations in the NTS, thus enhancing 
the resistance for motor limbic seizure [21]. The rationale 
for VNS in epilepsy is based on such prior studies in ani-
mal and human samples strongly supporting the altered 
activities of the limbic system and increased activities of 
the LC in moderating the downstream release of nora-
drenergic neurotransmitter [19-23] as modalities of anti-
convulsant effect.

Animal studies revealed mainly three distinct temporal 
patterns of antiseizure effect of VNS: (a) acute abortive ef-
fect where the ongoing seizure is attenuated after the 
acute application of VNS, (b) acute prophylactic effect 
where the application of VNS weakens the effect of seiz-
ure-inducing stimulus, and (c) chronic progressive pro-
phylactic effects where the total numbers of seizures grad-
ually decrease during the longer duration application of 
VNS than the short term stimulation [8]. Studies con-
ducted on humans where pulse generator-implanted pa-
tients were randomly assigned to either high-stimulation 
or low-stimulation conditions as a 14-week treatment 
paradigm, also demonstrated the efficacy of VNS with 
more patients in high-stimulation condition (i.e., 38.7%) 
achieving at least 50% reduction in seizure than those in 
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Fig. 2. Multiple direct/indirect pro-
jection pathways of vagal afferents 
to the brain regions involved in mood
regulation. Dash lines indicate se-
condary projection from PBN, LC, 
and DR to other brain regions. 
NTS, nucleus tractus solitarius; PBN, 
parabrachial nucleus; LC, locus 
coeruleus; DR, dorsal raphe.

low-stimulation condition (i.e., 19.4%) [24].
Studies examining the relatively long-term effect of 

VNS showed a similar or greater seizure reduction than 
acute studies [25,26]. Morris and Mueller [26] assessed 
the seizure frequencies of 454 patients who had im-
planted a pulse generator at 6-month intervals until 3 
years, and the result indicated continual effect of VNS in 
seizure reduction compared with the baseline (i.e., 1 year: 
35%; 2 years: 44.3%; 3 years: 44.1%). Another study by 
Labar [25] compared the seizure rates of 269 patients at 3 
and 12 months of VNS without changing any types or 
doses of antiepileptic drugs (AEDs). He concluded that 
median seizure rates reduction (i.e., median percent re-
duction in seizure frequency) was significant at both 3 
(45%) and 12 months (58%) of VNS, supporting the 
long-term effectiveness of VNS controlling for the effect of 
AEDs. Such results along with other studies led to a sug-
gestion that the longer duration of VNS might increase the 
seizure control [27-31]. However, the relationship be-
tween the duration of VNS and antiseizure effect is elusive 
at present, because it is likely to be under methodological 
bias or errors associated with retrospective design, re-
gression to the mean, and the confounding impact of any 
changes in AEDs, thereby needs careful interpretation [32].

US FDA has expanded the age restriction of VNS as a 
treatment for drug-resistant epilepsy from age over 12 to 
over 4 years in 2017, based on the fact that the prevalence 
of epilepsy in the pediatric population is 0.5−1% [33] 
and about 33% of children with epilepsy are resistant to 
AED [34], demanding application of other effective treat-
ments in children and young adults with drug resistant 
epilepsy. Studies conducted on children with epilepsy 
have corroborated the similar antiseizure effect of VNS 
previously reported in the adult population. In a study by 
Helmers et al. [35], 125 patients with the mean age of 12 
years and onset age of 2 years showed the average seizure 
reduction of 36.1% and 44.7%, respectively, at 3 and 6 
months of VNS. The use of VNS was also effective in the 

children under the age of 12 [32], and in children with de-
velopmental delays along with epilepsy [36]. The non-in-
vasive application of t-VNS has been utilized as a safe and 
effective treatment in suppressing the seizure both in adult 
[37-40] and children [41], yielding a similar effect with 
the traditional VNS applied on the left vagus nerve. 
Specifically, a systematic review was conducted to assess 
the anti-epileptic effects of t-VNS in patients with epilepsy 
[42]. The review included 10 studies, which measured 
mean reduction in seizure frequency and improvement in 
quality of life in patients with epilepsy. Results reported a 
range of 30% to 65% in mean seizure reduction across 
studies, suggesting a possible benefit of utilizing non-in-
vasive VNS for treating patients with epilepsy. Further-
more, three studies demonstrated a significant improve-
ment in patient’s quality of life (p ＜ 0.05). However, re-
search on the children was mostly restricted to the pilot 
study with only one ongoing randomized controlled trial 
[43]. Thus further research is needed to confirm the effi-
cacy of t-VNS in children with refractory epilepsy. 

Treatment of VNS for Depression
As in epilepsy, the mechanism of VNS in patients with 

TRD is closely related to the neurochemical change in 
limbic and major cortical structures that are actively en-
gaged in mood regulation via secondary projections from 
NTS (Fig. 2). For example, parabrachial nucleus, dorsal 
raphe (DR), and LC secondarily relay information from 
NTS to the limbic-cortical regions such as thalamus, hy-
pothalamus, nucleus of the stria terminalis, and amygdala 
[44]. LC and DR are known to contain the noradrenergic 
and serotonergic projection pathways, respectively, thus 
the application of VNS may result in changing the levels 
of norepinephrine [23], serotonin [45], GABA, and gluta-
mate [21] implicated as the main neurotransmitters un-
derlying the pathogenesis of depression [18]. Neuroimaging 
studies where the patients with invasive VNS therapy re-
ported (a) metabolic changes in the limbic system similar 
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to the effects of antidepressants through positron emission 
tomography scans [46], and (b) increased blood oxygen-
ation level-dependent (BOLD) response in mood-related 
brain regions measured through functional magnetic res-
onance imaging (fMRI) acquired by synchronizing the sig-
nal of VNS stimulator [47], support the hypothesis that 
VNS induces a change in the brain comparable to that of 
antidepressants. Aside from evidence of neuroimaging 
studies, clinical observations also provide a rationale for 
VNS in depression in that (a) VNS substantially reduces 
mood symptoms even in patients with epilepsy [24,48, 
49], and (b) anticonvulsants which share a mechanism of 
action with VNS, also have a mood-stabilizing effects 
[50,51].

In 2005, invasive VNS was approved by the US FDA as 
a treatment for depression, especially for those who are 
treatment refractory and had multiple records of failed 
medication trials. Short-term efficacy of VNS for TRD has 
been demonstrated in a 10-week pilot study [52], in 
which about 40% of adult outpatients reported at least 
50% reduction, and 17% of them showed a complete re-
mission in baseline 28-item Hamilton Depression Rating 
Scale (HDRS28, remission: HDRS28 ≤ 10). However, such 
short-term efficacy of VNS was not revealed in a random-
ized and controlled trial [53], where a total of 235 TRD 
patients with 10-weeks of VNS were compared to the 
sham treatment group, with both groups showing a marked 
response in HDRS (active VNS group: 15.2% reduction; 
sham group: 10% reduction). Rush et al. [54] further ana-
lyzed the long-term 12-month effect of VNS on the same 
TRD patients as a naturalistic follow-up study, where the 
previously active and sham group both received addi-
tional VNS along with treatment as usual (TAU). When 
compared to the baseline score of 24-item Hamilton 
Rating Scale for Depression (HRSD24), patients showed a 
significant reduction of 45 ± 0.05 points per month on 
average, suggesting a potential long-term benefit of VNS 
that is not noticeable with only short-term use of VNS. 
Cumulative effects of VNS for TRD was also revealed in a 
5-year prospective, nonrandomized study with a large 
sample of 795 TRD patients [55], where a 5-year cumu-
lative response rate of adjunctive VNS group (67.6%) was 
significantly higher than that of TAU group (40.9%). 
Bottomley et al. [56] conducted a meta-analysis with 22 
eligible studies which described clinical outcomes of ad-
junctive VNS (VNS + TAU) or TAU alone in TRD. Poolable 

efficacy outcomes were measured with Montgomery- 
Asberg Depression Rating Scale, Clinical Global Impression- 
Improvement, and HRSD, and meta-analysis showed a 
consistent superior benefit of adjunctive VNS over TAU 
alone in TRD measures. In case of invasive application of 
VNS, ta-VNS has become an appealing adjunctive treat-
ment for TRD as it is portable and easy to self-administer. 
Studies found that (a) the application of ta-VNS on depres-
sive patients significantly reduced depressive symptoms 
compared to the sham ta-VNS group [57,58], and (b) de-
creased BOLD-signal in limbic regions of the brain, sim-
ilar to the effect of antidepressants observed in healthy 
subjects under ta-VNS [16]. However, because less is 
known about the optimal parameter and antidepressant 
dosing recommendation [59], further exploration is need-
ed regarding the efficacy of non-invasive forms of VNS in 
treating patients with depression. 

In addition to invasive VNS, transcranial direct current 
stimulation (tDCS) has emerged as one of the promising 
neuromodulation options for treating depression [60,61]. 
tDCS offers benefits such as high tolerability and less side 
effects [62] due to its application of low-intensity direct 
currents non-invasively. However, it has shown only a 
moderate reduction of depression [63] with relatively 
short term effects [64]. On the other hands, a 5-year ob-
servational study revealed that VNS demonstrated sus-
tained antidepressants effects [55], and its effectiveness in 
reducing depressive symptoms has been examined in 
multiple clinical trials [65]. However, since FDA-ap-
proved VNS requires the risk of surgical implantation, the 
choice of adjunctive treatments should be based on each 
patient’s symptoms. 

Treatment of VNS for Inflammatory Diseases
When looking at the mechanism of human inflam-

mation, cytokines, which is a protein crucial for modulat-
ing the immune response, amplifies inflammation (i.e., 
pro-inflammatory cytokines) or inhibits inflammation 
(i.e., anti-inflammatory cytokines) depending on the type. 
Tumor-necrosis factor, one of pro-inflammatory cytokines, 
is released as a response to injurious stimuli. Tumor-ne-
crosis factor activates and prolongs the inflammatory re-
sponses (e.g., heat, swelling, and pain) by stimulating 
cells to release other pro-inflammatory cytokines such as 
interleukin 1, leading to further inflammation [66]. Prior 
studies revealed that VNS may suppress proinflammatory 
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Fig. 3. (A) Brain cholinergic system. Basal forebrain (BFCS), later-
odorsal tegmental nuclei (LDT), mesopontine pedunculopontine (PPT),
and striatum are important parts of brain cholinergic system. Cho-
linergic neurons innervate to hypothalamus (HTh), thalamus, hippo-
campus, and different cortex regions. (B) Cholinergic Anti-inflam-
matory system. Cholinergic neurons in the nucleus ambiguus (NA) 
and brainstem dorsal motor nucleus of the vagus (DMN) within 
efferent vagus nerve fibers release acetylcholine (ACh). Ach released 
through efferent vagal ending binds to alpha 7 nicotinic acetylcholine 
receptors (α7nAChRs), suppressing pro-inflammatory cytokines on 
immune cells. Adapted from the article of Chang et al. (Front 
Neurosci 2019;13:263) [69].

cytokine synthesis by activating the cholinergic anti-in-
flammatory pathway [66-68], which is a long loop that 
runs from brain cholinergic system to the body organs 
(Fig. 3) [69]. Specifically, cholinergic neurons in the nu-
cleus ambiguus and brainstem dorsal motor nucleus of 
the vagus project to the heart, liver, and other body organs 
within efferent vagus nerve fibers. And Acetylcholine re-
leased through efferent vagal ending binds to alpha-7 nic-
otinic acetylcholine receptors, suppressing pro-inflam-
matory cytokines on immune cells [67,70]. Given this, 
VNS may play a putative role in controlling and prevent-
ing any development of inflammation related disorders 
such as rheumatoid arthritis (RA), irritable bowel syn-
drome, and fibromyalgia.

For instance, a pilot study conducted a 4-day applica-
tion of n-VNS for patients with low and high symptoms of 
RA, which is a chronic and inflammatory disease. The re-
sult showed that applying n-VNS reduced Disease 
Activity Score based on 28-joint count-C-reactive protein 
(i.e., 4.1 to 3.8), and pro-inflammatory cytokines inter-

leukin-10 (i.e., 0.8 to 0.6 pg/ml) in high disease activity 
group [71]. In an animal experiment, arthritis rats under 
the condition of fifteen-day active VNS of the cholinergic 
anti-inflammatory pathway showed a significant reduc-
tion in joint swelling (i.e., 52% reduction in ankle diame-
ter), and histological arthritis score (i.e., 46% reduction) 
compared to the sham group [72]. Irritable bowel syn-
drome is also one of inflammatory disorders that is char-
acterized by chronic inflammation of gastrointestinal 
tract, dividing into Crohn’s disease and ulcerative colitis. 
Meregnani et al. [73] performed 5-day left vagus nerve 
stimulation with rats with colitis, and demonstrated a pro-
tective effect of VNS on inflammation induced weight 
loss. To address an issue of tolerability and effectiveness 
of invasive VNS for irritable bowel syndrome, a pilot 
study was conducted where 9 patients with irritable bow-
el syndrome (IBS) continuously underwent left VNS for 1 
year. The results supported tolerability of VNS in treating 
irritable bowel syndrome as patients’ profile of pro-in-
flammatory cytokines (e.g., Interleukin 6, 12, and 23) 
transformed into more healthy standards in terms of gut 
mucosa metabolites [74]. Prior study also suggested that 
VNS may be useful in alleviating symptoms of fi-
bromyalgia, which is often manifested as chronic pain, fa-
tigue, and sleep problems. Lange et al. [75] performed an 
open-label longitudinal study with 14 patients with 
fibromyalgia. The results showed that 5 patients attained 
certain efficacy criteria set by the researcher, and two of 
the patients no longer fulfilled criteria for fibromyalgia 
[75]. Such results imply that VNS has potential for treating 
numerous inflammatory responses. However, most of the 
studies at present are pilot studies that need replication in 
a larger randomized controlled trial.

Treatment of VNS for Cognitive Disorders
After sensory information of vagal afferents are in-

tegrated in the NTS, it provides projection to the rest of the 
brain regions including the caudate nucleus, amygdala, 
thalamus, hippocampal formation, and brain cortex via 
LC and NTS. As some of these brain structures are in-
volved in the memory process, it has been suggested that 
treatment of VNS may affect memory consolidation and 
performance [76,77]. One possible explanation of VNS 
enhancing memory may derive from its effect to facilitate 
long-term potentiation when stimulated with moderate 
intensity [78]. That is, the modulatory effect of VNS on 
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synaptic plasticity in the hippocampus may underlie en-
hancement of retention performance observed after VNS 
treatment [78]. Studies conducted with a method of fMRI 
substantiate the effect of VNS on memory related brain 
regions. Specifically, studies using fMRI with implanted 
VNS manifested blood flow changes in brain structures 
engaged in cognitive processes [79,80].

A pilot study conducted with 10 patients with Alzheimer’s 
disease (AD) demonstrated the effect of VNS on cognition. 
Specifically, VNS may prevent progression of AD by in-
creasing the level of noradrenaline [81] as AD patients 
suffer from noradrenaline loss due to atrophy within LC 
[82]. In addition, prior studies also investigated the effects 
of VNS on cognitive functions in patients with epilepsy. A 
study by Clark et al. [83] revealed that patients with epi-
lepsy showed a 36% increase of words in recognition af-
ter VNS. Moreover, Martin et al. [84] examined the influ-
ence of VNS on decision-making process by conducting 
gambling test with 8 epileptic patients. Results confirmed 
that VNS improved decision making in gambling test. 
However, studies revealed that there was an inverted U- 
shaped correlation between cognitive performance and 
intensity of VNS [76,77,83] where VNS with too low 
(i.e., ~0.2 mA) or too high (i.e., 0.8 mA~) intensity was in-
effective in enhancing cognitive functions of patients with 
epilepsy [83,85]. Given the general mechanism of VNS to 
facilitate memory consolidation by affecting LC, a study 
revealed a positive effect of VNS on enhancing episodic 
memory [86] and divergent thinking [87] in healthy in-
dividuals as well. 

CONCLUSION

VNS has been utilized for the treatment of various neu-
ropsychiatric conditions, employing both invasive and 
non-invasive approaches. The primary clinical applica-
tion of VNS is invasive, involving the implantation of a 
pulse generator on the left upper chest or left axillary bor-
der to stimulate the mid-cervical left vagus nerve. Non-in-
vasive methods of VNS, such as ta-VNS, are gaining popu-
larity as they can selectively target the area of vagus nerve 
afferents without requiring surgery. The efficacy of VNS in 
treating drug-resistant epilepsy has been demonstrated, 
and studies conducted on children have shown similar 
antiseizure effect to those previously reported in adults. 
Non-invasive t-VNS has also been utilized as a safe and 

effective treatment for suppressing seizures, yielding com-
parable effects to traditional VNS. In the treatment of de-
pression, VNS has been approved as an effective option 
for patients who do not respond to multiple medication 
trials. Studies using invasive VNS have confirmed the su-
perior benefits of adjunctive VNS over TAU. Non-in-
vasive t-VNS has also shown significant reduction in de-
pressive symptoms, but further research is needed to de-
termine optimal parameters and dosing principles. 
Invasive-VNS holds promise for treating inflammatory re-
sponses such as RA, IBS, and fibromyalgia. However, 
most studies on inflammatory diseases are currently in the 
pilot stages and require further validation through larger 
randomized controlled trials. Furthermore, VNS has dem-
onstrated improvements in cognition for patients with 
AD, epilepsy, and even healthy individuals, despite the 
challenge of adjusting the intensity to maximize effective-
ness. Overall, studies suggest that VNS has promising po-
tential as an adjunctive therapy for various neuropsychiatric 
disorders in the future. Continuously verifying the effec-
tiveness of VNS, alongside currently established pharma-
cological treatments through future research will broaden 
its utilization. 
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