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Motile Living Biobots Self-Construct from Adult Human
Somatic Progenitor Seed Cells

Gizem Gumuskaya,* Pranjal Srivastava, Ben G. Cooper, Hannah Lesser, Ben Semegran,
Simon Garnier, and Michael Levin*

Fundamental knowledge gaps exist about the plasticity of cells from adult
soma and the potential diversity of body shape and behavior in living
constructs derived from genetically wild-type cells. Here anthrobots are
introduced, a spheroid-shaped multicellular biological robot (biobot) platform
with diameters ranging from 30 to 500 microns and cilia-powered locomotive
abilities. Each Anthrobot begins as a single cell, derived from the adult human
lung, and self-constructs into a multicellular motile biobot after being cultured
in extra cellular matrix for 2 weeks and transferred into a minimally viscous
habitat. Anthrobots exhibit diverse behaviors with motility patterns ranging
from tight loops to straight lines and speeds ranging from 5–50 microns s−1.
The anatomical investigations reveal that this behavioral diversity is
significantly correlated with their morphological diversity. Anthrobots can
assume morphologies with fully polarized or wholly ciliated bodies and
spherical or ellipsoidal shapes, each related to a distinct movement type.
Anthrobots are found to be capable of traversing, and inducing rapid repair of
scratches in, cultured human neural cell sheets in vitro. By controlling
microenvironmental cues in bulk, novel structures, with new and unexpected
behavior and biomedically-relevant capabilities, can be discovered in
morphogenetic processes without direct genetic editing or manual sculpting.
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1. Introduction

What is the latent space of possible func-
tional morphologies that cells, with a wild-
type genome, can be coaxed to construct?[1]

This question drives at the heart of funda-
mental issues in evolutionary, developmen-
tal, cell, and synthetic biology, and has been
taken up by a rapidly growing field focus-
ing on building new kinds of active living
structures: biobots.[2] This emerging mul-
tidisciplinary effort to control the behavior
of cellular collectives has garnered much
excitement for two main reasons. First, it
offers the possibility of using engineering
to reach outcomes that are too complex to
micromanage directly, and hence promises
to revolutionize efforts to produce complex
tissues for clinical applications in regen-
erative medicine and beyond. Second, in-
creased control over the morphology and
behavior of cellular collectives by leverag-
ing morphogenetic tissue plasticity could
enable the development of self-constructing
living structures by design with predictable
and programmable functional properties

and numerous practical uses, greatly extending the current
abilities of traditional fabrication practices in diverse fields as
robotics,[3] architecture, sustainable construction, and even space
exploration.

In the last decade, interest in developing biological structures
de novo has seen a rapid surge.[4] Among these efforts, a sub-
set of functional biogenic assemblies gave rise to a special class
of motile synthetic structures dubbed biobots. Early examples
of biobots are hybrids between biological cells and inert chem-
ical substances supporting them, such as gels or 3D-printed
scaffolds.[5] These assemblies incorporated living cells ranging
from bacteria to diverse mammalian tissues such as nerve, mus-
cle, and neuromuscular junctions (NMJs), as well as engineered
cell lines with programmable features, all carefully crafted into
diverse 3D scaffolds designed to harness and amplify the innate
functionality of biological cells.[6]

A different approach resulted in Xenobots, the first fully-
biological biobots created by sculpting or molding amphibian
embryonic cells into multicellular structures that can sponta-
neously locomote without external pacing.[7] But it was not
known how general these phenomena are, whether this kind
of plasticity extended to mammals, or what the throughput of
this technology can be. Thus, we sought to address whether the
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capacity of genetically unaltered cells to generate a self-propelled,
multicellular living structure in this way is unique to amphibian
embryonic cells, and whether such a living structure can be built
without needing to be individually sculpted or molded, but in-
stead coaxed to self-construct from an initial seed cell, resulting
in a high-throughput process wherein large numbers of biobots
can be grown in parallel.

Here, we introduce novel, multicellular, fully biological, self-
constructing, motile living structures created out of human lung
epithelium. We refer to them as Anthrobots, in light of their hu-
man origin and potential as a biorobotics platform.[2a,d,e,8] We
quantified their emergent natural, baseline properties as an es-
sential background characterization of their native capacities
which will serve as targets for future efforts to reprogram form
and function for useful purposes. Anthrobots self-construct in
vitro, via a fully scalable method that requires no external form-
giving machinery, manual sculpting, or embryonic tissues and
produces swarms of biobots in parallel. They move via cilia-
driven propulsion,[9] living for 45–60 days. We quantitatively
characterized the range of movement and morphological types,
showing that their behaviors are strongly correlated with specific
features of their anatomy. The ability of adult, somatic, human
cells to form a novel functional anatomy, with unique behav-
iors, reveals that this plasticity is not restricted to amphibian or
embryonic cell properties, and is a fundamental feature of wild-
type cells that requires no direct genetic manipulation to unlock.
Furthermore, we found that Anthrobots exhibit a highly surpris-
ing behavior given their origin as static airway epithelium: they
can move across scratches in (human) neuronal monolayers and
induce gap closures across these scratches. Numerous in vitro
and in vivo uses of such functional living structures can be en-
visioned, especially because they can now be made from the pa-
tient’s own cells.[10]

We developed the Anthrobots by leveraging normal human
bronchial epithelial (NHBE) cells’ native tissue plasticity and un-
locked a novel morphology, which is not apparent from the re-
liable, default developmental patterning of airway epithelium,
in order to fulfil target functional and structural needs of cre-
ating a self-constructing, multi-cellular, 3D, motile living struc-
ture of human-origin. Airway organoids with apical out tissue
organization, yielding ciliated spheroids anatomically similar to
the Anthrobots, have very recently been shown using different
protocols,[11] each starting from individual normal bronchial ep-
ithelial cells isolated from airway epithelium extracts. Apical out
spheroids made out of intact airway epithelium extracts have also
been produced[12]). Each one of these three protocols is optimized
for different priorities such as ease of organoid access during its
development,[11c] structural uniformity in final products,[11a] and
ability to easily modulate resulting organoid size.[11b] The com-
mon denominator between these parallel advances is that they
are characterized as organotypic cultures exclusively, enabling
scientists to investigate lung anatomy, function, and pathology.
Beyond native tissue recapitulation, these constructs’ abilities as
functional assemblies, range of behavioral and morphological
patterns, as well as functional correlations between these patterns
have yet to be explored.

These three methods, plus the one detailed in this paper, con-
stitute convergent but distinct technical approaches toward pro-
ducing the novel morphology of cilia-out spheroids derived from

human airway epithelium. These four protocols for creating cilia-
covered NHBE-derived spheroids differ in their apical orientation
from the earlier established approaches for creating traditional
airway organoids where cilia develop as lining the lumen.[13]

Boecking & Walentek[11c] grow airway organoids as embedded in
a collagen-rich matrix (as opposed to the traditional Matrigel ap-
proach) and also cultures them in air-liquid-interface (ALI) in-
serts, which have traditionally been used with NHBEs for 2D
differentiation into airway epithelium, enabling ease of access
to the airway organoids during their developmental course.[11c]

After this initial ALI culture period of 14 days, the mature air-
way organoids are dissolved from the collagen matrix and re-
plated into a fresh same matrix of similar composition (to re-
move catabolites) for another 14 days. It is in this second 14 day
period that cilia localization on the surface is accomplished by
administering R-Spondin-2 (RSPO2) and Noggin into the ma-
trix. Accordingly, this Boecking & Walentek method consists of
two consecutive 2-week periods of matrix-embedded growth and
differentiation: first period without and the second period with
RSPO2&Noggin.

The method introduced in our paper is most similar to the
Boecking & Walentek method in that the initial proliferation of
individual NHBEs into spheroids with cilia-lined lumen is ac-
complished by culturing them as embedded in a gel-based ma-
trix. However, in our method, upon dissolution of spheroids from
matrix at the end of this 14 day period, the cilia-in spheroids are
not plated back into the matrix, and instead, the cilia localization
into the spheroid cortex is achieved by culturing these spheroids
in low-adhesive environments. Accordingly, cilia localization is
observed within one week, making our method a faster (20 days
between single cell to cilia-coated spheroid as opposed to 28), less
laborious (single matrix dissolution, as opposed to two), and po-
tentially higher-throughput (since each time matrix is dissolved, a
certain percentage of spheroids are lost with it, as is also reported
by Boecking & Walentek). The remaining two cilia-out protocols
(Stroulios and Wijesekara) are in contrast not leveraging the self-
construction ability of NHBEs, and instead form spheroids by
means of cell aggregation in U-bottom wells without the presence
of a matrix, which in turn provide them with higher regularity of
spheroid size (given each spheroid self-assembles with a similar
number of constituent cells).

The Stroulios et al method aggregates single cells in low-
adhesive micro aggregation chambers first, then transfers them
into regular wells for differentiation in matrix-free liquid environ-
ment with bronchial epithelial differentiation medium, achiev-
ing uniformity in organoid morphology and size.[11a] Similarly,
the Wijesekara et al method also first aggregates individual cells
into spheroids, and then either transforms them into a matrix en-
vironment for differentiation, or keeps them in the liquid envi-
ronment with bronchial epithelial differentiation medium, both
approaches yielding apical-out spheroids with the ability to con-
trol the resulting ciliated spheroid size by modulating the initial
aggregate size.[11b,14] In summary, our method facilitates differen-
tiation as embedded in extracellular matrix, enabling spheroids
to self-construct, a feature the other two methods Stroulios and
Wijesekara lack; though in turn they achieve higher spheroid reg-
ularity and control over spheroid size. The major difference be-
tween our method and the Boecking & Walentek method is that
upon extraction of apical-in spheroids from Matrigel, we simply

Adv. Sci. 2024, 11, 2303575 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2303575 (2 of 20)

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

culture the spheroids in a non-adhesive environment and achieve
polarity reversal and motility within a few days. However, the
Boecking & Walentek method replates the spheroids into the Ma-
trigel for another two weeks, during which period they adminis-
ter RSPO2&Noggin in order to facilitate polarity reversal, and at
the end of this period they dissolve the Matrigel again to finally
harvest the apical out spheroids. We believe our method provides
a simple, rapid, scalable, and high-throughput protocol that har-
nesses biological cells’ ability to build themselves into multicel-
lular complex structures. Despite their differences in methods,
goals, and characterization metrics, these four novel protocols
taken together help explore the space of possible morphologies of
NHBEs and unravel the morphogenetic potential of human air-
way epithelium; they are thus significant steps for mapping the
morphogenetic plasticity landscape of non-embryonic wild-type
cells.

2. Results

2.1. Human Bronchial Epithelial Cells Self-Construct into
Multicellular Motile Living Architectures

To explore the self-organizing plasticity of morphogenesis with-
out genomic change, we chose a cellular substrate in which
such outcomes would be most surprising: adult, somatic, hu-
man airway tissues. To study and steer the in vitro morphogen-
esis of novel 3D tissues with motile appendages, we developed
a novel protocol (Figure 1A) that builds upon the existing abil-
ity of human bronchial epithelial progenitor cells to form mul-
ticellular spheroids (Figure 1a.1) with cilia-lined lumina[15] (i.e.,
apical-in configuration). We modified this process by manipulat-
ing the culture environment such that it now yields cilia-coated
(i.e., apical-out) spheroids, which exhibit spontaneous locomo-
tive ability.

A key step in their construction, in order to obtain significant
translocation, is the induction of cilia to face outward. Given that
cilia naturally localize into the lumen due to the basal cells’ inter-
action with the surrounding high-viscosity matrix, we hypothe-
sized that changing the culture environment to a lower viscosity
level (e.g., water-based media instead of gel-based matrix) may
trigger the basal layer cells to migrate inward and allow the apical
layer to take their place on the spheroid cortex.[16] Thus, to trigger
apicobasal polarity switching, we first grew airway organoids em-
bedded in Matrigel as reported previously[13] (Figure 1a.2), which
does not yield either ciliated or motile spheroids. We have then
proceeded to dissolve the surrounding matrix while keeping the
spheroids intact and transferred them into a low-adhesive envi-
ronment (Figure 1a.3) and induced them with retinoic acid on
a bidaily basis while performing media changes every 3 days.
(Matrigel’s elastic modulus is 450 Pa[17] whereas water based
liquid media’s elastic modulus in this low-adhesive environ-
ment is 2*109 Pa). This new approach has enabled the originally
apical-in spheroids (that show no motility on day 0 as shown on
Figure 1b.1) to became motile by day 7 (Figure 1b.2), featuring
highly motile ciliary appendages on the spheroid surface. A high-
resolution high-speed capture of ciliary movement in Anthrobots
(supplemental video 1) show that they deploy a similar propelling
strategy observed in multiciliate motile organisms.[9]

We next examined two aspects of the microenvironment as
possible control parameters for properties of Anthrobot self-
assembly. First, we tested the role of matrix viscosity, which is
known in other bioengineering contexts to impact diverse cell
properties, from secretory profile[18] to mechanical attributes.[19]

We observed that culture environments with higher viscos-
ity levels than the protocol baseline result in decreased motil-
ity (Figure S2, Supporting Information) and size (Figure S3,
Supporting Information), suggesting that low-viscosity environ-
ments better facilitate the growth of functional bots as well as
yield larger bots. Second, we examined cell seeding density as
a factor for motility (Figure S4, Supporting Information) and
size (Figure S5, Supporting Information). We set up three sep-
arate conditions: one with the default seeding density in Ma-
trigel (x = 30 000 cells mL−1), one with double this density (2x =
60 000 cells mL−1), and one with half this default density (x/2 =
15 000 cells mL−1). After growing the bots under these three con-
ditions for two weeks, while keeping all other protocol aspects
constant, we dissolved the mature spheroids from the matrices
and measured their size immediately. We then continued cultur-
ing the bots per usual maintenance protocol and measured their
motility in a binary fashion (i.e., displacing mover or not) during
the period where bots show peak motility (between days 9–20)
on a bidaily basis. In both experiments, we observed significant
differences in the resulting bot sizes and motility (on particu-
lar days) among different seeding density conditions, though the
effect of introducing additional cells was not linear at any time
point tested. These results show that the size and time course of
maturation of motile bots could be modulated by altering the con-
centration of cells in the Anthrobot differentiation culture, sug-
gesting initial cell seeding density to be a tractable control knob
for Anthrobot morphology and function.

To characterize the temporal dynamics of motility initiation,
we periodically (every other day) counted the number of motile
spheroids for 3 weeks following dissolution and observed a sig-
moidal motility profile with peak change in motility on day 10
(Figure 1C). We next confirmed that this drastic change in motil-
ity occurred as a result of a morphological reorganization event
exposing cilia on the cortex (Figure 1D). We immunostained the
spheroids on day 0 (pre-motility) and day 7 (post-motility) with
DAPI and for the apical markers a-tubulin (cilia marker) and ZO1
(tight junction marker), revealing a drastic increase in external
multi-ciliated cells on day 7 compared to day 0. Figure 1E shows
the tissue organization within an ≈50-micron depth of a typical
Anthrobot. Upon observing increased multi-ciliated cell presence
in motile subjects, we sought to definitively attribute the emer-
gence of motility to the presence of surface cilia. We administered
the efficient blocker of cilia motion, ciliobrevin,[20] and observed
the expected drastic decrease in motility (See Figure S6, Support-
ing Information), confirming that the motility of Anthrobots is
cilia-driven.

2.2. Anthrobots Self-Organize into Discrete Movement Types

Despite their wild-type human genome and somatic origin, these
self-motile constructs exhibited a wide range of behaviors and
an anatomy that differs from the species-specific body mor-
phology. To characterize this diverse landscape and uncover the
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Figure 1. Human bronchial epithelial cells self-construct into multicellular motile living architectures. A) Workflow for producing Anthrobots. NHBE
cells’ apical-in to apical-out transition is facilitated by first culturing them in extra cellular matrix (ECM) under appropriate differentiation-inducing
conditions, during which time apical-in spheroids self-construct from single cells a.1), and upon the completion of this 14 day period a.2) by releasing
mature spheroids from the ECM a.3) and continuing to culture them in low-adhesive environment. B) Phase contrast images of an apical-in b.1) and
apical-out b.2) spheroids, captured immediately after dissolution from ECM (day 0) and 7 days after dissolution (day 7), respectively. Day 0 spheroids
show no motility, whereas day 7 spheroids show drastically increased motility. C) Percentage of cumulative (total fraction of motile spheroid since day
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developmental features of Anthrobots, next we sought to char-
acterize these behavioral and morphological capabilities, and in-
vestigated a potential correlation between their form and func-
tion. One initial key task for Anthrobots, as with any new behav-
ioral subject,[21] is to determine whether its major morphologi-
cal properties and activities are discrete, continuous, or uniform
characters.[22] Thus, we quantitatively analyzed their range of be-
havior modes in time-lapse videos of ≈200 randomly-selected
motile spheroids (Figure 2A, and Videos S2–S5, Supporting In-
formation) for 5 h in groups of 4 or 5 Anthrobots, and extracted
their movement trajectory coordinates. We then split up these
5 h-long trajectories into 30 s periods to classify behavior with a
higher degree of granularity and in an aggregate manner. To iden-
tify patterns within a potentially unlimited set of possible move-
ments, we characterized these periods by how straight and/or
circular they are as all possible trajectories can be explained to-
gether by these two properties. To this end, we used two main
trajectory characterization metrics: straightness and gyration in-
dices (see Experimental Section for detailed description of how
these indices are calculated) and plotted all viable trajectorial pe-
riods along these two indices (Figure 2B). We then ran the un-
supervised clustering algorithm Ward.D2, a common hierarchi-
cal clustering method (see methods for more details), on this 2D
plot and observed four statistically distinct clusters to emerge
(Figure 2C). Further investigation of these clusters reveals that
each represents a distinct movement type: circular, linear, curvi-
linear and “eclectic” (Figure 2D). Further analysis of each clus-
ter in terms of its homogeneity (measured by “average dissimi-
larity” index), which is a measure of the intra-cluster variation,
and its size (measured by “% of observations”) was performed
(Figure 2E), as well as a quantitative comparison between differ-
ent clusters along the two major movement indices (Figure 2F).

As a result of these behavioral characterization analyses, we ob-
served that the circular bots (type 1, Figure 2D) score the highest
on gyration and lowest on straightness indices (Figure 2F). They
also have highly similar trajectories and are very common among
the behaviors of Anthrobots given this cluster has the smallest
homogeneity and a representation of over 30% of all the recorded
periods (Figure 2E). We also observed that the linear bots (type2,
Figure 2D) score the highest on straightness and lowest on gyra-
tion indices (Figure 2F). They have less homogeneity than circu-
lar bots but also have the greatest representation out of all clusters
(Figure 2E). Accordingly, circular and linear bots together make
up more than half of the population, and each have highly homo-
geneous populations. Finally, the third most common (Figure 2E)
type of bot is the curvilinear bot (type 3, Figure 2D), which scores
high on both the gyration and straightness indices (Figure 2F)
and has the second most heterogeneous trajectories (Figure 2E).
Bots with most disorganized trajectories and smallest represen-
tation in the overall population (Figure 2E) are the eclectic bots
(type 4, Figure 2D), which score the lowest on both the gyration

and straightness indices (Figure 2F) due to exhibiting eccentric
trajectories that are often a combination of the other three types.

After having characterized each major movement type ob-
served in Anthrobots, we next investigated the transition prob-
abilities between each pair of behavior types. In order to estimate
the stability of each trajectory and state transitions between dif-
ferent movement types, we used a Markov chain model shown on
Figure 2G, which revealed the degree of commitment to a given
behavior (persistence) and provided an ethogram of Anthrobot
behavior. We observed that the most stable movement pattern for
an Anthrobot is circular motion, followed by linear/curvilinear
motion. The eclectics act more like an intermediate and over
time, at least probabilistically, resolve into one of the 3 other
categories. Therefore, we conclude that the vast majority of An-
throbot movements can be broken down into simpler, highly
consistent patterns like linear, circular, curvilinear, with eclectics
acting as a transient intermediary. The fact that Anthrobots ex-
hibit movement types with high “consistency” and low rates of
inter-type conversion (e.g., between circulars and linear) suggests
that Anthrobots self-organize into discrete and stable movement
types, each bot having a distinct motility fingerprint.

2.3. Anthrobots Self-Organize into Distinct Morphological Types

Having observed several distinct movement types, we next asked
whether the range of Anthrobot morphologies was continuous
or again composed of discrete categories.[23] This question is
important for both understanding the macro-scale rules of self-
assembly, and for future efforts to control their functional prop-
erties. We hypothesized the primary parameters of this possi-
ble underlying morphological framework to be a function of
the Anthrobots’ 3D shape and overall cilia distribution pattern,
since Anthrobot motility is generated by cilia. Accordingly, we
collected 3D structural data (Figure 3a.1) from ≈350 Anthrobots
through immunocytochemistry / immunofluorescence (ICC/IF)
and confocal microscopy, focusing on shape and cilia distribu-
tion pattern properties, and binarized these morphological fea-
tures (Figure 3a.2) to extract quantitative information on cilia and
body boundaries. We then plotted this information for ≈350 An-
throbots along eight different morphological characterization in-
dices we developed, each quantifying a different aspect of the An-
throbot shape and cilia pattern. (Figure 3B; Figure S7A, Support-
ing Information). The shape-related indices among these eight
formal morphological characterization indices included the ra-
tio between the longest and shortest distance within a spheroid
(i.e., “aspect”), longest distance within a spheroid (i.e., “max ra-
dius”), how invaginating or protruding the spheroid surface is
(i.e., “shape smoothness”); the cilia-related indices included the
total area covered by cilia signal on a spheroid surface (“cilia
points”), cilia signal per unit area on a spheroid surface (“cilia

0) and newly motile spheroids (fraction of motile spheroid that reached motility since the previous time point) in the 3 weeks following dissolution.
Out of the 2281 spheroids characterized total, ≈50% consistently showed no signs of motility (despite most having cilia) within this 3-week period and
are referred to as non-movers. The data shown on this graph only include the motile bots, N = 1127. D) Immunostaining of two separate spheroids
from day 0 and day 7 with a-tubulin (cilia marker), Zonula occludens (ZO)-1 (tight junction marker), and the nuclear stain 4’,6-diamidino-2-phenylindole
(DAPI). Amount of multiciliate cells on the spheroid surface show a drastic increase by day 7. E) A day 7 Anthrobot with depth information to show
full cilia coverage. Bots in panels D,E were immunostained with 𝛼-tubulin (cilia marker), ZO-1 (tight junction marker), and DAPI (nuclear stain). Colors
represent tissue depth. All scalebars on this figure feature 50 um.
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Figure 2. Anthrobots self-organize into discrete movement types. A) Anthrobots display different movement types. Scalebar 100 uM. B) Distribution of
all 30-second periods in the analysis plotted by their straightness and gyration indices, showing signs of clustering near three of the 4 corners of the plot.
C) Clustered scatter plot of all 30 s periods with centers of cluster marked and colored. D) Prototypical examples from each cluster with 30 s sample
trajectories. E) Quantitative comparison of key characteristics of the four clusters in terms of intra-cluster homogeneity “average dissimilarity”) and
occurrence frequency (“% of observations”) which show that the largest clusters 1 and 2 have relatively low dissimilarity indicating these are the most
consistent behavioral patterns. F) Comparison of gyration and straightness indices for each cluster with significance levels indicated, showing that each
cluster occupies a unique, quantifiable position in the sample space. P-value range after pairwise 2-sample t-test of 0 to 0.0001 corresponded to ****,
0.0001 to 0.001 corresponded to ***, 0.001 to 0.01 corresponded to **, 0.01 to 0.05 corresponded to * and 0.05 to 1 corresponded to ns. Cluster one
had 6004 30 s periods, cluster two had 6700, cluster three had 3436 and cluster 4 had 2384. G) Markov chain showing state transitions between different
clusters (same as in Figure 2F) and the degree of commitment to a given behavior (persistence), with the circular bots (type 1) as the most committed
category with 92.1% chance of the next period being a circular if the current period is a circular. It is followed by linear and curvilinear, which are also
relatively consistent at 80.0% and 75.3% respectively. Cluster 4, or the eclectics, as expected, are very unstable, with a consistency of only 39.6%. Cluster
4 seems to act as a sort of intermediate, since there is a substantial chance of the eclectics converting to linear (34.5%) or to a lesser degree circular
(15.0%) or curvilinear (10.7%). The transition probability between circulars and linear and vice versa is the lowest and almost nonexistent, at 0.3% and
0.2% respectively. Linear, curvilinear, and circulars rarely convert into eclectics with a probability of 12.3%, 7.5%, 5.8% respectively (and when they do,
it is most likely due to collisions or using eclectics as an intermediary).
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Figure 3. Anthrobots self-organize into distinct morphological types. A) Anthrobot immunocytochemistry enables morphological classification pipeline.
Sample immunological stain for cilia (acctub, i.e., acetylated 𝛼-tubulin) and apical layer marked by the tight junction marker (ZO1) acquired as a complete
3D Z-stack showing the Anthrobot body boundaries and cilia localization on the body. B) Binarized version of the sample immunological data, used
as input to the morphological characterization pipeline. C) Binarized body and cilia information from 350 Anthrobots plotted along 8 morphological
indices on an 8D cloud and clustered with the unsupervised Ward.D2 method, which identify global clusters based on the proximity of the centroids of
locally emerging clusters and merging them together when applicable. PCA showing the three morphotypical clusters on the highest variation plane,
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points/area”), proximity of current cilia point distribution to a
complete random uniform distribution (“cilia distribution homo-
geneity”), how clustered the cilia are on a spheroid surface (“po-
larity”), and how many free-floating cilia points there are that are
not a part of a cluster (“noise points”). See Experimental Section
for more details on how these morphological indices were calcu-
lated.

Next, we performed a Principle Component Analysis (PCA)
followed by an unsupervised clustering algorithm on this 8D data
cloud and observed the emergence of three statistically distinct
clusters (Figure 3C), each representing a distinct morphological
type (morphotype). Figure 3D shows a quantitative characteriza-
tion of each cluster along 8 different morphological indices. This
analysis revealed the following two characteristics to be the most
important distinguishing factors (to an equal degree, both rank-
ing the top place in Principle Component (PC)1 contributions)
between different morphotypes: the size of the Anthrobot (mea-
sured by “max radius”), and the uniformity of its shape (mea-
sured by “shape smoothness”). These two most distinguishing
characteristics formally describe type 1 bots to be significantly
smaller in size and smoother (spherical) in its volume, while type
2 bots to be the largest and least uniformly shaped, and type 3 to
be somewhere in between the two both. (See Materials and Meth-
ods section for PC1 and PC2 contribution rankings of different
indices used to uncover this hierarchy.)

At the second level of importance in distinguishing between
these three morphotypes is a set of four indices (all ranking
equally top place in PC2 contributions), pertaining to cilia char-
acterization. While the first two of these indices characterize cilia
count, i.e., the density of cilia per Anthrobot (measured by “cilia
points”), and the density of cilia per unit area of Anthrobot (mea-
sured by “cilia points/area”); the remaining two indices charac-
terize the pattern in which these cilia are distributed: how tightly
grouped the cilia are (measured by “polarity,”), and the number
of “free-floating” ciliary patches that are not within a group (mea-
sured by “noise points”). These four indices together describe
type 2 bots as being significantly more ciliated than type 1 and
type 3 bots, and type 3 bots as having a significantly more po-
larized cilia distribution pattern (with the least amount of extra-
cluster noise) in comparison to type 1 and type 2 bots (Figure 3D).

The third most important (scoring a second level rank in both
PC1 and PC2) characteristic in distinguishing between the dif-
ferent morphotypes is a function of both the size/shape of the
Anthrobot and the localization pattern of its cilia: the homogene-
ity of cilia distribution on the surface of the Anthrobot (measured
by “cilia distribution homogeneity”). This local index is related to,
but not directly anti-correlated with, the polarity index, because
while cilia distribution homogeneity characterizes local neigh-
borhood patterns, polarity (along with its supporting index “noise

points”) characterizes the global (entire Anthrobot-level) cilia dis-
tribution. (See Experimental Section for more information). In
this way, we obtain both a local and a global view of the cilia dis-
tribution patterns at once and identify type 1 bots as both globally
and locally homogeneous, type 2 bots as globally homogeneous
but locally heterogeneous, and type 3 bots as both globally and
locally heterogeneous with high degree of global polarization.

In summary, our morphological characterization pipeline sug-
gest that Anthrobots self-organize into 3 major morphotypes
(Figure 3E) and this relationship can be represented by a devel-
opmental decision tree shown on Figure 3F wherein the first “de-
cision point” determines the Anthrobot size and shape. Accord-
ingly, bots that are small and regularly shaped (morphotype 1)
form one branch, whereas bots that are larger and more irregu-
larly shaped (morphotypes 2 and 3) form the alternating branch.
On this alternating branch a second decision point forms further
downstream and determines Anthrobot cilia pattern. Anthrobots
with a non-polarized cilia pattern form one branch (morphotype
2), and Anthrobots with a polarized cilia pattern form the other
(morphotype 3).

Finally, one characteristic that does not seem to be changing in
any significant way between these three morphotypes is the ra-
tio between the longest and shortest distance within a spheroid
(measured by “aspect”). Although the 3 morphotypes differ sig-
nificantly in terms of the volumetric regularities (measured by
the shape smoothness index) as explained above, their aspect ra-
tios are statistically very similar.

2.4. Distinct Movement Types and Morphotypes are Highly
Correlated

Having observed the emergence of several discrete types of move-
ment (Figure 2) and morphology (Figure 3), we next decided to
investigate whether there is a mapping between Anthrobots’ dif-
ferent movement types and morphotypes. To do this, we incor-
porated an additional level of movement-type information into
the PCA analysis used for identifying the morphotypes as in-
troduced in Figure 3. During the initial sample collection pro-
cess for this analysis, we had been able to definitively distin-
guish between non-motile Anthrobots (non-movers) and motile
Anthrobots (movers) as described in Figure 1C. To further repre-
sent the movement types observed within the mover population,
we randomly sampled from the set of motile subjects, targeting
30 Anthrobots that translocated (i.e., displacing movers) to assign
a movement type. Selected displacing movers were randomly col-
lected from the two most orthogonal movement types, circulars
and linear, in approximately equal proportions.

marked by PC1 and PC2. Red dashed circles point to specific examples featured in panel E, selected from the cluster edges for distinct representation.
D) Distinct morphotypes translate with significance to differences in real-life morphological metrics, characterized by 8 variables from which the PCA
was computed. P-value range of 0 to 0.0001 corresponded to ****, 0.0001 to 0.001 corresponded to ***, 0.001 to 0.01 corresponded to **, 0.01 to 0.05
corresponded to * and 0.05 to 1 corresponded to ns. Cluster 1,2 and 3 in the analysis corresponded to the clusters in the PCA, with n = 125, 24 and
201 respectively. We ran a two-sided, two-sample t-test on all pairs of clusters, for all 8 variables, which are then plotted here. E) Sample morphotype
examples for Type 1, 2 and 3 chosen for their ability to best represent the cluster. Type 1 Anthrobots are small, regularly shaped, tightly and uniformly
covered by cilia. Type 2 and 3 bots are larger, more irregularly shaped and have less tightly-knit cilia patterns, with type 3 bots featuring significantly more
polarized cilia coverage. Scalebar 50 uM. F) Decision tree of Anthrobot morphogenesis with two major checkpoints as revealed by the PCA hierarchy:
first decision point is size/shape (has equal impact), second decision point is cilia localization pattern.
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Next, we identified these non-mover and displacing mover An-
throbots within the PCA cloud presented in Figure 3C and as-
signed them this additional layer of information, i.e., movement
type (Figure 4A) without changing anything else in our sample
pool or analysis workflow. In result, 62% of non-movers were
identified within morphotype 1 cluster (with the remaining 38%
falling into the morphotype 2 cluster). A 100% of displacing bots
were identified in morphotype clusters 2 and 3, with ≈85% of
linear bots being in cluster 2, and 88% of circular bots being in
cluster 3. We have further computed the statistical significance of
these overlaps (using the Fisher test, see Materials and Methods)
and conclude that the non-movers, linear, and circulars signifi-
cantly correspond with the morphotypes 1, 2 and 3, respectively.

The fact that none of the displacing bots were identified within
the morphotype 1 cluster suggests that the movers identified
within this cluster (i.e., those morphotype cluster 1 data points
which are not labeled as “non-movers”) are statistically likely to
be non-displacing movers, displaying a stationary wiggling motion.
Accordingly, we conclude that morphotype 1 bots are likely to as-
sume either non-mover behavior or wiggler behavior. This may
be attributable to their spherical shape with homogeneously dis-
tributed cilia where the propulsion forces generated by the ciliary
motion are more prone to canceling each other out due to the ra-
dially symmetric spherical shape, resulting in little or no move-
ment. Accordingly, inherent noise in the system (such as small
imbalances in the cilia distribution on the spheroid surface or
how the bot happened to be oriented in the plate) may be suffi-
cient to have these bots generate small amounts of movement,
causing them to wiggle, but not enough movement to become a
displacing bot.

As a result of these analyses, we conclude that there is a statis-
tically significant relationship between the Anthrobots’ develop-
mental morphology and their behavior, and we show visual exam-
ples of this relationship with categorical examples on Figure 4B.
We further represent this relationship by a decision tree in the
form of a Waddington Landscape – a formalism often used to
characterize cell- and body-level properties by mapping out the
sequential logic of decision-points in transcriptional space or
morphospace.[24] Figure 4C shows the Waddington Landscape
for the Anthrobot. The single cell at the top of the diagram rep-
resents the single cell that will develop into the multicellular An-
throbot. During this process of self-construction, the Anthrobot
moves through the developmental landscape, negotiating certain
points of morphological possibility to reach its final architecture.
We conclude that the unique and spontaneous 3D multicellular
morphogenesis of adult airway cells into Anthrobots is consis-
tent; the final form of the Anthrobot displays a degree of vari-
ability and exhibits discrete characters with easily recognizable
primary features that also map on to phenotypic behavior.

2.5. Anthrobots Show Bilateral Asymmetry Along Movement Axis

The above metrics all focused on the global structure of the bot.
Next, we studied the local characteristics that connect the move-
ment of bots to their morphology, by looking for a difference in bi-
lateral symmetry, or lack thereof, between the two major types of
displacing bots (linear and circulars) through symmetricity mea-
surements across plane coincident with their direction of move-

ment. One hypothesis is that Anthrobots have bilateral symmetry
that underlies their ability to move in straight lines (as observed
in many existing species[25] and even synthetic forms[26]); this
hypothesis predicts that Anthrobots with circular motion should
have more asymmetry across their movement axis compared to
other planes. This hypothesis was tested by running a PCA and
unsupervised clustering algorithm on a point cloud quantifying
Anthrobot cilia distribution patterns through four major bilat-
eral symmetry-related measurements: total cilia points on a given
bot (measured by “tot”), difference in number of cilia points be-
tween the two hemispheres (halves of the bot that are separated
by the movement axis) of a given bot (measured by “diff”), this
difference normalized by total cilia points (measured by “difftot”),
and finally the bilateral symmetry index along the movement axis
(measured by “Chamfer distance,” see methods for more details).
Results of this analysis (Figure 4D) yielded two major clusters
that, in a statistically significant manner, each correspond to one
of the two major types of displacing bots (linear and circulars).
The group consisting predominantly of linear bots scored signifi-
cantly higher on the bilateral symmetry measurement (via Cham-
fer Distance axes, which inversely correlate with bilateral symme-
try measurement). This result provides preliminary evidence in
support of the hypothesis that Anthrobots with linear movement
trajectories may have higher degrees of bilateral symmetry.

In order to further test this hypothesis, while also controlling
for the globally homogeneous cilia distribution in linear bots pos-
ing a potential confounding factor for bilateral symmetry mea-
surements, we compared the bilateral symmetricity of linear and
circular bots against arbitrary axes other than the axis of move-
ment. The initial hypothesis that linear Anthrobots may have
higher degrees of bilateral symmetry compared to circular bots
automatically suggests that for linear bots, we would expect there
to be no other axis than the axis of movement along which the
bilateral symmetry is higher; and for circular bots, we would ex-
pect there to be other axes than the axis of movement in respect to
which the bilateral symmetry is higher. We tested this postulation
by measuring linear and circular Anthrobots bilateral symmetry
indices separately along each bot’s axis of movement versus its
farthest rotated (i.e., 90-degree rotated) counterpart (as the con-
trol axis). As a result (Figure 4E), we indeed observed that while
for the linear bots there exists no other axis in respect to which
the bilateral symmetry is higher than that of the axis of move-
ment, for the circular bots, there exists other axes than the axis
of movement in respect to which the degree of bilateral symme-
try is higher (p = 0.048). (See Figure S8, Supporting Information
for comparison with other control axes that have rotational an-
gle smaller than the farthest possible 90-degrees.) Taken together,
these findings support our hypothesis that Anthrobots with dis-
tinct movement types have distinct local bilateral symmetry pro-
files, with linear bots showing higher bilateral symmetry. This
suggests that these synthetic forms recapitulate a fundamental
morphological property observed in many wild-type species.

2.6. Anthrobots Can Move Across Scratches on Live Monolayers
In Vitro

One possible use of these living biobots is to manipulate other tis-
sues, in vitro or in vivo, in future biomedical or bioengineering
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Figure 4. Distinct movement types and morphotypes are highly correlated. A) PCA of 350 bots forming 3 morphotypical clusters, showing that there
is significant overlap between these clusters and the separately marked non-movers, linear and circulars. Red dashed circles mark specific examples
featured in panel B, selected from the cluster edges for distinct representation. B) Sample morphotype examples from each cluster, corresponding to
Cluster 1, 2 and 3 and Nonmover, Linear, and Circular, respectively chosen for their ability to best represent the morphotype versus movement type
mapping. Scalebar 50 uM and applies to all three bots. C) Waddington landscape illustrating the logic of determination of bot behavior and their relation
to morphotypical indices with end behavioral products, as well as the potential states possible at each level of bifurcation of the bots’ development.
(Waddington Landscape image modified from J. Ferrell, 2012.) D) PCA and unsupervised clustering showing the polarization among linear and circular
bots in respect to bilateral symmetry metrics. E) Difference in asymmetry of cilia distribution between the movement axis and its 90-degree offset axis.
Here, n = 15 and 13 for Circulars and Linear respectively, with p = 0.0482 and 0.1116 done by one-sample t-test for each with alternative hypothesis.
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Figure 5. Anthrobots can move across living monolayers in vitro. A) A representative timelapse video of an Anthrobot as it moves along a neural scratch
in vitro. B) Sample tracking video output with scratch edge highlighted in yellow and bot path in red. The rotation of the bot is measured through the
change in the orientation of the green and red bars attached to the center of the bot in white. C) The significant (p = 0.017, slope 1.15, n = 17, t-test for
slope) positive relationship between bot gyration index and proportion of bot’s body in contact with scratch suggest that circular bots cover the edges of
the scratch more as they move along the scratch. D) The significant (p = 0.031, slope 0.0082, n = 17, t-test for slope) positive relationship between bot
speed and proportion of bot’s body in contact with scratch further suggest that faster bots also cover the edges of the scratch more as they move along
the scratch. E) For a subset of bots (dataset constrained to non-stalling bots with rotational tendencies between 0.33 and 0.7 and viable tracking videos),
the quadratic (alternative curves were insignificant) relationship (p = 0.006, n = 13, t-test) between bot gyration index and scratch-trajectory similarity
metric suggests that there is a goldilocks zone for the bot rotational tendency for maximum scratch area exploration. This quadratic relationship was
revealed when we initially tested for a linear relationship between these two metrics by plotting the residuals against the fitted values for the model,
and observed a clear quadratic trend among the residuals (see Figure S9, Supporting Information), which strongly suggested the fitting of a quadratic
model instead, which is shown here. Consistent with these statistical analyses, in the experimental space we observed that bots with very low rotational
tendencies interacted minimally with the scar edges while bots with very high rotational tendencies skidded in place or was prone to veering off the
scratch edge. There appears to be an optimal amount of rotation for a bot to move across the scratch while faithfully following the scratch edge.

applications. How will biobots react to environments different
from those that their component cells face in their native con-
figuration in vivo? Thus, Anthrobot behaviors need to be charac-
terized outside of a bare culture dish context, and especially in
environments that airway epithelia do not normally encounter.
Having characterized their baseline movement and morphology,
we wanted to assay this novel motile form for potentially useful
behaviors and ways in which it may interact with other somatic
tissues, especially sites of damage. Because we are interested in
surprising examples of behaviors in such novel constructs, we
sought to confront them with a scenario which would not be
natural for these airway cells, either in vivo or in their evolu-
tionary history. We decided to study the ability of Anthrobots to
move across live tissues that have been damaged, taking advan-
tage of a common model system: the monolayer scratch assay
in vitro.[27] We produced 2D confluent layers of human neurons
derived from human induced neural stem cells (hiNSCs) based
on a previously established method,[28] and introduced a scratch

of 400–1000 microns by mechanically scratching away the neu-
ron layer in a long swath. We chose hiNSC-derived scratches, in-
stead of (for example) smooth and regular polydimethylsiloxane
(PDMS) channels, because complex borders of such in vitro live
tissue scratches featuring live cells constitute more biologically
realistic in vitro proxies. We are interested in developing aspira-
tional models for more complex scratched multi-layered live tis-
sues which are more prone to reveal novel and interesting inter-
actions compared to gels or other artificially-smooth surfaces.

Anthrobots were placed within these neuronal scratch envi-
ronments in order to characterize their dynamics in this novel
biological environment. Bots were allowed to freely move on
their own and timelapse videos were recorded (Figure 5A, and
Videos S6 and S7, Supporting Information). These videos were
then tracked, and specific indices were calculated from the
tracked files (Figure 5B). Among these indices, we characterized
the degree to which bots interact with the native tissue surround-
ing the scratch (measured by “proportion of bot on tissue”), bots’
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tendency to assume a circular motility profile (measured by “bot’s
rotational tendency”), and bots’ displacement speed in traversing
the scratch (measured by “instantaneous velocity”). More specif-
ically, we investigated the relationship between bots’ efficiency
in traversing the scratch as a function of the circularity of their
movement pattern (Figure 5C). We observed a significant positive
relationship (slope = 1.5, p = 0.01), confirming our baseline as-
sumption that although circling bots are less efficient in forward
motion, they are better at covering the most unique coordinates
in the scratch. We have further observed that the instantaneous
velocity also had a significant positive relationship with bots’ ef-
ficiency in moving across the scratch (slope = 0.0082, p = 0.031
(Figure 5D), presumably due to increased collisions with the tis-
sue. Taken together, these data reveal that Anthrobots are capa-
ble of efficiently moving across damaged tissues, and that bots
that have a higher rotational tendency and or higher speed have
higher degrees of unique coordinate coverage by moving across
a higher percentage of the scratch interface.

Having observed the behavior of these bots in scratches, we
focused on the interactions between various scratch edge pat-
terns and bots’ ability to track along them. In order to do so, we
first constrained the dataset to trajectories that could be used to
further understand this relationship. We specifically focused on
bots that were not extreme in their rotational tendencies, had am-
ple contact with the scratch and had viable tracking videos (see
Experimental Section). This enabled us to isolate the tendency
of the bot to turn consistently in the same direction (measured
again by “bot’s rotational tendency”) and the correlation between
the trajectory and scratch edge (measured by “scratch-trajectory
correlation”). With our constrained dataset, we saw that gyration
had a quadratic effect on scratch-trajectory similarity (Figure 5E)
with p = 0.006, suggesting that there is a specific range for gyra-
tion where the scratch-trajectory correlation can be maximized:
Anthrobots can be chosen to specifically maximize coverage effi-
ciency based on their rotational tendency.

2.7. Anthrobots Can Promote Gap Closures on Scratched Live
Neuronal Monolayer Tissues

One of the most important aspects of exploring synthetic mor-
phogenesis is the opportunity to observe novel behaviors that are
obscured by standard, default phenotypes. Having seen that these
airway cell-derived constructs can move along and settle in neural
scratches, we decided to check for the effects of their presence on
the surrounding cells. A characterization of their wild-type capa-
bilities is important not only for understanding biological plastic-
ity but also for establishing a baseline for future efforts in which
biobots are augmented with additional synthetic circuits for pro-
regenerative applications.

Inspired by collective behavior and swarm intelligence, and
more generally, how in nature collectives can accomplish tasks
that individuals cannot, we decided to create “superbot” as-
semblies by facilitating random self-aggregation of distinct An-
throbots that fuse to form larger structures. We accomplished
this without using molds or any other external shape-giving
equipment, but by simply constraining multiple Anthrobots in
a relatively smaller dish, while keeping everything else constant.
Akin to how ants cross openings that are too wide for a single

ant to cross by forming a bridge through aggregation of their
bodies,[29] we placed these superbots into arbitrary sites along
the tissue scratch such that they span the entire width of the
scratch, enabling them to “bridge” two sides of the damaged tis-
sue in order to see if we can induce any kind of repair of the
scratched monolayer by bridging the two sides, akin to a mechan-
ical stitch. Figure 6A shows a superbot on a scratch upon its place-
ment on day 0, as well as the resulting bridge configuration on
subsequent days of day 1 and day 2.

Strikingly, within the next 72 h upon inoculation of the super-
bot into the tissue scratch on day 0, we observed a substantial
regrowth of the native tissue taking place (i.e., gap closure), re-
sulting in the formation of a stitch right underneath the “super-
bot bridge,” connecting the two sides of the scratch (Figure 6B).
This gap closure was observed solely at the site of superbot inoc-
ulation, and at no other place along the long scratch (Figure 6C).
A quantitative analysis (Figure 6D) of these gap closure sites
shows that while the neuron pixel coverage density of the gap
closure site is as high as the native tissue outside the scratch
(see Figure S10, Supporting Information), the rest of the scratch
space, whether adjacent or far, had significantly less density of
coverage. Thus, the density of the induced gap closure area that
formed as a result of the presence of the superbot represented
full (statistically indistinguishable from 100%) recovery of the
original tissue and was uniquely different from the surrounding
scratch area. Further quantification of superbot bridge-assisted
neuronal gap closure formation showed an average aspect ratio
of 0.7 on average. Finally, in order to test whether simple (passive)
mechanical contact was sufficient to induce the same effect, we
incubated neuronal scratches for 4 days with a piece of agarose
on top to provide mechanical loading; this induced no repair (see
Figure S11, Supporting Information).

3. Discussion

Biorobotics and bioengineering have at least two main areas of
impact. One is the production of useful living machines.[2a–c] The
other is the use of unconventional configurations for living mate-
rials at all scales, to probe the macro-scale rules of self-assembly
of form and function.[3i,30] Specifically, by confronting evolved
systems with novel contexts, we can learn about the degree of
plasticity that cells and control pathways can exhibit toward new
anatomical and functional endpoints, as well as develop proto-
cols to alter default outcomes. Here, we used human patient cells
to begin the journey toward immunologically-acceptable, active,
living biomedical constructs, and to begin to probe the morpho-
logical and functional capabilities of mammalian, adult cells.

Self-motile, fully-organic biobots have been demonstrated with
frog cells[7]; however, it was unknown whether the surprising
properties of Xenobots depend strongly on their amphibian
genome and evolutionary history, as well as their embryonic
state. Specifically, the plasticity of amphibian tissues, and the
propensity of embryonic cells to self-assemble into structures
were thought to be unique features that may not be available to
engineers working with adult patient-derived cells. We show that
despite spending their entire life in a flat, tracheal architecture
(a cycle of over 4–8 decades for our donors), these human cells,
with a wild-type genome and no introduction of scaffolds or nano-
materials, are able to implement a novel set of morphogenetic
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Figure 6. Anthrobots can promote gap closures on scratched live neuronal monolayers. A) sample micrograph of a bridge across a neural scratch over
time from bridge inoculation day (day0) to days 1 and 2. B) An overlay of a bridge bot and the induced “stitch” (i.e., gap closure site) at the end of the
observation on day 3. C) Immunological staining of neurons with Beta III Tubulin (Tuj1) upon fixation on day 3 after the bots were introduced to the
system, showing an induced neural gap closure at the site of bot settlement. D) Among N = 10 experimental replicates, 50% of the Anthrobot bridges
have maintained connectivity to both sides of the scratch area across all three days of the experiment (i.e., fully connected bridges), and among these
bridges, 100% has yielded gap closure underneath at the neuronal scratch site. Shown here is a quantification of the resulting tissue on day 3 of all fully
connected bridges measured by average proportion of neuronal coverage by pixel counts for each positional category: gap closure site, unscratched
native tissue (calculated by the average of the two neuron-heavy area pixel coverage), adjacent and distant sites to the gap closure. Difference between
gap closure site and native tissue is insignificant (p = 0.37), while the difference between the gap closure site and both adjacent and distal scratch sites
are significant (w/ p = 0.006 and p = 0.005, respectively); that suggests the tissue at the gap closure site is as dense as the native tissue, and the gap
closure effect follows a crisp profile as opposed to a gradient profile. P-value range of 0 to 0.0001 corresponded to ****, 0.0001 to 0.001 corresponded
to ***, 0.001 to 0.01 corresponded to **, 0.01 to 0.05 corresponded to * and 0.05 to 1 corresponded to ns. See methods section for example frame of a
sampling region. Scratch lengths varied between 150–500 um E) Immunological staining of another sample bridge superbot (green) and the neuronal
tissue (red). All scalebars on this figure feature 200 microns.
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classes and motile behaviors. Another surprising finding, given
the usually tight mapping between genomes and species-specific
form and function, is that the Anthrobots adopt some of the mor-
phological and functional properties similar to Xenobots despite
their highly divergent genomes.

Anthrobots’ overall shape and behavior are similar to that of
Xenobots, but not identical. Anthrobots are ≈20 to 300+ mi-
crometers in size, whereas Xenobots range from an average
of 487±39 μm for the smallest cut explants to 602±30 μm for
the largest30. Xenobots likewise offer discrete motion types, and
their behavior transition profile is similar. The interconversion
between linear and circular is very small for Xenobots (0.5%
and 1.6%) and Anthrobots (0.2% and 0.3%), while their consis-
tency of Circular behavior is extremely high for Xenobots (95%)
just like for Anthrobots (92%). However, Xenobots’ linear be-
havior consistency was not as high (67%) when compared to
Anthrobots (80%). Despite their highly divergent genome, age,
and tissue origin, the two platforms assemble into very similar
types of creatures, illustrating the importance of generic laws of
morphogenesis[31] in addition to species-specific genomic infor-
mation.

Another difference from existing biorobotics is that the
Xenobots’ construction depended on a rate-limiting process of ex-
tracting source cells from frog embryos. Here we show a protocol
for enabling the self-construction of Anthrobots: living structures
made from epithelial cells that traverse aqueous environments.
The process is highly scalable, and produces Anthrobots in the
course of 3 weeks, with minimal manual input beyond weekly
media changes. At the end of their 4–6 weeks life span, they safely
degrade by becoming unviable debris.

Anthrobots exhibit several distinct movement and morpho-
logical classes, which are significantly correlated. This is espe-
cially important because the structure and function of this novel
construct is not that of a familiar organism (despite a wild-type
genome), and it was not yet known whether its morphospace pos-
sessed specific attractors, how reliable the cells’ navigation of that
morphospace was, or how the movement patterns would relate
to its specific morphology. Anthrobots showed clear and consis-
tent active movement types, quantified over 30 second periods:
circulars, linear, curvilinear, and eclectics, with the last category
including the non-displacing bots, i.e., wigglers, as well as dis-
tinct morphotypes that are best distinguished by Anthrobot size,
shape, and cilia localization patterns. While more work needs to
be done to establish a causal relationship between these morpho-
types and the movement types, our analyses showed significant
correlation between the non-displacing (wiggler or non-mover)
movement type and morphotype 1, linear movement type and
morphotype 2, and finally circular movement type and morpho-
type 3. Such correlation has implications for future control of
higher-order behaviors (such as movement types) by way of con-
trolling Anthrobot morphology through synthetic morphogene-
sis, as well as real-time physiological signaling. In the future, ma-
chine learning classifiers may help predictively identify different
movement types from phase contrast images of live bots, with-
out needing to perform immunostaining on them. Furthermore,
such classifiers will use artificial intelligence tools to correlate ini-
tial physiological parameters with final outcomes, as part of the
effort for using Anthrobots as a platform for cracking the mor-
phogenetic code.

Analysis of movement and morphology has further revealed
the ability of the Anthrobots to establish bilateral symmetry,
which is an interesting aspect of self-assembly in a symmetri-
cal environment and will enable future studies of the still poorly-
understood question of how multicellular amniote embryos bi-
sect themselves to establish a single midplane for their bodyplan.

We found that Anthrobots can traverse neural tissues and de-
fects therein. This popular but highly simplified injury model[27a]

is just the beginning for understanding how Anthrobots will deal
with traversing complex multifaceted 3D tissues. Most remark-
ably, we found that Anthrobots induce efficient healing of de-
fects in live human neural monolayers in vitro, causing neurites
to grow into the gap and join the opposite sides of the injury.
Passive materials did not recapitulate this effect, but it is not yet
known which of the many possible biochemical and biophysical
aspects of Anthrobot presence are required for this. Although the
complex in-vivo dynamics (e.g., immune components, migratory
cells, inflammatory signaling and so on) that may otherwise be
observed in actual wounded tissues are not present in this sim-
plified in-vitro neuronal injury model, so are the endogenous re-
pair cues (e.g., chemical gradients that normally guide such re-
pair processes), yet the Anthrobots were still able to facilitate the
repair of a scratched neuronal monolayer. Future work will ex-
amine the functionality of Anthrobots in complex injury sites in
vivo and identify which of their properties and active processes
are mediating the effects.

Furthermore, the size of the Anthrobot to facilitate this repair
can be adjusted. The tendency of the bots to fuse together and
thus form different sized collectives (i.e., superbots) for differ-
ent scratches can be controlled by modulating the number of
Anthrobots cultured together in the same well for fusion, which
happens only on days immediately following dissolution while
the Anthrobot basal layers are still exposed and thus can medi-
ate the bot-to-bot fusion. The finding is unexpected given these
tissues’ normal roles in the human body – the fact that wild-type
cells from trachea will move over and heal neural tissues could
not be predicted from any current molecular or tissue-level mod-
els. Thus, it is likely that screens for engineered interactions be-
tween body tissues in the context of motile bio-robotics and other
preparations should be performed to uncover novel capabilities
of cells and multicellular constructs. Likewise, future molecular
biophysics and machine learning efforts could identify the spe-
cific signaling modality that is used by Anthrobots to induce neu-
ral repair in their vicinity, and thus harness this effect for thera-
peutic purposes.

Anthrobots are derived from adult human tissue, and in the fu-
ture could be personalized for each patient, enabling safe in-vivo
deployment of these robots in the human body without triggering
an immune response. Once inoculated in the body via minimally
invasive methods such as injection, various applications can be
imagined, including but not limited to clearing plaque buildup in
the arteries of atherosclerosis patients, bulldozing the excess mu-
cus from the airways of cystic fibrosis patients, and locally deliv-
ering drugs of interest in target tissues. The possible applications
will represent those arising from exploiting surprising novel be-
haviors of cells and engineering new ones via future synthetic
biology payloads, such as novel enzymes, antibodies, and other
ways to manipulate the cells they traverse and interact with. They
could also be used as avatars for personalized drug screening,[32]
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having the advantage of behavior over simple organoids, which
could be used to screen for a wider range of active, dynamic phe-
notypes.

4. Conclusion

We quantified in detail the morphogenetic and behavioral capac-
ities that self-organized, clonally-derived biobots can develop in
culture from adult, genetically wild-type, human cells. We found
correlations between their specific form and several modes of
autonomous (self-driven) motile function, and characterized the
space of discrete characters of form and function that are not cur-
rently inferable from the standard target morphology associated
with the human genome. We also found a surprising non-cell-
autonomous functionality of Anthrobots – a repair property that
likewise could not have been guessed in advance from existing
frameworks describing the uses of organoids and other bioengi-
neered structures.

Anthrobots may be able to be generated from other ciliated
cells in the human body (e.g., oviductal epithelia or brain ependy-
mal cells), and other cell types can be used for bots when au-
tonomous motility is not needed (they can still perform var-
ious functions such as the healing we report here, or sens-
ing/reporting, etc.). It may also be possible to induce a ciliation
program in other body cell types. These data establish a research
program with many unanswered questions for subsequent work.
What other cells can Anthrobots be made of? What other behav-
iors might they exhibit, and in what environments? What other
tissue types can they repair or affect in other ways? Can transcrip-
tional or physiological signatures be read out in living bots, that
reflect their past and immediate interactions with surrounding
cellular or molecular landscapes? Do they have preferences or
primitive learning capacities,[33] with respect to their traversal of
richer environments? More fundamentally, these data reveal ad-
ditional morphogenetic competencies of cells which could have
implications for evolutionary developmental biology, as evolution
of anatomical and functional features could be affected by the
ability of the same genome to produce very diverse forms in dif-
ferent environments. Finally, this kind of new model system is a
contribution to two key future efforts. The study of synthetic bio-
logical systems[3c,i,34] is an essential complement to the standard
set of phenotypic defaults available in the natural phylogenetic
tree of Earth, revealing the adjacent possible in morphological
and behavioral spaces.[35] Moreover, these systems offer a safe,
highly tractable sandbox in which to learn to predict and control
the surprising and multi-faceted system-level properties of mul-
tiscale complex systems.

5. Experimental Section
Production of Anthrobots via NHBE Culture: NHBEs were sourced from

Lonza Walkersville, MD (CC2540S). The cells were first thawed and seeded
on a T150 flask containing bronchial epithelial growth medium (BEGM,
Lonza CC-3170) for 2D cell culture growth. Once the NHBEs were ≈80%
confluent, they were passage into a 24-well-plate of Matrigel (Corning
#354 230) beds for 3D cell culture. The NHBEs were not passed past
the 3rd passage. Each Anthrobot bed contained 500 μL of 25% Matrigel,
0.1% 0.5 nM retinoic acid (Sigma–Aldrich R2625) and in bronchial ep-
ithelial differentiation medium (BEDM, which is 50% BEGM without T3

and 50% high glucose Dulbecco’s Modified Eagle Medium (DMEM) with-
out Sodium Pyruvate from Sigma #11-965-092) that was centrifuged for
5 s at 100 x g and prepared at least 4 h before passaging the cells. We
usually made 6 beds, but this number can be adjusted at discretion. The
cells were re-suspended in 5% Matrigel, 95% BEDM and 0.1% 0.5 nM
Retinoic Acid (RA) and seeded directly onto the Matrigel beds with 500 μL
per well at a 30 000 cells mL−1 concentration. Once seeded, the NHBEs
were centrifuged for 5 s at 50 x g. On days 2 and 8, the NHBEs received
a top feed containing 750 μL 5% Matrigel, 95% BEDM, and 0.1% RA. On
day 14, 500 μL of the wells’ contents was aspirated and 500 μL of dispase
(#D469) at concentration 2 mg mL−1 was added to each well. A mini cell
scraper was used to break up the Anthrobot clumps and then followed by a
0.05% Triton coated pipette tip to mix up the Anthrobot with the dispase.
The dispase was then incubated at 37 °C for 1 h with the pipetting pro-
cess repeated every 15 min. During incubation, Pluristrainer Mini’s with a
40 μm pore size (Fisher Scientific #431 004 050) were placed in wells of a
fresh 24-well-plate that contained 2.5 mL of 0.05% Triton. After the incuba-
tion period, 250 μL of 1% 5 mM EDTA in Dulbecco’s Phosphate Buffered
Saline (D-PBS) was added into each well. The media in each well was
then drawn up, using the Triton-coated tip, and added to the Triton-coated
strainers. The NHBE spheroids in the strainer were rinsed with 1 mL of D-
PBS then expelled onto a low adhesive dish by inverting the strainer over
the dish and expelling 5 times of 1 mL of BEDM through the bottom of
the strainer. After all spheroids were in one dish, they were divided evenly
among multiple 60 mm dishes by using a Triton-coated pipette tip and a
microscope to manually draw up and divide them. 0.5 μL of 0.5 nM retinoic
acid was added into each dish once divided. For the next 14 days as the
spheroids started moving, they required 0.5 μL of 0.5 nM RA every other
day and a media change every 4 days. The media change was performed by
swirling the Anthrobots to the center of the dish then collecting 2 mL of old
media and adding 3 mL of fresh BEDM.This was done under a microscope
to ensure no Anthrobots got aspirated. Finally, it was created “superbot”
assemblies by facilitating random self-aggregation of distinct Anthrobots
that fuse to form larger structures. It was accomplished this by transfer-
ring one well’s equivalent of Anthrobots into a 60 mm dish, while keeping
everything else constant.

Tracking Timelapse Videos: Timelapse videos of the Anthrobots were
collected at 2.5 s intervals for a duration of 5 h. The videos were contrast-
enhanced using the video editing software ImageJ for optimal tracking and
data that are within one bot length (≈100 um) from the edge of the vessel
were omitted to prevent edge effect as a confounding factor. They were
then processed to extract the trajectories of the Anthrobots utilizing the
trackR function in the trackR package (version 0.5.1) for R developed by
the Swarm Lab of New Jersey Institute of Technology (NJIT). The software
parameters were chosen manually in order to increase the accuracy of the
tracking, following the instructions in the trackR package’s help. Tracking
errors such as the swapping, deletion or insertion of tracks were subse-
quently manually corrected using the trackFixer function from the same
package.

Movement Type Analysis: From the extracted trajectories, the following
metrics were computed: i) the linear distance between the current position
and the immediately preceding one; ii) the linear speed at each position,
approximated as the distance moved between the current position and the
immediately preceding one during the time interval between these two po-
sitions; iii) the heading of the bot at each position, approximated as the
angle between the vector formed by the current position and the immedi-
ately preceding one and that formed by the Anthrobot position and the im-
mediately following one; iv) the angular speed of the bot at each position,
approximated as the difference between the heading at the immediately
preceding position and that at the current one during the time interval be-
tween the corresponding three positions required to calculate these two
headings; v) the time difference between each position.

Behavioral classification was then performed on non-overlapping 30 s
blocks of trajectory. To determine how predictable a position change was,
the linear speed, heading, and angular speed were estimated at each po-
sition to predict the coordinates of the following position. The error (Eu-
clidean distance) between the predicted coordinates and the actual coordi-
nates was then computed. For each complete 30 s block of trajectory (i.e.,
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a block with no missing timestamp), total error over the entire block was
calculated and normalized by the total distance traveled during that block
to account for the artificial error amplification caused by predicting over
longer distances. To separate active from inactive blocks, an automated
classification method was used on the distribution of total normalized er-
rors. A gamma mixture model with two components was fit to the data us-
ing the expectation maximization algorithm in the REBMIX function from
the rebmix package (version 2.12.0) for R.[36] The 30 s periods in the re-
sulting cluster with the highest total normalized error were considered as
inactive and excluded from further classification.

We then derived two metrics to describe each trajectory: i) a “straight-
ness” index computed as 1 minus the circular variance of the headings
during the block (a value of 1 indicates a perfectly straight line) and ii) a
“gyration” index computed as 1 minus the circular variance of the angular
speed during the block divided by the circular variance of the same angu-
lar speeds and their additive inverse, which helps in taking into account
the magnitude of the angular speeds themselves (a value of 1 indicates a
trajectory following a perfect circle).

The need for two indices arises from the fact that a straightness index
alone cannot fully tease apart all different movement types due to its ag-
gregate view of a trajectory. In other words, a low straightness index does
not automatically translate into a perfectly circular bot, as we can see in
Figure S6A.1,A.2 (Supporting Information) with the arc trajectory. This is
due to the fact that the straightness index does not account for the time-
dependent dynamics and thus ignores individual variations across frames.
This is where the second movement metric, the gyration index, comes into
play. To account for temporal information, we calculate the angular speed,
which is the difference between successive headings divided by time be-
tween frames and thus has units of radians/ second. Figure S6B (Sup-
porting Information) shows a bent trajectory and Figure S6C (Supporting
Information) shows an arc trajectory, both of which have similar straight-
ness indices. However, when we start looking at their temporal relation-
ships using angular speeds, the behavior is entirely different. For the arc
(Figure S6C, Supporting Information), the variance of the angular speed
is very small since the change in heading of the trajectory each time is
relatively consistent (the distribution shown in the histograms).

For the bent trajectory (Figure S6B, Supporting Information), the vari-
ance of angular speed is much larger than the arc since for most of the
trajectory the angular speed is close to 0 (it goes straight), but the bent
portion has a very high angular speed, i.e., the angle changes very quickly.
In general, the greater the absolute value of the angular speed the sharper
the turn in the trajectory (zero is straight) and the greater the variance of
the angular speeds, the less the consistency of the turns in the trajectory. A
circle or arc usually has absolute values of the angular speed much greater
than zero and low variation of angular speed. However, the gyration index
alone cannot differentiate between all behavior either. Let’s look at a cir-
cular trajectory (Figure S6D, Supporting Information). Even though the
absolute values of the angular speeds between arcs and circles are differ-
ent, the circle also ends up having a gyration index close to 1 since all the
turns in a circle are highly consistent like in an arc and thus the variance
of the angular speed for both is very small. This fact means the gyration
index cannot segregate between arcs and circles, among other things, by
itself. Interestingly, the straightness index is exceptional at separating arcs
and circles. This shows that though either index alone cannot distinguish
all movement types well, together they can accomplish much more.

To separate the trajectory blocks into categories of similar behavior after
calculating the movement metrics, a cross-entropy clustering algorithm
was used,[37] and implemented in the cec function of the CEC package
(version 0.10.2) for R.[38] This yielded us six categories, of which trajecto-
ries from categories numbered 3 and 4 were merged into categories num-
bered 1 and 2 respectively due to the difference being phenotypically mini-
mal. In the “behavioral space” as defined by the straightness and gyration
indices, cluster 3 had the same straightness index range as cluster 1 and
a lower gyration range between roughly 0.65 and 0.95, which represented
trajectories that were highly circular but fell short of cluster 1 which repre-
sented “prototypical circulars”. Similarly, Cluster 4 had a slightly smaller
straightness index range than cluster 2 (0.7 to 1 instead of 0.6 to 1) and
higher gyration range between 0.1 and 0.55 which represented trajectories

that were mostly linear but did not have a high enough gyration to be curvi-
linear or low enough gyration to be Cluster 2, a “prototypical linear”. The
merge of the two clusters increased the average dissimilarity of the clus-
ter, but it is a testament to how similar clusters 1 and 3, and 2 and 4 were
already that their dissimilarity still remains very low at ≈0.09 and ≈0.14
respectively. Last, to understand how the bots’ behaviors are distributed
relative to each other, transition probabilities between each behavioral cat-
egory were estimated by calculating the proportion of times a block of a
given category is followed by a block of the same or another category. This
was then presented in the form of a Markov Chain.

Immunocytochemistry/Immunofluorescence: Anthrobots were col-
lected in Pluristrainer Mini’s with a 40-micron pore size (Fisher Scientific
#431 004 050) and fixed with 4% paraformaldehyde at room temperature
for 30 min. Following phosphate buffered saline (PBS) washes, blocking
and permeabilization were performed for 1 h at room temperature on a
rocker in a blocking buffer consisting of phosphate-buffered saline with
10% normal goat serum, 1% bovine serum albumin (BSA), and .15%
triton x-100. Anthrobots were then incubated with mouse anti-acetylated
tubulin (Sigma-Aldrich #T7451) primary antibodies at 1:250 dilution fac-
tor in blocking buffer for 24 h at 4 °C on a rocker. The primary antibodies
were labeled with Alexa Fluor 647 donkey anti-mouse (Thermo Fisher
Scientific #A31571) secondary antibodies, at 1:500 dilutions in blocking
buffer, for 1 h at room temperature on a rocker. Lastly, Anthrobots were
incubated with Alexa Fluor 594-conjugated mouse anti-ZO-1 (Thermo
Fisher Scientific #339 194) at a 1:100 dilution in blocking buffer for 24 h
at 4 °C on a rocker. Anthrobots were mounted on glass-bottom 96-well
plates in ProLong Glass Antifade Mountant with NucBlue (Thermo Fisher
Scientific #P36981). Neuronal tissues were fixed, blocked and stained
using the same protocol, except by using Beta III Tubulin (Tuj1) (Abcam
#ab18207) as the primary antibody for staining the hiNSCs. Images were
collected using a Leica SP8 Fluorescence Lifetime Imaging Microscopy
(FLIM) with a 25x water immersion objective. Z-stack step size = 3 micron
unless otherwise specified.

Morphotype Analysis: To find whether there were any unique mor-
phological types like was the case with movement types, each spheroid
was processed through a custom-made analysis pipeline (code attached).
First, a 3D model of the bot was created in R where the points correspond-
ing to the body and the cilia were clearly indicated. For this, first the cilia
channel was isolated from the Laser Induced Fluorescence (LIF) images
of the bots; these cilia-only images were then run through CiliaQ[39] using
the RenyiEntropy algorithm for detection. These binarized cilia were then
imported into the code, along with the points that comprised the body.
These “body points” were extracted using the “body channel” of the LIF
images by first running the pixels through a logistic transform then thresh-
olding the pixels based on the signal to noise ratio, calculated by using a
median filter and comparing the points before (“signal + noise”) to after
(“only signal”).

Due to the large volume of body points, to reduce the points to a man-
ageable amount, we first found the outlines of each slice of the spheroid
by using a concave hull using the Concaveman package (version 1.1.0).[40]

The cilia points were then projected on the nearest body points by simply
choosing the nearest one by distance to get the shadow of the cilia on the
body.

The structural index variable Cilia Points was calculated by counting the
number of unique projected points on the body. Then, the dbscan pack-
age (version 1.1-10)[41] function in R was used to find the clusters of cilia.
The number of points that fell outside of clusters with this definition were
defined as Noise Points.

Following this step, we computed the spanning ellipsoid of the body
points by using the “ellipsoidhull” function from the cluster package (ver-
sion 2.1.3).[42] The Max Radius variable was calculated directly by the func-
tion, and Aspect was defined as the ratio of the largest radius to the short-
est radius, all quantities computed by the function. Finally, we used the
“ashape3D” function from the alphashape3d package (version 1.3.1)[43]

to generate a 3D alpha hull of the body points, and used the mesh to get
the surface area of each spheroid.

Cilia Points/Area was defined as the Cilia Points variable divided by the
calculated surface area. Similarly, the Shape Smoothness was defined as
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the ratio of the volume of the 3D alpha hull to the volume of the spanning
ellipsoid. Finally, we found the center of the bot by finding the sum of the
centroids of each triangle that makes up the alpha hull weighted by area
of the triangle. Polarity was defined as the norm of the vectors from the
center to each cilia point divided by the sum of the norm of each vector.
The Cilia Distribution Homogeneity was defined as 1 – D statistic of the
two sample Kolmogorov-Smirnov test, where sample A is the 1st nearest
neighbor (1NN) distances for the cilia, and sample B the 1NN distances
if the same number of cilia points were distributed close to uniformly but
randomly across the surface of the bot. After these analyses were carried
out, we ran the dataset through a Principal Components Analysis with cen-
tering and scaling. Afterwards, a hierarchical clustering was carried out on
the resultant dataset with the Ward.D2 method and the resulting classifica-
tion was plotted as above. In total, 350 bots were put through the pipeline
and into the following PCA and included Movers, Nonmovers, Linear and
Circulars. Further details could be seen in the code.

To get a confidence interval for the absolute value of the loadings, we
bootstrapped the loading value by sampling 250 bots from the 350 that
we have, 10 times. We then took the loadings value for the 1st and the
2nd primary component for all 8 variables and calculated the mean and
95% Confidence Interval for the loadings for the PC in question. If there
was overlap between the CI of the loadings, they were assigned the same
rank, otherwise they were assigned different ranks. Ranks were relative to
the “highest” contributor of the rank; i.e, for PC1, Shape Smoothness had
overlap with Max Radius, but it also had overlap with Cilia Distribution
Homogeneity. However, Cilia Distribution Homogeneity did not overlap
with Max Radius. Max Radius had the highest upper limit of the CI among
the 3 variables in question, and thus Shape Smoothness was co-ranked
#1 along with Max Diameter, but Cilia Distribution Homogeneity was not.

Morphotype and Movement Type Overlap: After finding trends among
behavioral and morphological data, we decided to see if there was any
potential overlap between the two. To eke out any possible correlation,
we first chose to use categories of spheroids behaviorally orthogonal to
movers, the non-movers. The goal was to observe whether there is any
overlap between the morphology of movers and non-movers. Similarly, we
had four potential behavioral types that could overlap with our morpho-
logical clusters. Eclectics could not be included in the analysis since they
are an aggregate of multiple inconsistent patterns and highly uncommit-
ted to their behavior (Figure 2G), and thus cannot be used in a bot-level
analysis (instead of period). Circulars and Linears on the other hand were
highly committed behavioral types that were orthogonal to each other (had
little to no interconversion on the Markov plot) and prototypes of two ex-
treme movement types with high variability between them. Consequently,
the Curvilinear behavioral subtype was also not included since it lacked or-
thogonality with both Circulars and Linears due to shared traits between
them. The morphological indices for each spheroid were calculated as out-
lined in the methods for the previous sections, and then clustered with
Circulars, Linears, Nonmovers and Movers together. To measure the sig-
nificance of the overlap, if any, between clusters, we decided to use a Fisher
test to compute whether the proportion of a certain behavior per cluster
type was different from the others. We ran the test twice, once to see if
there were any significant differences in number of nonmovers per clus-
ter, and once to compute the difference in the ratio between circulars and
linear per cluster. It showed that the proportion of nonmovers in Cluster
1 versus Clusters 2 and 3 were significantly different with an average p
= 2.6*10e-6 and 3.5*10e-8 respectively Cluster 2 and 3 also had a statis-
tically significant difference in number of nonmovers (p = 0.01) which is
understandable, since Cluster 2 had no non-movers. For Circular/Straight,
Cluster 2 versus 3 were significantly different with p = 0.00011, and Cluster
1 had no Circulars nor Straights.

Motility Orientation Alignment and Movement Axis Analysis for Bilateral
Symmetry: The generated tracks were analyzed alongside Z-stacks of
designated Anthrobot from a confocal microscope to see if their morphol-
ogy was connected to their movement. ImageJ was used to compile the
slices of the Anthrobot so that a 3D model could be generated and rotated
to render a transformation that visually matches a random frame of the
Anthrobot from the timelapse. This random selection could be done as
the Anthrobot, despite moving around, did not tend to roll and therefore

generally maintained the same orientation throughout a timelapse. Addi-
tionally, they often moved with a specific side that always faced forward
that was designated as a heading. To see if biases in cilia patterns to one
side or lack thereof on an Anthrobot affected its movement this heading
would serve as the axis along which a plane of symmetry would be ex-
tended to bisect the bot. This plane would be defined by 3 points on the
bot along this axis, one placed at the centermost point of the axis within
the bot, one on the part of the bot that most visually served as the heading
in the video and one on the opposite point of the bot from the heading.

Bilateral Symmetry Along Movement and Other Axes: After realizing
that polarity could play a key role in determining movement type, we de-
cided to see whether the symmetry across the movement axis any trends
had compared to the other axes. To calculate this, we followed the proce-
dure used in both Figure 3 and Figure 4 to get representations of Cilia on
the body of the bot, then project these representations onto the plane of
symmetry defined by the points obtained in the Motility orientation align-
ment section. The side of the plane (movement axis) each cilia point be-
longed to was noted using the sign of the dot product of the normal of
the plane and the vector to the cilia point. Finally, to better distinguish
whether the cilia distribution played a role in movement type (linear vs.
circular) we created the Bilateral Symmetry index. This index was modified
from the Chamfer distance, and was calculated as the sum of the median/
mean of the distances between all points in set A and the closest point in
set B and the median/ mean of the distances between all points in set B
and the closest point in set A. To calculate the index, the cilia points were
projected onto the plane defined by the three points in the section below.
Set A and Set B then became the points projected from one or the other
side, respectively, after which the modified Chamfer index was calculated
for the two sets using the createTree() function of the SearchTrees pack-
age. The statistics used to calculate the asymmetricity between both sides
were the difference in points between the two hemispheres, the difference
in points/ total cilia points, the median and the mean modified Chamfer
distance. In the end, they were visualized and clustered using a PCA to see
trends (see code).

In the case of Figure 4E, instead of calculating the asymmetry statis-
tics after getting the equation of the plane, we then used the Rodrigues’
rotation formula to rotate the normal (and thus the plane) with the fixed
intersection being the center of the bot. Rotations of 45, 90 and 135 de-
grees were used yielding 4 axes (in the form of plane equations) includ-
ing the movement axis. To eliminate the z-axis, we used a PCA to get the
rotation matrix to convert the projected cilia points from 3D to 2D and
calculated the Chamfer distance using the formula described at https:
//github.com/UM-ARM-Lab/Chamfer-Distance-API , except that we did
not square point distances. This statistic was calculated along for the cilia
of all linear and circulars and put into a paired Wilcoxon rank-sum test
with an alternative hypothesis of “greater” and “less” for circulars and lin-
ear respectively to see if the movement axis was “more asymmetrical” or
“less asymmetrical” respectively. For the body we did the same procedure,
with the exception that our statistic now involved finding the distance of
the body points from the center of the bot (once again segregated into two
hemispheres with the dot product). Then, we used the KS test to calculate
a D-statistic which had greater values the more dissimilar the two distance
distributions for both hemispheres were. Just like the cilia we then used a
paired Wilcoxon rank-sum test with an alternative hypothesis of “greater”
and “less” for circulars and linear respectively to see if the movement axis
was “more asymmetrical” or “less asymmetrical” respectively.

Neuronal Culture: We followed a previously established protocol for
creating the neuronal cultures[28] which is summarized as follows. A
150 cm dish was first coated with 0.1% gelatin for 20 min and then aspi-
rated off before seeding mouse embryonic fibroblasts (ATCC #SCRC-1008)
in mouse embryonic fibroblast (MEF) growth media (89% DMEM Gluta-
MAX, 10% Fetal Bovine Serum (FBS), and 1% Anti-anti). Once the MEFs
were confluent, they were inactivated by adding 20 mL of MEF growth me-
dia containing 500 μL of 10 μg mL−1 mitomycin C (Sigma #M4287) and
incubating for 2 and 3 h at 37 °C. After incubation, the MEF growth media
+ mitomycin C media was replaced with hiNSCs at a density of 1/10 of a
confluent target vessel in 25 mL of hiNSC growth media (77.6% Knockout
DMEM, 20.20% KnockOut Serum Replacement (KOSR), 1% GlutaMAX,
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1% Anti-anti, 0.18% 2-mercaptoethanol with 0.1% of 20 ng mL−1 bFGF).
The day after seeding the hiNSCs required a media change where all the
old media was aspirated off, and 25 mL of fresh hiNSCs growth media
was added. Media changes were performed every other day until the hiN-
SCs were 80%–85% confluent. 3 h before performing the differentiation,
the destination vessels were first coated with .1 mg mL−1 poly-d-lysine
(PDL) (enough to coat the bottom of the wells) for 1 h at room temp, and
then the PDL was aspirated before adding in 10 ug mL−1 laminin in DPBS
(enough to coat the bottom) for 2 h at 37 °C. In the differentiation, the
hiNSCs first went through one DPBS wash before adding TrypLE Select
for 3–5 min to detach the cells from the plate. The cells were then col-
lected and spun down for 3 min at 500 g then resuspended in neurobasal
differentiation media (96% Neurobasal Media, 2% B-27 supplement, 1%
GlutaMAX, 1% Anti-anti). The hiNSCs were seeded at a concentration of
100 000 cells cm−2. Once the hiNSCs were in differentiation, there was a
media change the day preceding their differentiation and then every other
day from there.

Traversal Video Tracking and Analysis: To better explain the relationship
between bot trajectory and movement in certain environments, we tried
to relate the scratch edge to the actual movement of the bot. The steps
taken before analysis involved i) creating a background image prototype
from the.czi recording, ii) verifying the quality of the background image
and saving as .png file, iii) tracking the bot, iv) extracting the coordinates
of the scratch, and v) checking whether tracking was correctly carried out
by generating a video with a beacon on the bot.

This procedure was carried out on 30+ files and yielded 20 usable
datasets, which were whittled down to 17 after a manual check of tracking
quality and excluding videos where bots never touched the scratch wall.
Using the coordinates of the scratch walls and the tracking of the bot, we
used the Rbioformats (version 0.0.74)[44] and Revision (version 0.6.2)[45]

package tools to test 1) whether bots were more in contact with the scratch
when they have a higher rotational tendency and 2) when moving on tis-
sue, whether faster bots tend to cover more area, i.e., explore better. The
lm() function was used to model the data after calculation of proportion of
bot on tissue, instantaneous angular velocity and linear speed as variables.
Before each model was approved, diagnostics were run on the model us-
ing the DHARMa package which included analysis of the residuals.

Afterwards, in order to take a better look at the nuances of interactions
between bots and scratches, we decided to limit the data and remove any
videos that had bots with very low rotational tendency (<0.33) since they
were not stable enough in their rotational behavior. Bots with very high ro-
tational tendency (>0.7) were removed since they were prone to skidding
instead of interacting with the scratch walls. Finally, bots whose tracking
videos were not optimal i.e., they frequently went backward or circularly
in the scratch were removed since they did not have consistent forward
movement that could be correlated with the scratch wall. After all these
removals, our dataset ended up with 13 examples of scratch-bot interac-
tions which could be effectively analyzed. The Gyration was simply the Ro-
tational Tendency values renamed. The Scratch-Trajectory Similarity met-
ric was calculated as the larger absolute value of the correlation between
the heading angle of the trajectory and the heading angles of the scratch
from the surface perpendicular to the bot. These correlation values were
then modelled using the lm() function with an expectation of a quadratic
relationship for Gyration. The specifics can be seen in the attached code.

Traversal Video Processing: Traversal videos of bots moving along a
scratch within a neuron plate were processed via Adobe Illustrator to see
if the bot faithfully followed the edge of the scratch. The first method of
processing aligned the center of the scratch at a horizontal line parallel to
the bottom of the screen and placed a point on the center of the bot at
each frame of the video as well as straight above and below this point on
the edges of the scratch. Lines were made to connect each respective type
of point for both of the edges of the scratch and the position of the bot.
The output of this for further analysis was a set of coordinates of the end
of each line derived from rendering these series of lines as an vector file
and exported as text.

Neuronal Tissue Density Analysis: To investigate whether these
“bridges” were actually akin to neurons, we decided to analyze the pixel
densities of various areas on and surrounding the bridge. In order to pre-

vent confusions regarding this process with regard to intensity of color,
we binarized the image on ImageJ. If the automatic thresholding did not
visually appear similar to the raw image, we adjusted the threshold manu-
ally. We ended up with six areas of interest: the neurons above the bridge,
below the bridge, to the left but adjacent to the left but far, and to the right,
both adjacent and far. These areas were defined relative to a FIJI ROI box
on the neuronal bridge which tried to encompass the width of the bridge
and the height close to the narrowest point of the scratch channel that we
would interact with. A line of one bridge length or lower if the image size
required smaller lines to fit the boxes was used in the vertical and horizon-
tal directions (called hereafter as “bridge length”). The above and below
bridge measurements were taken by placing the bounding box one vertical
bridge length from the box on the neuronal ridge. The adjacent areas on
both sides were defined as 1 horizontal bridge length away from the bridge
in the scratch. The far areas were 1 bridge length beyond the adjacent ar-
eas. The far and adjacent boxes were (vertically) adjusted so they overlaid
the scratch as much as possible (Figure S9, Supporting Information). Fi-
nally, we used Analyze>Histogram in FIJI to get the size of the box (which
was constant) and the number of pixels of scratch tissue (in black) and cal-
culated the proportion. We then used an unpaired two sample T-test with
unequal standard deviation to calculate the significance of the difference,
if any.

Statistical Analysis: For all analyses in the paper, the p-value to symbol
correspondence was that a range of 0 to 0.0001 corresponded to ****,
0.0001 to 0.001 corresponded to ***, 0.001 to 0.01 corresponded to **,
0.01 to 0.05 corresponded to * and 0.05 to 1 corresponded to ns. Addition-
ally, all significance tests were evaluated at an alpha value of 0.05. Unless
otherwise specified, the alternative hypothesis was always two-sided for
t-tests. For all statistical analyses listed below we used the Rstudio com-
putational/ statistical software.

For Figure 2, we analyzed tracks from 197 bots for 5 h, collected across
47 timelapse videos (each video featuring 4–5 bots). In the pre-processing
step, we omitted data that is within one bot length (≈100 um) from the
edge of the vessel to prevent edge effect as a confounding factor, which
yielded a final of 42 235 individual 30 s periods. After cross-entropy clus-
tering these periods, we used a t-test to analyze cluster-specific differences
in active periods (with cluster 1 having 6004 periods, cluster 2 with 6700,
cluster 3 with 3436 and cluster 4 with 2384), which were further analyzed
as shown on the figure. There were 23 711 inactive periods that were ex-
cluded from this downstream analysis.

For Figure 3, the pre-processing step involved binarizing cilia versus
body masses of 350 bots (each represented in 3D via confocal Z-stack
images) through CiliaQ[38] as described in the methods above. The data
obtained from these 350 bots were further clustered into 3 groups with
sizes of 125, 24 and 201 for clusters 1,2 and 3 respectively. To check which
of the 8 variables that were used to compute the PCA were significant for
each cluster, we ran a two-sided, two-sample t-test on all pairs of clusters,
for all 8 variables.

For Figure 4, we used the same full set of data for 350 bots as Figure 3,
which were still clustered into 3 groups with sizes of 125, 24 and 201 for
clusters 1,2 and 3 respectively. Of these 350, it had specific information
on type of movement for 28 bots (“displacers” – circulars and linears).
Thus, of these 350, we then focused on 28 bots, 15 circular and 13 straight.
These were analyzed for various metrics of asymmetry (difference between
the two hemispheres in number of cilia, or chamfer distance of the hemi-
spheres of cilia etc.) along the movement axis and the axis that was 90
degrees offset from the movement axis as described in methods above.
We then measured the change in the chamfer distance asymmetry statis-
tic from the 90-degree offset to the movement axis (asymmetry difference
= asymmetry ≈90 degree offset – asymmetry around the movement axis)
for circulars (n = 15) and linears (n = 13) with a two-sided one sample
t-test for each with a significant result for circulars (p = 0.0482) but not
linears (p = 0.1116).

For Figure 5 during preprocessing, we excluded videos where the bot
never touched the scratch wall as described in the methods above. A t-test
for the slope was run on the relationship between bots’ rotational tendency
and proportion of bot on tissue which yielded a significant (p = 0.017,
slope 1.15, n = 17) result. Similarly, when we compared the relationship
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between bot linear speed and the proportion of bot on tissue using a t-test
again, we received a significant result (p = 0.031, slope 0.0082, n = 17).
For a subset of these 17 bots (dataset constrained to non-stalling bots with
rotational tendencies between 0.33 and 0.7 and viable tracking videos as
described in methods above), we initially tried to fit a linear model of the
relationship between bot rotational tendency and scratch-trajectory sim-
ilarity metric. The residuals of this analysis were not centered around a
mean of 0 but rather followed a visibly quadratic trend (Figure S9, Support-
ing Information). This suggested a quadratic model would be a better fit
for the relationship between the two. We ran the t-test for the significance
of this quadratic relationship that was significant (p = 0.006, n = 13).

For Figure 6, we ran a two-sample t-test pairwise with each category
to characterize the pixel density of these various areas (gap closure site,
native tissue, sites adjacent and distal to the gap closure sites) for all
bridges where the connectivity to both sides of the scratch was maintained
throughout the 3-day experiment, which was 50% of the total N = 10. Dif-
ference between gap closure site and native tissue is insignificant (p =
0.37), while the difference between the gap closure site and both adjacent
and distal scratch sites are significant (w/ p = 0.006 and p = 0.005, respec-
tively).

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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