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Abstract

Semiconductor quantum dots (QDs) offer many advantages as photocatalysts for synthetic 

photoredox catalysis, but no reports have explored the use of QDs with nickel catalysts for C-C 

bond formation. We show here that 5.7 nm CdS QDs are robust photocatalysts for photoredox-

promoted cross-electrophile coupling (40 000 TON). These conditions can be utilized on small 

scale (96-well plate) or adapted to flow. NMR studies show that triethanolamine (TEOA) capped 

QDs are the active catalyst and that TEOA can displace native phosphonate and carboxylate 

ligands, demonstrating the importance of QD surface chemistry.
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Photoredox chemistry employing transition metal co-catalysts is a powerful strategy for C-C 

bond formation,1–3 but is generally limited by a small number of photoredox catalysts. For 

example, photoredox-promoted cross-electrophile coupling (PPXEC) procedures commonly 

require iridium-based dyes, and stoichiometric use of expensive and high MW silane 

reductants, or both (Scheme 1A).4–11 Despite this, PPXEC is widely utilized on small-scale 

and would be an attractive approach to large-scale XEC if costs could be decreased. Both 

Vannucci’s and Lei’s PPXEC approaches avoided the need for silane reagents, which 

can be expensive and often introduce purification challenges, but required Ir dyes.12,13 

Precious metal dyes are among the most developed metallaphotoredox catalysts, yet there 

are concerns surrounding the security of the platinum-group metal supply14 and expense of 

these dyes at large scale. Recent reports have introduced organophotocatalysts, sometimes 

alongside non-silane reductants,15–18 but these catalysts are also expensive for large scale 

use and often require higher catalyst loadings. There is a need for scalable PPXEC catalysts 

that do not suffer from these hurdles.

Our group and others have evaluated semiconductor quantum dots (QDs) as replacements 

for precious-metal dyes in a variety of photoredox19–23 and redox-neutral metallaphotoredox 

reactions,20,24–26 but their viability for reductive metallaphotoredox catalysis remains 

unexplored (Scheme 1B). QDs could be an ideal replacement for precious metals 

and organic dyes due to their tunable visible absorption,27 large molar absorptivity 

coefficients28, well-defined syntheses from inexpensive precursors29,30, solution stability 

in organic solvents, and high photostability31–33, among other advantages.34–38 However, 

we envisioned several challenges in realizing a QD-catalyzed PPXEC reaction. The 

low concentrations of QDs typically employed,39,40 combined with shorter excited-state 

lifetimes41–43 could give sluggish bimolecular quenching with a metal co-catalyst. Second, 

QDs can bind or react with metal ions44–46 and common organic functional groups,47–49 and 

undesired side reactivity between the QDs, metal co-catalysts, and reactants could inhibit 

catalysis. Finally, given the wide array of available QDs and nanomaterials,30 the choice 

of appropriate nanomaterial composition and morphology was not obvious. We report here 

a systematic investigation of the use of QDs in a model PPXEC reaction that illustrates 

CdS QDs are as effective as small-molecule dyes (Scheme 1C). Binding studies reveal that 

the terminal reductant (triethanolamine), a reported QD ligand,50–53 replaces the native QD 

ligands in-situ, remodeling the QD surface for optimal reactivity.

To identify the optimal nanomaterial photocatalysts for PPXEC, we examined of 

several nanomaterials (reported in mol% of nanomaterial) of differing morphologies, 

sizes, and electronic/chemical characteristics (See Supporting Information Section 2 for 

characterization details).20,54–61 5.7 nm CdS QDs(size determined by TEM imaging, see 

Supporting Information Section 2 for sizing details) were the most effective photocatalyst 

for this transformation (~40,000 TON), while smaller CdS QDs gave lower yields of 
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product and more dehalogenated arene (Table 1, entries 1–4). Employing higher-energy 

390 nm irradiation to better excite 3.9 nm CdS QDs was also detrimental (Table 1, entries 

5–6). Because dehalogenation has been associated with over-reduction of arylnickel(II) 

intermediates,62 the increased amount of dehalogenation observed with smaller diameter 

QDs suggests that larger bandgap energies play a negative role. On the other hand, among 

different sized CdS QDs, the increased yield does not appear to be due absorbance of 

more photons (see Supporting Information Figure 2.6). Overall, a number of size-dependent 

factors may account for the superior performance of the larger 5.7 nm CdS QDs compared 

to the other nanomaterials, including the extinction coefficients, band edge positions, and 

ligand coverage.

CdSe QDs, which exhibit smaller band gaps and lower valence band potentials than 

CdS,27,63 did not provide the product in any appreciable yield (Table 1, entries 7–8), 

possibly due to insufficient driving force required for efficient oxidation of amine reductants. 

Both bulk and nanocrystalline CsPbBr3 perovskites, possessing similar band gaps to 5.7 nm 

CdS were completely ineffective (Table 1, entries 9–10), likely due to their rapid dissolution 

in polar environments unless functionalized with stabilizing ligands,60 highlighting a 

fundamental challenge in the use of perovskite photocatalysts for organic chemistry. 

Preliminary attempts to use ~4.5 monolayer (ML) CdSe and CdS nanoplatelets, unexplored 

materials for metallaphotoredox catalysis, afforded promising yields (Table 1, entries 11–14) 

with very high total TONs (in some cases, > 500 000 see Supporting Information Section 5 

for details). While more concentrated NPL solutions were problematic, comparison of NPLs 

with QDs at the same (lower) concentration demonstrated that NPLs can be more productive 

per particle (see Supporting Information Table S5). Owing to the greater synthetic 

complexity of nanoplatelets64 and their lower initial performance, we opted to continue 

using 5.7 nm CdS QDs in this study. However, the high molar productivity of nanoplatelets 

suggests their significant potential as photoredox catalysts in future applications.

The optimized conditions employ NiCl2(dme) with terpyridine as a ligand for Ni, utilizing 

triethanolamine (TEOA) as a homogeneous terminal reductant, with 5.7 nm CdS QDs (2.0 

× 10−3 mol%) and blue LEDs. Reducing the loading of Ni/ligand or reductant produced 

diminished yields (Table 2, entries 1–3). Use of alternative tertiary amine reductants instead 

of TEOA gave greatly diminished yields despite exhibiting similar oxidation potentials65–68 

(Table 2, entries 4–7). Furthermore, the steady-state photoluminescence of the QDs was 

quenched to a greater extent by TEOA than DIPEA or Et3N (Supporting Information 

Section 5.2), consistent with its superior performance. Lowering the QD loading was 

detrimental, while bulk CdS powder was not an effective photocatalyst (Table 2, entries 

8–9). Control experiments verified that all components were all necessary for product 

formation. (Table 2, entry 10).

We then briefly investigated the compatibility of the CdS QD/TEOA system with 

synthetically relevant substrates (Scheme 2). Electron-rich and neutral aryl iodides were 

cross-coupled in good yields (3a-3c), while heteroaryl iodides including pyridine, indole, 

pyrazole, and indazole (3g-3j) could also be coupled. When electron-poor aryl iodides 

were used, significant amounts of hydrodehalogenated product were observed, consistent 

with the ability of CdX QDs (X = S, Se) to directly reduce electron poor aryl iodides.69 
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Electron-poor aryl bromides could also be coupled, albeit requiring 1.5 equivalents of Ar-Br 

to achieve good yields (3d-3f). Following this trend, electron poor heteroaryl moieties, 

including pyridine (3q) and pyrimidine (3r, 3s), could be coupled in moderate yield. 

Additionally, both primary (3a-3l, 3o, 3p) and secondary alkyl bromides (3m, 3n, 3t, 3u) 

could be coupled using this method. Synthetically valuable moieties including halides, 

nitriles, ketones, esters, protected amines were generally well-tolerated. Corey lactone-

derived 3o and uridine-derived 3p were afforded in good yields without epimerization of 

chiral centers.

In the optimized reaction (Table 1, entry 1), the remainder of the mass balance was 

primarily Protodehalogenation (Ph–H) with small amounts of remaining starting material 

and alkyl dimer. For the lower-yielding reactions in Scheme 2, protodehalogenation and 

alkyl dimerization were the main side products. For less reactive aryl halides, substantial 

amounts of the aryl halide remained.

The advantages of inexpensive production and robust solution stability render QDs an ideal 

photocatalyst platform for large-scale applications.70 We found that 3l could be scaled up to 

5 mmol scale on the benchtop in batch and 3c could be scaled to 7.5 mmol in a flow reactor 

(Scheme 2). The latter reaction used only 0.001 mol% QDs (corresponding to a material cost 

of $0.26, see Supporting Information Section 3.4 for details).

Furthermore, the reaction conditions could be readily applied to a smaller-scale, high-

throughput format, utilizing a commercial 96 well-plate equipped with a blue LED array 

on a shaker plate (see Supporting Information Section 3.2 for details regarding set up and 

heat map data).

Modulation of the QD ligand environment by precursory exchange or in-situ interactions 

with reaction components is known to strongly impact catalysis by changing the 

permeability of the ligand sphere.71–74 To determine whether TEOA enables optimal QD 

performance through surface modification, we monitored for displacement of native oleate 

ligands from the QD surface upon treatment with TEOA via 1H NMR (Figure 1). Alcohols 

have been proposed to undergo X-type ligand exchange with carboxylate QD ligands,75 but 

are not commonly employed as capping ligands for QDs.76–78 Triethanolamine has been 

explored as a water-solubilizing ligand for QDs in sensing applications,50,51 however ligand 

exchange dynamics and photocatalysis with TEOA-capped QDs have not been explored. 

Our 1H NMR study showed oleate displacement from the QD surface by TEOA upon 

addition of TEOA equivalencies well below that of the catalytic reaction (Figures S4 and 

S7). Meanwhile, Et3N and DIPEA displaced only a small fraction of oleates on the QD 

surface (Figure S8). TEOA also displaced undec-10-en-1-ylphosphonic acid (UDPA) ligands 

from CdS (Figure S5). UDPA is known to bind more strongly than carboxylates to Cd sites 

on QD surfaces.79 This similar efficacy of displacement together with TEOA’s ability to 

form stable Cd(II) chelates80 suggests that TEOA may remove ligands by chelation and 

stripping of surface bound CdX2 (X = UDPA or oleate) complexes, rather than undergoing 

X-type ligand exchange.81,82 Accompanying oleate displacement, a large negative nuclear 

Overhauser effect (NOE) correlation was observed between the methylene resonances of 

TEOA in the presence of QDs, indicating their dynamic association with the exposed QD 
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surface following the displacement of surface-bound Cd(oleate)2 (Figure S7).83 While the 

binding mode of TEOA to the QD surface in this particular system remains unknown, 

(i.e., L vs X-type, binding through the amine vs hydroxyl moieties), our experiments are 

consistent with in-situ formation of TEOA-capped QDs as the active catalyst under the 

optimal conditions (Figure 1). Structurally similar tertiary amines bearing zero or one 

hydroxyl group were less effective reductants, but two hydroxyl groups provided similar 

results (Table 2, entries 4–7), suggesting that some level of chelation is critical to function as 

a surface-remodeling reductant.84

In conclusion, we have demonstrated how CdS QDs with TEOA constitute a cost-effective 

photoreduction system for Ni-mediated cross-electrophile coupling that demonstrates a 

broad scope and good scalability. NMR studies illustrate the role of TEOA as a surface-

binding reductant and how surface remodeling could be used to improve reductive chemistry 

with QDs. Continuing studies on the use of nanomaterials for organic synthesis are ongoing 

and will be reported in due course.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Displacement of native oleate (OA) ligands and undec-10-en-1-ylphosphonic acid (UDPA) 

from the surface of CdS QDs after treatment with triethanolamine (TEOA) in toluene-d8. 

See Supporting Information Section 4 for experimental details and NMR spectra.
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Scheme 1. 
Nickel Photoredox Catalysis and Quantum Dots.
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Scheme 2. 
QD Promoted Cross-Electrophile Coupling Reaction Scope and Scalability.

Isolated yields after purification unless otherwise noted. See Supporting Information for 

details. The emission of the blue LEDs was centered around 447 nm. aProduct could not be 

fully isolated from impurities, yield determined via 1H NMR spectroscopy. bAryl bromide 

(1.5 equiv) used instead of aryl iodide. cConducted on 5.0 mmol scale in batch. dConducted 

on 7.5 mmol scale using a flow setup. e 1H NMR yield before purification. fConducted in 

100 µL MeCN in a well plate setup. Corrected GC yields. g Using 1 equiv of NaI.
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Table 1.

Survey of Nanomaterial Photoredox Catalysts.

Entry Nanomaterial Photocatalyst try Yield (%)a

1 7 nm CdS QDs (± 0.72 nm) (2 × 10−3 79 (80)b

2 5.3 nm CdS QDs (2 × 10−3 mol%) 67

3 4.9 nm CdS QDs (2 × 10−3 mol%) 64

4 3.9 nm CdS QDs, (2 × 10−3 mol%) 29

5 5.7 nm CdS QDs, 390 nm hν (2 × 10−3 mol%) 66

6 3.9 nm CdS QDs, 390 nm hν (2 × 10−3 mol%) 21

7 3.0 nm CdSe QDs (2 × 10−3 mol%) 4

8 2.2 nm CdSe QDs (2 × 10−3 mol%) 5

9 CsPbBr3 Bulk Perovskite (10 mol%) 0

10 CsPbBr3 Perovskite QDs (1 × 10−3 mol%) 1

11 4.5-ML CdSe Nanoplatelets (2 × 10−5 mol%) 10c

12 4.5-ML CdS Nanoplatelets, 427 nm hν (6 × 10−5 mol%) 35c

13 4.5-ML CdS Nanoplatelets, 390 nm hν (6 × 10−5 mol%) 34c

14 4.5-ML CdS Nanoplatelets, 390 nm hν (1.4 × 10−4 mol%) 53c

Reactions conducted at 0.75 mmol scale using 1 equiv of each coupling partner. The emission of the blue LEDs was centered around 447 nm. 
Catalyst loading is in mol% of nanomaterial (e.g., QD, platelet).

a
Corrected GC yields.

b
Yield determined by 1H NMR.

c
48 h reaction time.

ACS Catal. Author manuscript; available in PMC 2024 July 07.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mouat et al. Page 15

Table 2.

Reaction Optimization Studies.

Entry Variation Yield (%)a

1 None 79 (80)b

2 1 mol% [Ni] + ligand 60

3 2.5 equiv TEOA 63

4 Hantzch ester instead of TEOA ND

4 Et3N instead of TEOA 19

5 DIPEA instead of TEOA 17

6 N-ethyldiethanolamine instead of TEOA 63

7 2-diethylaminoethanol instead of TEOA 16

8 2 × 10−4 mol% QDs 36

9 Bulk CdS (10 mol%) instead of QDs 13

10 Omission of any one of Ni, ligand, reductant, light, or QDs 0

Reactions conducted at 0.75 mmol scale using 1 equiv of each coupling partner. The emission of the blue LEDs was centered around 447 nm.

a
Corrected GC yields.

b
Yield determined by 1H NMR.
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