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Abstract

Semiconductor quantum dots (QDs) offer many advantages as photocatalysts for synthetic
photoredox catalysis, but no reports have explored the use of QDs with nickel catalysts for C-C
bond formation. We show here that 5.7 nm CdS QDs are robust photocatalysts for photoredox-
promoted cross-electrophile coupling (40 000 TON). These conditions can be utilized on small
scale (96-well plate) or adapted to flow. NMR studies show that triethanolamine (TEOA) capped
QDs are the active catalyst and that TEOA can displace native phosphonate and carboxylate
ligands, demonstrating the importance of QD surface chemistry.
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Photoredox chemistry employing transition metal co-catalysts is a powerful strategy for C-C
bond formation,1=3 but is generally limited by a small number of photoredox catalysts. For
example, photoredox-promoted cross-electrophile coupling (PPXEC) procedures commonly
require iridium-based dyes, and stoichiometric use of expensive and high MW silane
reductants, or both (Scheme 1A).4-11 Despite this, PPXEC is widely utilized on small-scale
and would be an attractive approach to large-scale XEC if costs could be decreased. Both
Vannucci’s and Lei’s PPXEC approaches avoided the need for silane reagents, which

can be expensive and often introduce purification challenges, but required Ir dyes 1213
Precious metal dyes are among the most developed metallaphotoredox catalysts, yet there
are concerns surrounding the security of the platinum-group metal supplyl# and expense of
these dyes at large scale. Recent reports have introduced organophotocatalysts, sometimes
alongside non-silane reductants,15-18 but these catalysts are also expensive for large scale
use and often require higher catalyst loadings. There is a need for scalable PPXEC catalysts
that do not suffer from these hurdles.

Our group and others have evaluated semiconductor quantum dots (QDs) as replacements
for precious-metal dyes in a variety of photoredox19-23 and redox-neutral metallaphotoredox
reactions,20:24-26 put their viability for reductive metallaphotoredox catalysis remains
unexplored (Scheme 1B). QDs could be an ideal replacement for precious metals

and organic dyes due to their tunable visible absorption,2’ large molar absorptivity
coefficients?®, well-defined syntheses from inexpensive precursors??:30, solution stability

in organic solvents, and high photostability31-33, among other advantages.34-38 However,
we envisioned several challenges in realizing a QD-catalyzed PPXEC reaction. The

low concentrations of QDs typically employed,3%40 combined with shorter excited-state
lifetimes*13 could give sluggish bimolecular quenching with a metal co-catalyst. Second,
QDs can bind or react with metal ions*4-46 and common organic functional groups,*’~49 and
undesired side reactivity between the QDs, metal co-catalysts, and reactants could inhibit
catalysis. Finally, given the wide array of available QDs and nanomaterials,3° the choice

of appropriate nanomaterial composition and morphology was not obvious. We report here

a systematic investigation of the use of QDs in a model PPXEC reaction that illustrates

CdS QDs are as effective as small-molecule dyes (Scheme 1C). Binding studies reveal that
the terminal reductant (triethanolamine), a reported QD ligand,>%-°3 replaces the native QD
ligands in-situ, remodeling the QD surface for optimal reactivity.

To identify the optimal nanomaterial photocatalysts for PPXEC, we examined of

several nanomaterials (reported in mol% of nanomaterial) of differing morphologies,
sizes, and electronic/chemical characteristics (See Supporting Information Section 2 for
characterization details).2%-54-61 5.7 nm CdS QDs(size determined by TEM imaging, see
Supporting Information Section 2 for sizing details) were the most effective photocatalyst
for this transformation (~40,000 TON), while smaller CdS QDs gave lower yields of

ACS Catal. Author manuscript; available in PMC 2024 July 07.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Mouat et al.

Page 3

product and more dehalogenated arene (Table 1, entries 1-4). Employing higher-energy

390 nm irradiation to better excite 3.9 nm CdS QDs was also detrimental (Table 1, entries
5-6). Because dehalogenation has been associated with over-reduction of arylnickel(Il)
intermediates,®2 the increased amount of dehalogenation observed with smaller diameter
QDs suggests that larger bandgap energies play a negative role. On the other hand, among
different sized CdS QDs, the increased yield does not appear to be due absorbance of

more photons (see Supporting Information Figure 2.6). Overall, a number of size-dependent
factors may account for the superior performance of the larger 5.7 nm CdS QDs compared
to the other nanomaterials, including the extinction coefficients, band edge positions, and
ligand coverage.

CdSe QDs, which exhibit smaller band gaps and lower valence band potentials than
Cds,27:83 did not provide the product in any appreciable yield (Table 1, entries 7-8),
possibly due to insufficient driving force required for efficient oxidation of amine reductants.
Both bulk and nanocrystalline CsPbBr3 perovskites, possessing similar band gaps to 5.7 nm
Cds were completely ineffective (Table 1, entries 9-10), likely due to their rapid dissolution
in polar environments unless functionalized with stabilizing ligands,59 highlighting a
fundamental challenge in the use of perovskite photocatalysts for organic chemistry.
Preliminary attempts to use ~4.5 monolayer (ML) CdSe and CdS nanoplatelets, unexplored
materials for metallaphotoredox catalysis, afforded promising yields (Table 1, entries 11-14)
with very high total TONSs (in some cases, > 500 000 see Supporting Information Section 5
for details). While more concentrated NPL solutions were problematic, comparison of NPLs
with QDs at the same (lower) concentration demonstrated that NPLs can be more productive
per particle (see Supporting Information Table S5). Owing to the greater synthetic
complexity of nanoplatelets® and their lower initial performance, we opted to continue
using 5.7 nm CdS QDs in this study. However, the high molar productivity of nanoplatelets
suggests their significant potential as photoredox catalysts in future applications.

The optimized conditions employ NiCly(dme) with terpyridine as a ligand for Ni, utilizing
triethanolamine (TEOA) as a homogeneous terminal reductant, with 5.7 nm CdS QDs (2.0
x 1073 mol%) and blue LEDs. Reducing the loading of Ni/ligand or reductant produced
diminished yields (Table 2, entries 1-3). Use of alternative tertiary amine reductants instead
of TEOA gave greatly diminished yields despite exhibiting similar oxidation potentials®>-68
(Table 2, entries 4-7). Furthermore, the steady-state photoluminescence of the QDs was
quenched to a greater extent by TEOA than DIPEA or Et3N (Supporting Information
Section 5.2), consistent with its superior performance. Lowering the QD loading was
detrimental, while bulk CdS powder was not an effective photocatalyst (Table 2, entries
8-9). Control experiments verified that all components were all necessary for product
formation. (Table 2, entry 10).

We then briefly investigated the compatibility of the CdS QD/TEOA system with
synthetically relevant substrates (Scheme 2). Electron-rich and neutral aryl iodides were
cross-coupled in good yields (3a-3c), while heteroaryl iodides including pyridine, indole,
pyrazole, and indazole (3g-3j) could also be coupled. When electron-poor aryl iodides
were used, significant amounts of hydrodehalogenated product were observed, consistent
with the ability of CdX QDs (X =S, Se) to directly reduce electron poor aryl iodides.5°
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Electron-poor aryl bromides could also be coupled, albeit requiring 1.5 equivalents of Ar-Br
to achieve good yields (3d-3f). Following this trend, electron poor heteroaryl moieties,
including pyridine (3q) and pyrimidine (3r, 3s), could be coupled in moderate yield.
Additionally, both primary (3a-3l, 30, 3p) and secondary alkyl bromides (3m, 3n, 3t, 3u)
could be coupled using this method. Synthetically valuable moieties including halides,
nitriles, ketones, esters, protected amines were generally well-tolerated. Corey lactone-
derived 3o and uridine-derived 3p were afforded in good yields without epimerization of
chiral centers.

In the optimized reaction (Table 1, entry 1), the remainder of the mass balance was
primarily Protodehalogenation (Ph—H) with small amounts of remaining starting material
and alkyl dimer. For the lower-yielding reactions in Scheme 2, protodehalogenation and
alkyl dimerization were the main side products. For less reactive aryl halides, substantial
amounts of the aryl halide remained.

The advantages of inexpensive production and robust solution stability render QDs an ideal
photocatalyst platform for large-scale applications.”® We found that 3! could be scaled up to
5 mmol scale on the benchtop in batch and 3c could be scaled to 7.5 mmol in a flow reactor
(Scheme 2). The latter reaction used only 0.001 mol% QDs (corresponding to a material cost
of $0.26, see Supporting Information Section 3.4 for details).

Furthermore, the reaction conditions could be readily applied to a smaller-scale, high-
throughput format, utilizing a commercial 96 well-plate equipped with a blue LED array
on a shaker plate (see Supporting Information Section 3.2 for details regarding set up and
heat map data).

Modulation of the QD ligand environment by precursory exchange or in-situ interactions
with reaction components is known to strongly impact catalysis by changing the
permeability of the ligand sphere.”~74 To determine whether TEOA enables optimal QD
performance through surface modification, we monitored for displacement of native oleate
ligands from the QD surface upon treatment with TEOA via 'H NMR (Figure 1). Alcohols
have been proposed to undergo X-type ligand exchange with carboxylate QD ligands,’® but
are not commonly employed as capping ligands for QDs.”6-78 Triethanolamine has been
explored as a water-solubilizing ligand for QDs in sensing applications,>%:51 however ligand
exchange dynamics and photocatalysis with TEOA-capped QDs have not been explored.
Our H NMR study showed oleate displacement from the QD surface by TEOA upon
addition of TEOA equivalencies well below that of the catalytic reaction (Figures S4 and
S7). Meanwhile, Et3N and DIPEA displaced only a small fraction of oleates on the QD
surface (Figure S8). TEOA also displaced undec-10-en-1-ylphosphonic acid (UDPA) ligands
from CdS (Figure S5). UDPA is known to bind more strongly than carboxylates to Cd sites
on QD surfaces.”® This similar efficacy of displacement together with TEOA’s ability to
form stable Cd(l1) chelates® suggests that TEOA may remove ligands by chelation and
stripping of surface bound CdX2 (X = UDPA or oleate) complexes, rather than undergoing
X-type ligand exchange.81:82 Accompanying oleate displacement, a large negative nuclear
Overhauser effect (NOE) correlation was observed between the methylene resonances of
TEOA in the presence of QDs, indicating their dynamic association with the exposed QD
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surface following the displacement of surface-bound Cd(oleate)2 (Figure S7).83 While the
binding mode of TEOA to the QD surface in this particular system remains unknown,

(i.e., L vs X-type, binding through the amine vs hydroxyl moieties), our experiments are
consistent with in-situ formation of TEOA-capped QDs as the active catalyst under the
optimal conditions (Figure 1). Structurally similar tertiary amines bearing zero or one
hydroxyl group were less effective reductants, but two hydroxyl groups provided similar
results (Table 2, entries 4-7), suggesting that some level of chelation is critical to function as
a surface-remodeling reductant.84

In conclusion, we have demonstrated how CdS QDs with TEOA constitute a cost-effective
photoreduction system for Ni-mediated cross-electrophile coupling that demonstrates a
broad scope and good scalability. NMR studies illustrate the role of TEOA as a surface-
binding reductant and how surface remodeling could be used to improve reductive chemistry
with QDs. Continuing studies on the use of nanomaterials for organic synthesis are ongoing
and will be reported in due course.
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Figurel.
Displacement of native oleate (OA) ligands and undec-10-en-1-ylphosphonic acid (UDPA)

from the surface of CdS QDs after treatment with triethanolamine (TEOA) in toluene-ds.
See Supporting Information Section 4 for experimental details and NMR spectra.
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B. Potential for Nanomaterial Photocatalysts in Organic Synthesis
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Scheme 1.
Nickel Photoredox Catalysis and Quantum Dots.
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Scheme 2.
QD Promoted Cross-Electrophile Coupling Reaction Scope and Scalability.

Isolated yields after purification unless otherwise noted. See Supporting Information for
details. The emission of the blue LEDs was centered around 447 nm. 4Product could not be
fully isolated from impurities, yield determined via 'H NMR spectroscopy. 2Aryl bromide
(1.5 equiv) used instead of aryl iodide. “Conducted on 5.0 mmol scale in batch. 9Conducted
on 7.5 mmol scale using a flow setup. €XH NMR vyield before purification. ‘Conducted in
100 pL MeCN in a well plate setup. Corrected GC yields. 9 Using 1 equiv of Nal.
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Table 1.

Survey of Nanomaterial Photoredox Catalysts.

Phl %
0.75 mmol

Entry
1

© 0o N o o M~ w N

= e
= o

-
N

13
14

NiCly,*dme (5 mol%)
terpyridine (5 mol%)
nanomaterials (X mol%)

0
TEOA (4 equiv) )
B~ AN > Ph
OE \/\)LOEt

' MeCN (0.75 M)

1 equiv blue LED, 24 h
Nanomaterial Photocatalyst try Yield (%)2
7 nm CdS QDs (+ 0.72 nm) (2 x 1073 79 (80)2
5.3 nm CdS QDs (2 x 1073 mol%) 67
4.9 nm CdS QDs (2 x 1073 mol%) 64
3.9 nm CdS QDs, (2 x 103 mol%) 29
5.7 nm CdS QDs, 390 nm hv (2 x 1073 mol%) 66
3.9 nm CdS QDs, 390 nm hv (2 x 1073 mol%) 21
3.0 nm CdSe QDs (2 x 1073 mol%) 4
2.2 nm CdSe QDs (2 x 1073 mol%) 5
CsPbBr3 Bulk Perovskite (10 mol%) 0
CsPhBr5 Perovskite QDs (1 x 1073 mol%) 1
4.,5-ML CdSe Nanoplatelets (2 x 107> mol%) 10¢
4.5-ML CdS Nanoplatelets, 427 nm hv (6 x 107> mol%) 35C
4.5-ML CdS Nanoplatelets, 390 nm hv (6 x 1075 mol%) 34C
4.5-ML CdS Nanoplatelets, 390 nm hv (1.4 x 1074 mol%) 53C

Page 14

Reactions conducted at 0.75 mmol scale using 1 equiv of each coupling partner. The emission of the blue LEDs was centered around 447 nm.
Catalyst loading is in mol% of nanomaterial (e.g., QD, platelet).

aCorrected GC yields.

ineId determined by 14 NMR.

c L
48 h reaction time.
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Reaction Optimization Studies.

Table 2.

0]
TEOA (4 equiv)
Phi + B'V\)Loa

MeCN (0.75 M
0.75 mmol ot )

Entry
1

© 0o N o o b~ b O DN

=
o

NiCly*dme (5 mol%)
terpyridine (5 mol%)

5.7 nm CdS QDs (0.002 mol%)

o]

P \/\)LOEI

1 equiv blue LED, 24 h
Variation Yield (%)
None 79 (80)17
1 mol% [Ni] + ligand 60
2.5 equiv TEOA 63
Hantzch ester instead of TEOA ND
Et3N instead of TEOA 19
DIPEA instead of TEOA 17
N-ethyldiethanolamine instead of TEOA 63
2-diethylaminoethanol instead of TEOA 16
2 x 1074 mol% QDs 36
Bulk CdS (10 mol%) instead of QDs 13
Omission of any one of Ni, ligand, reductant, light, or QDs 0
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Reactions conducted at 0.75 mmol scale using 1 equiv of each coupling partner. The emission of the blue LEDs was centered around 447 nm.

aCorrected GC yields.

ineId determined by 14 NMR.
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