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Computational analyses of genome sequences may elucidate protein signatures unique to a target pathogen.
We constructed a Protein Signature Pipeline to guide the selection of short peptide sequences to serve as
targets for detection and therapeutics. In silico identification of good target peptides that are conserved among
strains and unique compared to other species generates a list of peptides. These peptides may be developed in
the laboratory as targets of antibody, peptide, and ligand binding for detection assays and therapeutics or as
targets for vaccine development. In this paper, we assess how the amount of sequence data affects our ability
to identify conserved, unique protein signature candidates. To determine the amount of sequence data required
to select good protein signature candidates, we have built a computationally intensive system called the
Sequencing Analysis Pipeline (SAP). The SAP performs thousands of Monte Carlo simulations, each calling
the Protein Signature Pipeline, to assess how the amount of sequence data for a target organism affects the
ability to predict peptide signature candidates. Viral species differ substantially in the number of genomes
required to predict protein signature targets. Patterns do not appear based on genome structure. There are
more protein than DNA signatures due to greater intraspecific conservation at the protein than at the
nucleotide level. We conclude that it is necessary to use the SAP as a dynamic system to assess the need for
continued sequencing for each species individually and to update predictions with each additional genome that
is sequenced.

Protein-based assays for pathogen detection complement
DNA-based assays, as they provide orthogonal detection ca-
pabilities to prevent system-wide false positives or negatives,
they may be easier to use in field-portable devices, and they
may be less expensive per assay (9, 13). Protein signatures may
be composed of a peptide sequence, a domain, or an entire
protein. Since protein sequences are more conserved than are
DNA sequences, protein-based detection may be important for
highly divergent RNA viruses for which development of con-
served DNA-based signatures has been problematic. In addi-
tion, protein-based assays may facilitate the detection of viru-
lence proteins or proteins expressed from genes deliberately
engineered to escape nucleotide detection via the use of alter-
native codons for several amino acids. Protein-based signa-
tures must also be used to detect toxins, for which no nucleic
acid may be present. Finally, peptide signatures may serve as
targets for therapeutics and vaccines (14, 16).

We have built a Protein Signature Pipeline that may accept
as input either protein sequence data (single proteins) or an-
notated DNA sequence data (whole genomes) from one or
many strains of a target species. From these genomes, exami-
nation of the alignment of multiple sequences illuminates
amino acid sequence fragments that are conserved among all
strains of the target species. These conserved fragments are
then compared to the NCBI GenBank nonredundant (nr) da-
tabase of amino acid sequences, unveiling peptides that are
unique to the target species (2). There may be many conserved

and unique peptides on the same and on different proteins. All
of the processes described above are fully automated on a 24
CPU Sun server, from multiple sequence alignment and de-
termination of conserved fragments, to calculation of unique
fragment peptides.

The resulting conserved, unique peptides that are at least 6
amino acids long are considered to be protein signature can-
didates. These protein or peptide signatures are short amino
acid sequences from open reading frames that are at least 6
amino acids in length and that extend as far as possible before
(i) the end of the protein, (ii) an intraspecifically nonconserved
amino acid is reached, or (iii) a nonunique 6-mer (relative to
all current sequence data available in the NCBI nr protein
database) is contained within the signature region.

If a subset of these signatures is to be developed empirically
as a target for antibody or ligand binding, then this subset is
subjected to additional analyses. These analyses include, but
are not limited to, assessment of surface accessibility of the
peptides within the protein, cellular location and expression of
the proteins on which the peptides are located, protein stabil-
ity, biochemical properties, posttranslational modifications,
and antigenicity. When possible, three-dimensional structural
models are built. These additional criteria currently require
various levels of manual input to perform the analyses and/or
to collate the results. The signatures that pass this rigorous
scrutiny may be used to generate sets of antibodies or synthetic
ligands that selectively bind to these protein signatures and not
to proteins produced by near or distant phylogenetic neigh-
bors. Since the signature regions are highly conserved within a
species, it is likely that they are functionally important to the
organism’s survival or reproduction. Those signatures that land
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on or near protein-active sites may be developed into thera-
peutics, since antibody or ligand binding may interfere with
protein function. Signature regions may even be considered as
vaccine targets, since these unique peptides may educe a highly
specific response in the host (4, 15).

The SAP software calls only the fully automated portion of
the pipeline, in which conservation and uniqueness are deter-
mined. These are the aspects relevant to analyses of sequenc-
ing needs, since additional sequence data alter the regions
indicated to be conserved and unique but do not modify con-
clusions regarding protein expression, posttranslational modi-
fications, protein structure, and so on.

MATERIALS AND METHODS

For the SAP analyses, we start with a pool of T target genomes, and from that,
we randomly select s samples of size t, where t ranges from 1 to T, sampling
without replacement, so that no genome is duplicated in a given sample. Each
sample must contain a high-quality reference genome with annotation to delin-
eate protein-coding regions. The remaining genomes may be finished or draft
sequences. Thus, in cases where there is only one finished, annotated genome
available, that genome is included in every sample, and the remainder of the
genomes are randomly chosen.

Second, on each sample of genomes, we perform a nucleic sequence alignment
with the alignment program Whole Genome Alignment through Scalable Algo-
rithms, developed at Lawrence Livermore National Laboratory by David Hysom
and Chuck Baldwin. This new software is the only tool currently available that
enables us to align multiple finished or draft genomes with one or more finished
genomes and can align large bacterial genomes in minutes.

In addition, a set of gene pairs (start, end) for both the plus and minus strands
relative to the reference genome is required. This implies that coding frames for
the translation of nucleic acid codons into amino acids for each protein of the
target organism’s genome have been correctly determined.

Next, we determine amino acid conservation among the target genomes within
a given sample based on their nucleic acid sequence alignment. For each gene
pair (start, end), we move through the corresponding gene sequence in the
alignment, noting amino acids where the many-to-one map from codons to an
amino acid specifies the same amino acid in each of the aligned sequences. We
record each peptide that is composed of a series of six or more contiguous amino
acids that are the same in all the target sequences. There may be multiple
conserved peptides in each protein delineated by the gene pairs (start, end). The
software does not generate output from sections of an multiple sequence align-
ment that contain insertions or deletions. However, it continues to scan input,
and if it finds another region without insertions or deletions, it will recover in the
correct coding frame and continue processing. If codons that map to STOP are
found in the same place and correct coding frame in each genome, the software
will terminate processing of that gene and proceed to the next gene pair (start,
end). The software is coded to handle overlapping gene pairs (start, end). The
output of this portion of the software is a FASTA-formatted list of each con-
served peptide.

This target conservation FASTA file for the sample under consideration is
then fed into the uniqueness verification part of our Protein Signature Pipeline,
as outlined above. The inputs to this process are (i) the NCBI GenBank nr
database; (ii) a list of GenBank gi (genome identification) numbers correspond-
ing to all nr entries that are found in the target organism; and (iii) the FASTA
file of peptides conserved among target strains, as described above. First, entries
in the list of gi numbers that are found in the GenBank nr database are removed
from a copy of the database that we call nr_minus. Thus, nr_minus contains no
entries from the target organism, and we aim to find peptides from the target
conservation FASTA that are unique relative to anything in nr_minus. To do so,
we use suffix tree algorithms (8) to eliminate all peptides from our target con-
servation FASTA that match any peptide with a length of six or greater in
nr_minus. Suffix tree algorithms serve as the most efficient and scalable method
that we have found for comparing query sequences to large sequence databases
(3, 19).

These analyses yield a computationally predicted list of peptides that are
conserved among target strains (based on nucleic acid sequences) and unique
relative to any nontarget proteins in the nr database. For the SAP analyses, we
use the scalar statistic of y � the number of protein signatures for a given sample
of input target genomes, and we do not perform additional protein signature

annotation. We examine the range of y for all s samples of size t target input
genomes and plot the range and its quantiles for each value of t using range plots.
For these analyses, s � 10, a constraint set by the time required to run each call
of the Protein Signature Pipeline (approximately 20 min) and the total number
of Monte Carlo simulations completed (1,500) for the results presented in this
paper.

Range plots illustrate the span of predictions generated by different random
samples of genomes (see results in Fig. 2). The number of target strains t is
represented along the y axis. The numbers of peptide signatures are plotted along
the x axis as a horizontal line spanning the range of predicted values for the s
random samples. The median, 75%, and 90% quantiles of the random samples
are indicated with three vertical short lines along each horizontal range line. If
a sample of t target strains were sequenced, there would be a 90% chance that
the number of protein signatures for that sample would be less than or equal to
the 90% quantile mark. The expected outcome is a reduction in the number of
signatures that are generated as nonconserved candidates are eliminated with
increases in the number of target sequences used to predict the signatures. If the
number of signatures predicted using all T targets in the pool is c, then we
arbitrarily chose a threshold value for the 75% quantile of c � 20 as an objective
goal for sequencing efforts. That is, for a target sample size t, if the 75% quantile
landed within 20 of the number of signatures predicted using the full data set,
then at least t genome sequences would be desired for this species for the
purposes of protein signature prediction. These range plots enable us to examine
the entire span of outcomes on a relatively simple graph and to rapidly determine
the value of additional target sequences. They were created using the R statistical
language (10).

DNA signatures and SAP results were computed as described previously (5, 7).
Briefly, DNA signatures were generated as follows. Conserved regions of the
genomes of a target species were determined using multiple sequence alignment.
Unique regions relative to sequence in a 1-Gb database of nontarget bacterial
and viral species were identified using suffix tree algorithms developed by S.
Kurtz and colleagues (http://www.zbh.uni-hamburg.de/research/GI/software
/vmatch/). From the conserved, unique regions, primers and probes suitable for
TaqMan assays were selected. These may be in either coding or intergenic
regions. The SAP analyses for DNA signatures were performed using Monte
Carlo sampling from the pool of target genomes, as described above for proteins,
except that DNA rather than protein signatures were computed for each random
sample.

Our DNA SAP analyses examined the number of target sequences as well as
the number of near-neighbor sequences required (Monte Carlo simulations with
sample sizes of up to 10 near neighbors), but our protein SAP analyses investi-
gated only the number of target sequences required. The reason is that compos-
ing the lists of near-neighbor proteins for random, temporary exclusion from the
protein database (to estimate the value of that near-neighbor sequence data)
would be difficult to automate for rapid, high-throughput computations. Thus, we
compared the target proteins to all the proteins in NR, regardless of their
phylogenetic relationship to the target. This was comparable to DNA SAP results
using all available near-neighbor data.

Statistical analyses of results were performed using Microsoft Excel and JMP
of the SAS Institute, Inc. In order to determine the contribution of variation
among strains in codon usage to our finding that there are more conserved
protein than DNA signatures, we performed the following analyses. For all
amino acids that were conserved among the sequenced isolates of a given target
species (or type), the number of times that a different codon was used by any
isolate for a conserved amino acid was tabulated (nucleotide sequence diver-
gence), as was the total number of times each amino acid was conserved (protein
sequence conservation). The ratio of these two numbers, representing the frac-
tion of times that a different nucleotide sequence coded for a conserved amino
acid, was plotted using the JMP statistical package.

RESULTS

For most organisms, sequencing 1 to 4 target genomes will
narrow the selection of TaqMan DNA signature candidates
down to within 20 of the number using the full data set (Table
1) (7). The numbers of genomes needed to narrow the list of
protein signatures to within 20 of that predicted with the full
data set is highly variable, from 1 to over 20, and does not
appear to be related to genome structure (e.g., single- or dou-
ble-stranded RNA or DNA), genome length, or the fraction of
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the genome that is conserved and unique (Tables 1 and 2). In
most cases, more sequenced genomes are required (to narrow
the list of signature candidates to within 20 of our best estimate
using all genome sequences currently available) for protein
signatures than for TaqMan DNA signatures. Otherwise, no
generalizations can be made regarding the number of se-
quenced genomes needed for protein signatures (Table 2). All

correlations between the numbers of genomes needed to nar-
row the list of protein signatures to within 20 of that predicted
are weak, using the full data set and any of the other factors
(last row of Table 2).

Our analyses predict that substantially more protein signa-
tures than TaqMan DNA signatures exist that are conserved
among all the strains of a species (Table 1). This is predicted

TABLE 1. Fully informed predicted numbers of nucleotide and protein signatures, and number of sequences required to approximate fully
informed predictionsa

Genome structure Virus
No. of

genomes in
target pool

Approx
genome length

(1,000 bp)

Conserved and
unique

fraction of
target genome
with full data

set (%)

Fraction
conserved and

unique X
genome
length

x y

t such that
75% quantile
is within 20
of x (no. of

target
genomes)

t such that
75% quantile
is within 20
of y (no. of

target
genomes)

dsDNA virus Human adenovirus B 6 35 67 23.8 3 18 3 5
Human papillomavirus

type 16
8 8 65 5.04 11 37 1 2

JC 210 5 68 3.5 1 31 10 1
Vaccinia 6 194 5 9.7 0 52 1 3
Variola 14 186 5 9.3 �20 90 1 6

ssDNA virus Maize streak 32 2.7 52 1.4 0 3 1 5

Retroid virus Hepatitis B 379 3 20 0.5 0 0 1 1

ssRNA negative-strand
nonsegmented virus

Marburg 6 19 56 15.8 0 113 4 6
Ebola Zaire 5 19 80 10.6 167 119 1 1
Mumps 13 15 85 12.8 4 65 6 9
Vesicular stomatitis 4 11 88 9.7 2 100 4 4

ssRNA negative
segmented

Lassa virus segment S 6 3.4 13 0.44 0 19 2 2

ssRNA positive-strand
nonsegmented virus

FMDV 19 8 33 2.64 0 24 3 14
Human poliovirus 31 7 21 1.5 0 0 2 3
Human poliovirus 1 22 7 46 3.22 0 0 3 3
Plum pox virus 5 10 83 8.3 14 138 3 4
SARS coronavirus 40 30 78 23.4 100 1106 1 �21
Venezuelan equine

encephalitis virus
18 11 5 0.6 0 15 2 8

a x, number of TaqMan DNA signatures with full data set; y, number of protein signatures with full data set; ds, double-stranded; ss, single-stranded.

TABLE 2. Pairwise correlation coefficients between the variables in Table 1, excluding the outlying data points for SARSa

Parameter

No. of
genomes
in target

pool

Approx
genome length

(1,000 bp)

Conserved and
unique

fraction of
target genome
with full data

set (%)

Fraction
conserved and

unique X
genome
length

x y

t such that
75% quantile
is within 20
of x (no. of

target
genomes)

t such that
75% quantile
is within 20
of y (no. of

target
genomes)

No. of genomes in target pool 1.00
Approx genome length (1,000 bp) �0.19 1.00
Conserved and unique fraction of

target genome with full data
set (%)

�0.13 �0.47 1.00

Fraction conserved and unique X
genome length

�0.38 0.35 0.47 1.00

x �0.14 �0.06 0.35 0.28 1.00
y �0.37 0.22 0.53 0.83 0.43 1.00
t such that 75% quantile is within

20 of x
0.20 �0.29 0.46 0.17 �0.20 0.08 1.00

t such that 75% quantile is within
20 of y

�0.35 0.01 �0.09 0.11 �0.28 0.01 0.07 1.00

a x, number of TaqMan DNA signatures with full data set; y, number of protein signatures with full data set.
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despite the fact that protein signatures are limited to coding
regions of a genome, while DNA signatures may occur in
either coding or intergenic regions. To a large extent, this
stems from the fact that amino acid sequences are more con-
served than are nucleotide sequences due to the wobble, usu-
ally in the third base position, of many codons (Fig. 1). There
is a large difference among viruses, with Lassa, human polio,
Venezuelan equine encephalitis, foot-and-mouth disease, and
hepatitis B viruses showing high nucleotide divergence coding
for conserved amino acids. Human adenovirus B and JC, maize
streak, mumps, Marburg, plum pox, and vesicular stomatitis
viruses display intermediate levels of nucleotide variation. Hu-
man papillomavirus type 16 and severe acute respiratory syn-
drome (SARS), Ebola Zaire, vaccinia, and variola viruses show

very low levels of nucleotide variation in codon use among
sequenced isolates. Although one to six possible codons may
code for an amino acid, codon variation differences among
amino acids do not show a pattern relating to the number of
codon options.

The number of protein signatures is correlated with the
number of conserved and unique DNA bases (Table 2, corre-
lation coefficient of 0.83), excluding the outlying data points for
SARS. The correlation between the number of protein signa-
tures and the number of TaqMan DNA signatures is weak
(correlation coefficient � 0.43). In an analysis of variance using
the number of protein signature candidates as the dependent
variable and with the three model effects of (i) genome struc-
ture, (ii) the number of genomes, and (iii) the number of

FIG. 1. Fraction of conserved amino acids for which there is variation in nucleotide sequence across strains (that is, alternative codons used
for the same amino acid in a give location in the proteome). The amino acids are listed along the y axis, sorted by the number of codon options
for each amino acid (indicated by the number immediately preceding the one-letter amino acid abbreviation). (A) The less- to moderately
divergent species, and (B) the moderately to more-divergent species (Marburg virus, JC virus, and maize streak virus could have been included
in either plot).
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conserved and unique DNA bases, only the number of con-
served and unique DNA bases had a significant effect, with P �
0.046. Results for each species are shown in Fig. 2.

Human adenovirus B. Human adenovirus B appears to have
one strain that is more divergent from the others, so if this
strain and any one of the four more closely related strains were
sequenced, adequate predictions could have been made with
only two sequences. For a random selection of strains, how-
ever, it is necessary to use five genomes in order to have a 75%
chance of predicting the set of signatures observed using all six
strains.

Human papillomavirus. Numbers of protein signatures for
human papillomavirus type 16 continue to decline even when
as many as six or seven sequences are used to generate the
predictions, suggesting that additional sequences might con-
tinue to eliminate nonconserved candidates. However, the
overall number of protein signatures is fairly low, so other
annotation analyses, regarding expression levels, surface acces-
sibility, and so on, of existing signatures should be considered,
as this might be a more productive investment to narrow a list
for laboratory study than continued sequencing.

JC polyomavirus. Since 210 genomes of JC virus have al-
ready been sequenced, it is unlikely that additional genomic
sequencing is required for the prediction of peptide signature
candidates. Only 31 peptide signatures stand up to computa-
tional screening for conservation and uniqueness, a feasible
number for additional annotation and empirical investigations.
Combinations of 2 to 11 of the 210 genomes produce 40 to 45
signature candidates, indicating that a wise selection of a few of
the most distantly related strains of JC virus for sequencing
would have been sufficient to predict a manageable list of
peptide signature regions.

Vaccinia virus. Results suggest that there are adequate num-
bers of vaccinia sequences to predict peptide signature candi-
dates, since the number of candidates appears to be approach-
ing a plateau around 50. The range plot indicates that
additional sequencing is unlikely to reduce the number of
candidates much below 52. Additional annotation of the cur-
rent 52 targets is feasible, followed by lab screening of the most
promising.

Variola virus. For variola virus, the range plot indicates that
additional sequencing of stored isolates from infections during

FIG. 1—Continued.
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the 1900s is unlikely to narrow the list of protein signature
candidates. The median and lower bound of the range for the
number of candidates lies within 20 of the number predicted
using the full data set, with as few as four genomes.

Maize streak virus. Maize streak virus has only three pep-
tide signatures using all 32 sequences available at the time of
our analyses, although most combinations of 9 or more se-
quences would have been adequate to narrow the number of
candidates to close to this. Thus, additional genome sequenc-
ing for the purpose of protein signature development is not
recommended.

Hepatitis B virus. Hepatitis B virus is so heterogeneous that
not a single peptide candidate can be found that is conserved
among all sequenced strains. Only four genome sequences
could have provided this information, so sequencing could
have stopped there if the only aim of sequencing were to
discover a single, conserved peptide target. However, hepatitis
B results highlight the fact that continued sequencing may be
desired to identify all of the variant sequences in a divergent
species. For protein diagnostic signatures, it may be necessary
to subdivide species with divergent isolates or strains, such as
hepatitis B, into different clusters or clades and to develop
clade-specific peptide signatures rather than species-specific
signatures. This will enable signature peptides that are con-
served within the clade to be identified if there are no peptides
conserved across all members of the species. In this case, one
would perform SAP analyses on the different clades to deter-
mine when a sufficient number of isolates had been sequenced
from that clade.

Marburg virus. There are 113 peptide signature candidates
for Marburg virus using the six target genomes currently avail-
able to us. Since the number of candidates has declined from
using four or five targets, indications are that the point of
diminishing returns has not been reached and that additional
sequencing may be desired to further narrow the selection of
candidates for testing.

Ebola Zaire virus. Strains of Ebola Zaire virus are so similar
that additional sequencing of the isolates from recent out-
breaks is not required for developing protein signatures. Al-
though there are too many signatures (119) to test all of them,
additional sequencing is unlikely to eliminate nonconserved
candidates at this time, since so little strain divergence has
occurred for this emergent pathogen. If a geographically sep-
arate or symptomatically different outbreak occurs, then addi-
tional sequencing may be warranted.

Mumps virus. Sequencing the first nine strains of the mumps
virus led to better prediction of conserved protein signatures.
After 10 or more sequences, however, little improvement oc-
curred, and indications are that no further sequencing of iso-
lates from clades or outbreaks already represented by sequenc-
ing is required for the prediction of conserved protein
signatures.

Vesicular stomatitis virus. With 100 protein signature can-
didates predicted for vesicular stomatitis virus and declines
from each strain added up to the four genomes currently avail-
able, additional sequencing will likely narrow the selection and
improve the quality of protein signature candidates.

Lassa virus. Lassa virus segment S is the only segment of
Lassa virus (and the only segmented virus) with sufficient avail-
able sequence data to generate informative SAP range plots.

Only 19 protein signatures are predicted to be conserved
across all sequenced strains, and gains from sequencing more
than two or three strains are minimal.

FMDV. With 19 genomes of foot-and-mouth disease virus
(FMDV) publicly available at the time of our analyses, 24
conserved, unique protein signatures can be predicted. Some
judiciously chosen combinations of 10 or fewer genomes could
have winnowed the candidate list to approximately this level,
so it appears that no additional sequencing of FMDV isolates
from already-sequenced outbreaks is required for protein sig-
nature prediction.

Human poliovirus. Human poliovirus (types 1, 2, and 3) is
very heterogeneous (like hepatitis B virus), yielding no protein
signatures that are conserved among strains. In fact, some
combinations of only two strains generated not a single con-
served peptide. Thus, the aim of continued sequencing is to
identify all variants, and this is useful to identify subgroupings
of isolates for which protein signatures might be developed.

Because human poliovirus is so heterogeneous, we also did
a SAP run to look for protein signatures that were unique to
poliovirus (types 1, 2, or 3) and conserved only among the 22
available genomes of poliovirus type 1. Still, poliovirus type 1
was too variable for a single protein target, with as few as five
genomes.

We looked in more detail at a multiple sequence alignment,
and it was evident that the strain (gi 30908795 gb AY278553.1
Human poliovirus 1 isolate P1W/Bar65) collected in Byelorus-
sia in 1963 to 1966 was very different from the other sequences,
all of which were collected from 1990 onward (Fig. 3). This
strain was as different from the other isolates collected in
Russia during 1996 and 1999 as it was from isolates collected in
China or Haiti since 1991. Running the protein signature pipe-
line with only the other 21 genomes, excluding the isolate
collected in 1963 to 1966, yielded 10 peptide signature candi-
dates that were conserved and unique relative to everything in
nr except poliovirus types 1, 2, and 3. This highlights the con-
tribution of temporal separation to viral heterogeneity and the
importance of sampling across time as well as across spatial
dimensions.

Plum pox virus. Results suggest that additional plum pox
virus sequencing may improve the quality and reduce the quan-
tity of protein signature candidates. Since only a subset of the
139 current signatures could feasibly be screened in a labora-
tory, narrowing the candidate pool will be necessary.

SARS virus. The 40 sequences of SARS virus available at the
time of our analyses are so conserved that our analyses predict
over a thousand signatures. Near-neighbor sequence data may
be more valuable to eliminate nonunique candidates than
more SARS sequences from the outbreak already represented.

Venezuelan equine encephalitis virus. Venezuelan equine
encephalitis virus is extremely variable at the DNA level, and
it is not possible to identify a single TaqMan DNA signature
(Table 1) (6). At the protein level, in contrast, 15 peptide
signatures are conserved in all 18 available genomes. The list of
15 or so candidates remains fairly constant whether eight or
more genomes are used in the analyses, indicating that no
further sequencing of currently known isolates for outbreaks
already represented by sequencing efforts is warranted for the
purpose of protein signature prediction.
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DISCUSSION

These analyses indicate that there are more protein than
TaqMan DNA signatures for virtually all of the organisms
examined. This is a result of mainly the following factors: First,
proteins are more conserved than are nucleotide sequences,
due to the nucleotide wobble often in the third base position
for many amino acids. Second, our definition of a protein
signature requires a minimum of only six conserved, unique
consecutive amino acids, while TaqMan DNA signatures re-
quire conserved, unique nucleotides for two primers and a
probe, each of at least 18 base pairs. Third, strict limitations on
sequences deemed suitable for TaqMan PCRs (18) (e.g., am-
plicon length, no self complementarity, Tm, etc.) eliminate
many sequence regions that are conserved and unique. In
contrast, for the protein signature counts that we reported
here, we did not consider other limitations besides conserva-
tion and uniqueness (e.g., expression, surface accessibility, etc.)
that would further reduce the number of protein signature
candidates in preparing a list to go to the laboratory for ex-
perimental development.

Our analyses indicate that the key reason for the higher
frequency of protein than nucleotide signatures is protein se-
quence conservation through the existence of multiple codons

for the same amino acid. For organisms with many protein
signatures, such as the emerging viruses SARS and Ebola
Zaire, less than 1 to 5% of the conserved amino acids have
variable nucleotide codons. For viruses with an intermediate
number of protein and DNA signatures, such as human ade-
novirus B and vesicular stomatitis, approximately 10 to 40% of
the conserved amino acids have variable nucleotide codons.
Very divergent viruses with few or no signatures, such as Ven-
ezuelan equine encephalitis, Lassa, and polio, display 90 to
100% codon variation in the conserved amino acids. Such high
levels of nucleotide variation in regions of protein conservation
make a case in favor of protein detection assays over nucleo-
tide assays for these viruses.

Regardless of the considerations above, the fact that there
are more protein than DNA signature candidates is particu-
larly notable for highly variable viruses of biothreat concern.
For example, for Marburg virus, Venezuelan equine encepha-
litis virus, and FMDV, there is not a single TaqMan DNA
signature that is conserved among all strains, but there are
multiple protein signatures. Nucleotide sequence conservation
among strains is so low for some single-stranded RNA viruses
that there are no regions long enough from which to select a
single stretch of 18 conserved bases on which to locate a

FIG. 3. Unrooted phylogenetic tree of human poliovirus type 1 genomes constructed by applying the unweighted pair group method with
arithmetic mean for clustering to the DiAlign similarity scores computed using DiAlign. The tree was drawn using PHYLIP (http://evolution
.genetics.washington.edu/phylip.html). The origin of each isolate is indicated. We were unable to find the collection date of Taiwanese isolates
(gi 33331402, gi 33331404, gi 33331406, and gi 33331408) from a human immunodeficiency virus patient specified in the source publication. When
the outlier from Byelorussia, collected during the 1960s, is excluded from the calculations for amino acid conservation, 10 protein signatures that
are conserved among all the other genomes are identified.
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primer. Thus, the fact that we can identify highly conserved,
species-specific peptides indicates that these peptides, or the
proteins on which they reside, may be important targets for
therapeutics and vaccines.

SARS and, to a lesser extent, Ebola Zaire are outliers be-
cause there was no near-neighbor sequence data in GenBank
at the time of our analyses to narrow the list of protein or DNA
signature candidates. Most of the genomes of these two viruses
are conserved and unique (�80%), and could be mined for
signatures. Due to the recent emergence of these viruses, little
divergence has occurred between isolates (12), yielding a wide
selection of candidate signatures conserved among all strains.
Although a single genome sequence would have been sufficient
to generate a good list of TaqMan DNA signatures for SARS,
dozens of sequences are necessary to narrow the list of protein
signatures. Even so, with a total of 40 sequenced SARS ge-
nomes available at the time of our protein analyses, there are
over 1,100 protein signature candidates, far too many to de-
velop empirically for diagnostics, vaccines, or therapeutics.
These results coincide with our conclusions regarding sequenc-
ing for TaqMan DNA signatures (7). It would be far more
efficient to sequence near-neighbor species to eliminate non-
unique regions of the genome than to continue sequencing
additional SARS genomes. If SARS near neighbors can be
sequenced, and if they follow the same patterns as the other
single-stranded RNA viruses that we have examined, one
might expect an order of magnitude reduction in the number
of protein signature candidates. This would help to eliminate
signatures that are likely to yield false positive results from
close relatives. Judging by the high levels of divergence for
other single-stranded RNA viruses that have been circulating
for a longer period of time, however, we can predict that SARS
and Ebola Zaire viruses will also diverge given time.

Our results indicate that when selecting the first isolates of a
species to sequence, researchers should attempt to sequence
the least similar isolates first to identify the most divergent
proteins/peptides. The least similar isolates may be chosen
based on spatial or temporal separation, lack of gene flow
between populations, or those that present the most divergent
symptoms or pathology. In some cases, as for human adeno-
virus B, the sequences of only two strains, if they are appro-
priately selected, would be sufficient to predict a list of high-
quality protein signatures likely to be conserved among
additional strains. However, if subsamples of strains for se-
quencing are randomly rather than carefully chosen, the se-
quencing of five strains of human adenovirus B is predicted to
be necessary to narrow the list of protein signatures to those of
the highest quality.

The lack of peptide signatures for poliovirus may be a con-
sequence of a relatively high evolutionary rate for this virus.
Poliovirus type 1 has been shown to have a particularly high
rate of evolution on a per year basis of 9.7 � 10�3 substitutions
per year per nucleotide (1). This compares to more typical
values an order of magnitude lower, 1 � 10�3 substitutions per
year per nucleotide, for most viruses. Even slower rates of
evolution have been measured for others, ranging from 1 �
10�6 to 1 � 10�3, for viruses such as measles virus, influenza
virus C, and GB virus C (11). However, regardless of the rate
of viral evolution, and excluding the strain collected 4 decades
ago, we were still able to discover 10 protein signatures that

were conserved among all the other polio type 1 genomes
available in GenBank at the time of our analyses.

Hepatitis B virus also appears to be a highly divergent virus,
in terms of both nucleotide sequences and amino acid se-
quences. Hepatitis B, a retrovirus, lacks proofreading during
viral transcription, introducing a high frequency of mutations
into the copied sequence (17, 20). A clade-level analysis of the
379 genomes available at the time of our analyses would likely
yield protein signatures for different subtypes, as different
types are known to have different geographical distributions
(20).

The paucity of generalizations that can be made regarding
the number of genome sequences required to predict high-
quality protein signatures argues in favor of using our SAP as
a system, rather than simply for one-time analyses with which
one attempts to extrapolate to other species. As additional
genome sequences become available, new SAP calculations
should be performed and used to evaluate whether additional
sequencing is required or if the point of diminishing returns
has been reached. If the number of signature candidates re-
mains approximately constant with the addition of new se-
quence data, then no more genomic sequencing of the target
species may be required in order to predict conserved peptide
signatures (e.g., variola virus, maize streak virus, hepatitis B
virus, mumps virus, foot-and-mouth disease virus, poliovirus,
Venezuelan equine encephalitis virus, and JC virus). Similarly,
if the number of candidates declines by only a small amount,
then the cost of laboratory work to empirically eliminate poor
signature candidates might be less than the cost of additional
target isolate sequencing to eliminate targets computationally
(e.g., vaccinia virus, Ebola Zaire virus, Lassa virus, human
adenovirus B, and human papillomavirus type 16). In these
cases, the decision may depend on the length of the organism,
since this affects sequencing costs, versus the ease of culturing
or working with the organism in the laboratory, particularly a
biosafety level 3 or 4 laboratory. Otherwise, additional se-
quencing could be continued to eliminate regions of poor con-
servation from consideration (plum pox virus, vesicular stoma-
titis virus, and Marburg virus).

It may be true that for any virus, a new strain that is believed
to be distant spatially (lack of gene flow), temporally, or symp-
tomatically from published genomes must be sequenced and
the virus reevaluated using SAP, even if previous analyses
(prior to emergence of the new strain) had indicated that no
further sequencing was required. This will require biological
judgment on a case-by-case basis, since in many cases, the
isolates already chosen for sequencing are the most different.
Thus, if the sequences of many strains, all separated in time/
space/symptoms, share a set of solid protein signatures, then
even a totally new outbreak is likely to have the same con-
served peptides.

Our finding that genome structure (e.g., single-stranded pos-
itive-sense RNA, or double-stranded DNA) does not show a
clear correspondence with the number of genome sequences
required to develop good protein diagnostic signatures is con-
sistent with results of other research regarding the lack of
patterns in differing rates of evolution in RNA viruses. Jenkins
and colleagues (11) found that substitution rates could not be
grouped based on genome polarity and segmentation, genome
length, presence of an envelope, viral persistence within indi-
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vidual hosts, principal host species, and whether the proteins
encoded were structural or nonstructural. The only pattern
that they did find was that vector-transmitted viruses display
lower substitution rates. Woelk and Holmes (21) also pre-
sented results showing that in particular, vector-borne RNA
viruses have lower rates of nonsynonymous substitutions in
surface structural genes than do non-vector-borne viruses.
They conclude that vector-borne viruses may experience less
positive (diversifying) selection than non-vector-borne viruses.
Thus, it is perhaps surprising that in our analyses, vector-borne
viruses (maize streak virus, vesicular stomatitis virus, plum pox
virus, and Venezuelan equine encephalitis virus) did not have
unusually high numbers of protein signatures compared to
viruses transmitted by other means.

In conclusion, we developed a system to evaluate the value
of existing sequence data and the requirement for additional
sequencing for the development of high quality protein signa-
tures. These intraspecifically conserved, species-specific pep-
tides may be developed as targets for diagnostics, therapeutics,
or vaccines. The lack of generalizations that can be made about
the number of genome sequences required argues for repeated
use of this system to dynamically assess the need for continued
sequencing after each strain is sequenced for a given species.
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