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Abstract: Objective: We investigated the effect of L-carnitine (LC) on cuprizone (Cup) demyelinating
rat model and its possible underlying mechanisms. Methods: Thirty male Sprague–Dawley (SD) rats
were randomly allocated to three groups: the normal control group; the Cup group, in which Cup
was administrated at a dose of 450 mg/kg per day orally via gastric gavage for 5 weeks; and the
Cup + LC group, which received the same dose of Cup as the Cup group, except that the rats were
treated additionally with LC 100 mg/kg/day orally for 5 weeks. The nerve conduction (NCV) in
isolated sciatic nerves was measured; then, the sciatic nerves were isolated for H&E staining and
electron microscope examination. The expression of myelin basic protein (MBP), IL-1β, p53, iNOS,
and NF-KB by immunohistochemistry was detected in the isolated nerves. A PCR assay was also
performed to detect the expression of antioxidant genes Nrf2 and HO-1. In addition, the level of
IL-17 was measured by ELISA. Results: There was a significant reduction in NCV in the Cup group
compared to normal rats (p < 0.001), which was significantly improved in the LC group (p < 0.001).
EM and histopathological examination revealed significant demyelination and deterioration of the
sciatic nerve fibers, with significant improvement in the LC group. The level of IL-17 as well as the
expression of IL-1β, p53, iNOS, and NF-KB were significantly increased, with significant reduction
expression of MBP in the sciatic nerves (p < 0.01), and LC treatment significantly improved the
studied parameters (p < 0.01). Conclusion: The current study demonstrates a neuroprotective effect
of LC in a Cup-induced demyelinating rat model. This effect might be due to its anti-inflammatory
and antioxidant actions.

Keywords: cuprizone; demyelinating; L-carnitine; Nrf2; neuroinflammation

1. Introduction

The central nervous system is affected by the chronic, demyelinating, and inflam-
matory autoimmune illness known as multiple sclerosis (MS) [1,2]. There are around
2.5 million MS patients globally. Although the exact cause of MS is still unknown, envi-
ronmental or genetic factors may play a role. Multiple brain areas can be affected by MS,
including the striatum, corpus callosum, cortex, and white and gray matter. Multiple foci
of inflammation, reactive gliosis (microgliosis and astrocytosis), oligodendrocyte depletion,
demyelination, and axonal degeneration are all part of the pathological changes related to
MS [3]. Experimental autoimmune encephalitis (EAE), Theiler’s murine encephalomyelitis
virus, and toxin-induced demyelination (Cuprizone or Cup) are a few available animal
models that have been reported to induce MS [4]. Myelin and axonal degradation and
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subsequent regeneration are two significant pathologies associated with MS that the Cupri-
zone (Cup) model can more accurately detect. For 5 to 6 weeks, a Cup dose can generate
consistent demyelination; however, if this is continued for longer than 10 weeks, chronic
demyelination is the usual result [5]. Recently, Mirzaie et al. [6] demonstrated a significant
reduction in nerve conduction velocity (NCV) and in myelin sheath thickness in the sciatic
nerves as peripheral nerves in a rat model of Cuprizone-induced neurotoxicity, suggesting
the involvement of PNS in this process and confirm the involvement of myelin sheaths in
PNS as well as CNS in multiple sclerosis.

Cytokines, particularly interleukin-17A (IL-17A or commonly known as IL-17), which
is an inflammatory one, play critical roles in the inflammatory and neurodegenerative
processes associated with MS [7]. Th-17 cells, as well as other CNS cells, including oligo-
dendrocytes and astrocytes, release IL-17 [8]. Autoimmune illness is connected with high
IL-17 expression. It binds to its IL-17R receptor, activating a variety of signaling cascades
including nuclear factor kappa B (NF-KB) [9]. Additionally, IL-17 induces the synthesis of
chemokines and the influx of neutrophils in microglia and astrocytes, which contribute to
the onset or progression of MS [10]. It is important to remember that, although microglia is
involved in clearing away dead cells and myelin debris, it also plays a role in the onset and
progression of MS [11]. It has been demonstrated that microglia contain IL-17 receptors
and that stimulation with IL-17A causes microglial activation and proliferation [8].

Additionally, prior investigations have shown that matrix metalloproteinases (MMPs),
particularly MMP-9, have a role in the pathogenesis of MS [12]. Myelin basic protein
(MBP), one of the most important elements of the myelin sheath, is destroyed as a result of
MMP-9’s digestive impact [13]. Additionally, NF-KB is an inducible factor that is generated
as a result of the activation of tumor necrosis factor (TNF) and interleukin-1 (IL-1) during
the inflammatory process, resulting in the synthesis of pro-inflammatory mediators like
MMP-9. As a result, one of the important inflammatory signaling pathways in microglia is
NF-KB [2]. It is significant to note that MS produces cognitive dysfunction, mostly as a
result of hippocampal demyelination, including reduced attention, slowed information
processing, and long-term episodic memory [14]. On the other hand, inflammatory de-
myelinating illnesses have been linked to the pathophysiology of inducible nitric oxide
synthase (iNOS). Peroxynitrite, a diffusible chemical that can harm membranes, cells, and
nucleic acids, is produced when the highly poisonous molecule nitric oxide (NO), which
is produced by the enzyme inflammasome (iNOS), combines with superoxide, which is
created by inflammatory cells [15].

In addition, the tumor-suppressor gene p53 is a sequence-specific transcription factor
with the capacity to cause cell-cycle arrest and apoptosis; this has been thoroughly studied.
Members of the TNF receptor’s expression levels can be directly influenced by p53, which
can result in immune-mediated damage in MS [16]. Furthermore, a number of studies
point to oxidative damage as playing a significant role in the etiology of demyelination
and neurodegeneration in multiple sclerosis (MS). This point of view is supported by
the discovery of oxidized proteins, lipids, and DNA in MS lesions. The stimulation of
the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2), which, upon
translocation into the nucleus, causes the production of a range of anti-oxidative defense
molecules, is a well-known defense mechanism counteracting oxidative stress [17]. The
gene heme oxygenase 1 (HO-1) is one of those controlled by Nrf2. The rate-limiting
step in heme breakdown is catalyzed by this cytoprotective enzyme, which results in the
production of equimolar quantities of iron ions, biliverdin, and carbon monoxide (CO).
Important biological processes such as inflammation, death, cell proliferation, and fibrosis
are regulated by HO-1 activity products [18].

L-carnitine (LC) is a necessary ingredient that is crucial for fatty acid metabolism and
energy production. L-carnitine increases the efficiency of cellular energy generation by de-
livering long-chain fatty acids to the mitochondria for β oxidation during metabolism [19].
In various neuropathological contexts, according to several studies, LC can have neuropro-
tective benefits in Alzheimer’s disease [20], depression [21], Parkinson’s disease [22] and
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epilepsy [23]. Additionally, LC promotes cholinergic activation, protects against neurotoxi-
city, and improves cognitive function via its antioxidant and anti-inflammatory actions [19].
As a result, we propose that LC may be a promising and easily available neuroprotective
drug for the treatment of demyelinating illnesses like multiple sclerosis. The goal of this
study is to examine potential effects of LC on peripheral nerve structure and function a in a
rat model of multiple sclerosis, as well as potential underlying mechanisms for such effects.

2. Materials and Methods
2.1. Experimental Animals

Thirty mature male Sprague Dawley rats weighing 150–200 g from Medical Exper-
imental Research Center (MERC) Mansoura faculty of medicine, Mansoura University,
were used in this study. In the animal house of MERC, animals were raised and housed.
Rats were housed in cages with free access to food and water while being kept in environ-
ments with regulated humidity (40–70%), lighting (12 h cycle), and temperature (20–22 ◦C).
The Mansoura Faculty of Medicine Committee on Animal Care and Ethics approved the
experimental protocols and assigned it the code number R.22.06.1729 at 2 July 2022.

2.2. Experimental Design

Rats were divided into 3 groups, with 10 rats in each group:

1. Control group: Rats of this group were given 1.5 mL carboxymethylcellulose (CMC)
purchased from Sigma Aldrich (St. Louis, MO, USA) daily by oral gavage for 5 weeks;

2. Cuprizone (Cup) group: Rats of this group were given 450 mg/kg of Cuprizone
purchased from Sigma Aldrich (St. Louis, MO, USA) dissolved in 1.5 mL of 1% CMC
per day orally for 5 weeks [5];

3. Cup + L-carnitine (LC) group: Rats of this group were given 450 mg/kg of Cupri-
zone dissolved in 1.5 mL of 1% CMC, per day orally + 100 mg/kg/day L carnitine
purchased from El-Gomhoria Medical Company, Egypt orally for 5 weeks [19].

2.3. Animal Euthanasia and Collection of Samples

Rats were sacrificed on the final day of the experiment using thiopental anesthesia
from Alpha chemical group company, Amreya, Egypt administered intraperitoneally at a
dose of 30–40 mg/kg after being fasted the previous night. By creating a skin incision and
severing the underlying muscles in the right and left thighs, the sciatic nerve of each rat was
made visible. A left sciatic segment was fixed in 10% formalin from Alpha chemical group
company, Egypt, for histological analysis. In order to conduct a quantitative real-time PCR
analysis, another section of the left sciatic was kept frozen at −80 ◦C. The nerve conduction
examination was conducted on the right sciatic nerve.

2.4. Nerve Conduction Study

Nerve conduction velocity (NCV) was measured by placing the isolated sciatic nerve
specimen in a nerve chamber connected to a power lab 4/30 recording unit, and further
analysis was conducted using lab chart 7 software (ADI instruments, Dunedin, Newzeland).
A 37 ◦C ambient temperature and a pH of 7.4 were maintained with the help of Fresh Krebs
solution [24]. Nerve conduction velocity (in m/s) was calculated by dividing the distance
between the stimulating and recording electrodes (in meters) by the time interval between
the stimulation and the start of the response (in seconds).

2.5. Histological Examination

Nerves (left sciatic nerves, 6 nerves from each group) were taken out for histological
examination and immunohistochemical analyses. Samples of sciatic nerves were preserved
in neutral formalin solution at 10%. Tissues that had been fixed in paraffin were serially cut
into 5 µm slices. To assess the degree of neuronal injury and the state of demyelination,
sciatic nerve slices were stained with of hematoxylin and eosin and Luxol fast blue (LFB)
from Alpha chemical group company, Egypt, respectively [25]. The amount of demyelina-
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tion in the sciatic nerve tissues was measured using ImageJ software (1.54h, NIH, Bethesda,
MD, USA, 2023). (imagej.nih.gov), and the ROI was examined blindly by 2 operators.

2.6. Electron Microscopic Examination (TEM)

Freshly cut sciatic nerve slices from (4 nerves from each group) were fixed in 4%
glutaraldehyde, and the tissue specimens were processed and analyzed [26]. The mor-
phological changes in the sciatic nerves were described according to a previous study by
Love, S. [27], who reported EM changes in a rat model of Cup-induced neurotoxicity. Also,
the thickness of the myelin sheath in large-diameter fibers was calculated, as were the
values of the g ratio (the ratio of the inner axon diameter to the outer diameter of the myelin
sheath, which was used to assess axonal myelination for each group of nerve fibers) [28].

2.7. Evaluation of IL-17

The sciatic nerve samples (6 nerves from each group) that were stored at −80 ◦C were
homogenized for the measurement of IL-17 using the ELISA technique with ELISA kits
(Catalog# MBS175940, My Biosource, San Diego, CA, USA for IL-17).

2.8. Immunohistopathological Examination

Deparaffinization, rehydration, washing, submersion in 3% hydrogen peroxide, pepsin
digestion, and antigen retrieval were all performed on the sciatic nerve sections. Sections
were then cleaned with phosphate buffer. After the blocking of unspecific binding by serum,
the sections were incubated with primary antibodies of myelin basic protein (Catalog #
PA5-78397, Thermo Fisher Scientific, Waltham, MA, USA for MBP); IL-1β rabbit anti-rat IL-
1β (Catalog# sc-7884, working dilution 1:100; Santa Cruz, CA, USA); iNOS (Catalog# iNOS
(Catalog # 550339, BD Biosciences, San Diego, CA, USA; dilution 1: 100); NFκB (Santa Cruz,
CA, USA, dilution 1: 150); and p53 (mouse monoclonal antibody, 1:100, ab90363, Abcam,
Waltham, MA, USA). The number of positive cells and the degree of immunostaining in the
region of interest (ROI) in 5 high-power fields (HPF) were calculated blindly by 2 operators
using ImageJ (1.54h, NIH, Bethesda, MD, USA, 2023). (imagej.nih.gov) software.

2.9. PCR Assay of ANTIOXIDANT GENES (Nrf2/HO-1)

RNAlater (10 µL per 1 mg of renal tissue) was employed to preserve samples of nerve
tissue (catalog no. 76104, Qiagen, Hilden, Germany). The samples were then immersed
in RNA and held for a further 24 h at 2–8 ◦C before being stored at −80 ◦C. Five strokes
of liquid nitrogen were used to homogenize the tissue samples. The QIAzol reagent (Cat.
No. 79306, Qiagen, Germany) was used to extract RNA. The purity and concentration of
the resultant RNA were confirmed by Thermo-Scientific Nano Drop 2000 (Waltham, MA,
USA). A Sensi FASTTM cDNA Synthesis Kit (Cat. No. 12594100) was used with an Applied
Biosystems 2720 Thermal-Cycler (Applied Biosystems, Foster, CA, USA) to create the first
strand of cDNA from 1 microgram of RNA.

Thermo-Scientific’s Pikoreal-96 real-time PCR machine was used to amp up the cDNA
templates. The 20 µL total volume combination for the amplification reaction included
10 µL of HERA-SYBR green PCR Master Mix (Willowfort, UK), 2 µL of cDNA template,
2 µL of gene primer (10 pmol/µL), and 6 µl of nuclease-free water. The sequences of
the primer pairs utilized for Nrf2 were [5′ATTGCTGTCCATCTCTGTCAG-3′.(sense) 5′-
GCTATTTTCCATTCCCGAGTTAC-3′ (antisense)], and for HO-1, were [5′TGCTTGTTTCGC
TCTATCTCC-3′.(sense) 5′-CTTTCAGAAGGGTCAGGTGTC-3′, (antisense)]. Glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) (5′- AGACAGCCGCATCTTCTTGT-3′, 5′-TTCCCAT
TCTCAGCCTTGAC-3′) was used as a reference gene. Using the Primer-BLAST program
(https://www.ncbi.nlm.nih.gov/tools/primer-blast/, accessed on 19 December 2023),
Primer specificity was confirmed (Vivantis, Selangor Darul Ehsan, Malaysia). Melting
curve analysis was used to verify the specificity of the PCR products. The fold change of
gene expression was calculated using the 2CT method, and relative gene expression levels
were expressed as ∆Ct = Ct target gene − Ct housekeeping gene; the 2−∆∆CT method was

imagej.nih.gov
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used to calculate the fold change of gene expression [28]. On 3% agarose gels, PCR products
were run, and a UV transilluminator (OWI-Scientific, Antony, France) was used to visualize
the results. The gels were then captured on camera with the BioRad gel documentation
system (BioRad, Hercules, CA, USA).

2.10. Statistical Analysis

The data were expressed as mean ± SD. The data of the current study were normally
distributed in the statistical analysis, so one-way (ANOVA) followed by Tukey’s post hoc
test were used for measuring the statistical significance among all groups. p < 0.05 was
considered significant.

3. Results
3.1. Effect of L-Carnitine (LC) on Cup-Induced Neurophysiologic Changes

To assess the function of the sciatic nerve, nerve conduction velocity was measured by
a power lab. The NCV in isolated sciatic nerves in the Cup group was significantly lower
than that in the control group (p < 0.001). On the other hand, it was significantly elevated
in the LC group when compared with the Cup group (p < 0.001) (Figure 1A). Figure 1B,C
are records of NCV from the control group, Cup group, and Cup + LC group, respectively.
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Figure 1. Nerve conduction study in isolated sciatic nerves. (A) Nerve conduction velocity (m/s)
from different groups. Traces of NCS records from control group (B), Cuprizone group (C), and
Cup + LC group (D). *: Significant vs. control group, #: significant vs. cuprizone group. p < 0.05 was
considered significant.

3.2. Effect LC on Sciatic Nerve Morphology

Normal rats’ sciatic nerves displayed normal axonal histology, myelinated nerve
fibers, and myelin sheaths that were uniformly packed and organized in concentric rings
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(Figure 2A). The myelinated fibers in the sciatic nerves of the Cup group, however, were
widened, loose, and partially demyelinated, with an uneven pattern of distinct vacuoles,
i.e., bubbling and inflammatory cell infiltrates (Figure 2B). On the other hand, the Cup + LC
group revealed regular myelin sheaths similar to those of rats in the normal control group
(Figure 2C).
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Figure 2. Histopathological examination of sciatic nerve by H&E from different studied groups.
(A) Photomicrograph from normal control group shows dense, uniform, regular myelinated nerve
fibers arranged as concentric layers with regular arrangement of Schwann cell nuclei (white arrows)
(scale bar 50 µm). (B) Photomicrograph from Cup group shows myelinated fibers that were broadened,
loose, and partially demyelinated (red arrows), with an irregular pattern of clear vacuoles, i.e.,
bubbling (red arrows) (scale bar: 50 µm). (C) Photomicrograph from Cup + LC group revealed
regular myelin sheaths (white arrows) (scale bar: 50 µm).

Also, we used transmission electron microscopy to examine the ultrastructure of the
sciatic nerve and the myelin sheath. The thickness of the myelin sheath of large-diameter
nerve fibers showed a significant reduction in the Cup group compared to the normal
control group (p < 0.001). The Cup + LC treated group showed a significant increase in
myelin thickness in comparison with the Cup group (p < 0.001) (Figure 3A). Sciatic nerves
from rats of the normal control group showed large myelinated nerve fibers with intact and
thick myelin sheaths (M), as well as an axonal (A) cytoplasm containing mitochondria (m)
with small-diameter nerve fiber axons surrounded by Schwann cells. These ensheathed
each axon in a pocket of its cytoplasm, forming a Remak bundle. The normal thickness
of the endoneurium implied a normal spacing of nerve fibers within the sciatic nerve
(Figure 3B). On the other hand, the Cup group showed endoneurial edema (manifested by
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distinct displacement between nerve fibers), Wallerian degeneration (W) in axons of large-
diameter fibers, and degeneration of non-myelinated nerve fibers surrounded by Schwan
cells (Figure 3C). Moreover, the Cup + LC group exhibited preserved sciatic nerve structure
with intact large- and small-diameter axons near the normal control group (Figure 3D).
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Figure 3. Ultra-microscopic structure of the sciatic nerve, shown by electron microscope images
from different studied groups. (A) Score of myelin sheath’s thickness in micrometers in different
groups; (B) g (axon/myelin) ratio in different groups; (C) photomicrograph from normal control
group showing large myelinated nerve fibers with thick myelin sheaths (M) and axonal (A) cytoplasm
with small-diameter nerve fiber axons surrounded by Schwann cells, ensheathing each axon in a
pocket of its cytoplasm (scale bar 5 µm). (D) Photomicrograph from cuprizone group showing
endoneurial edema (manifested by distinct displacement between nerve fibers and wide inter-axonal
spacing (scale bar 5 µm); (E) photomicrograph from Cup + LC group showing intact large- and
small-diameter axons near the normal control group (scale bar 5 µm). *: Significant vs. control group,
#: significant vs. Cuprizone group. p < 0.05. A = axon, M = myelin.

3.3. Effect of LC on Cuprizone-Induced Demyelination

LFB staining was used to determine the myelin status, and sciatic nerve immunostain-
ing was used to analyze the MBP. When compared to the control group, the Cup group
demonstrated severe demyelination, which was demonstrated by a substantial decrease in
the intensity of LFB staining (p < 0.001). In contrast, the Cup + LC group showed a marked
increase in the intensity of LFB staining (p < 0.001) (Figure 4A). Representative photomicro-
graphs of LFB staining from the normal control group, Cup group, and Cup + LC group
are shown in Figure 4B–D, respectively.

Additionally, MBP significantly decreased in the Cup group compared to the regular
group (p < 0.05). Compared to the Cup group, the Cup + LC-treated group showed
a substantial increase in MBP expression in the sciatic nerve (p < 0.001) (Figure 5A).
Figure 5B–D show representative photomicrographs of MBP immunostaining from the
normal control group, Cup group, and Cup + LC group, respectively.
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Cuprizone group. p < 0.05 was considered significant.

3.4. Effect of L-Carnitine on Cuprizone-Induced Neuroinflammatory Cytokines (IL-1β, iNOS,
NF-κB, and IL-17) and Apoptotic Markers (p53)

To assess neuro-inflammation, the expressions of IL-1β, iNOS, and NFκB at the protein
level were analyzed by immunostaining in the sciatic nerve while the ELISA technique was
used to assess the level of IL-17. The Cup group showed a significant increase in IL-1β, iNOS,
NFκB, and IL-17 (p < 0.001) compared with the normal group. In contrast, the Cup + LC group
showed significant reductions in IL-1β, iNOS, NFκB, and IL-17 (p < 0.001) compared with the
Cup group (Table 1 and Figures 6A, 7A and 8A). Figure 6B–D, Figure 7B–D and Figure 8B–D
show representative photomicrographs of IL-1β, iNOS, and NFκB immunostaining from
the normal control group, Cup group, and Cup + LC group, respectively.

Table 1. The concentration of IL17 (pg/mL) and the expression of antioxidant genes (Nrf2 and HO-1)
in sciatic nerves of different groups.

Control Group
(n = 6)

Cuprizone Group
(n = 6)

Cup + LC Group
(n = 6)

Sciatic nerve IL17 (pg/mL) 47.50 ± 1.118 98.33 ± 2.789 *** 71.67 ± 4.014 ***,##

mRNA expression of Nrf2 0.98 ± 0.022 0.65 ± 0.014 * 1.65 ± 0.14 ***,###

mRNA expression of HO-1 1.000 ± 0.0056 0.65 ± 0.016 ** 1.12 ± 0.098 ###

All data are expressed as mean ± SEM. One-way ANOVA with Tukey’s post hoc test. *: Significant vs. control
group, #: significant vs. Cuprizone group. * p < 0.05, ** p < 0.05, *** p < 0.001, ## p < 0.01, ### p < 0.001.
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staining, red arrows) from control group (B), Cuprizone group (C), and Cup + LC group (D).
*: Significant vs. control group, #: significant vs. Cuprizone group. p < 0.05 is considered significant.
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Figure 7. Immunohistopathological staining for iNOS in sciatic nerves. (A) The score of iNOS ex-
pression in the region of interest (ROI) in different studied groups. Photomicrographs of iNOS (brown
cytoplasmic staining, red arrows) from control group (B), Cuprizone group (C), and Cup + LC group (D).
*: Significant vs. control group, #: significant vs. Cuprizone group. p < 0.05 is considered significant.

The expression of the p53 protein in the sciatic nerve tissue was determined by
immunostaining to provide information about the activation of the apoptotic pathway.
Figure 9A shows a significant rise in the expression of the p53 protein in the Cup group
compared to the normal control group, with no significant decrease in the Cup + LC
group compared to the Cup group. Also, Figure 9B–D show representative photomicro-
graphs of p53 immunostaining from the normal control group, Cup group, and Cup + LC
group, respectively.
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Figure 8. Immunohistopathological staining from NFκB in sciatic nerves. (A) The score of NFκB
expression in the region of interest (ROI) in different studied groups. Photomicrographs of NFκB (brown
nuclear staining, red arrows) from control group (B), Cuprizone group (C), and Cup + LC group (D).
*: Significant vs. control group, #: significant vs. Cuprizone group. p < 0.05 is considered significant.

3.5. Effect of L-Carnitine on Expression of Antioxidant Genes (Nrf-2 and HO-1) at mRNA-Level
Sciatic Nerve Tissues

By using RT-PCR, we evaluated the mRNA levels of the antioxidant genes nuclear
Nrf-2 (Nrf-2) and HO-1. The Cup group showed a significantly lower level of mRNA
expression of Nrf-2 and HO-1 in the sciatic nerve (p < 0.05) when compared to control
group. As opposed to the Cup group, the LC-treated group demonstrated a substantial
increase in Nrf-2 and HO-1 (p < 0.001). Additionally, when the Cup + LC treated group
was contrasted with the normal control group, there was a substantial elevation in both
markers (p < 0.01) (Table 1).
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Figure 9. Immunohistopathological staining for p53 in sciatic nerves. (A) The score of p53 expression
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group (B), Cuprizone group (C), and Cup + LC group (D). *: Significant vs. control group. p < 0.05 is
considered significant.

4. Discussion

The main aim of this study was to analyze the possible role of L-carnitine (LC) in the
Cuprizone (Cup)-induced demyelination of the sciatic nerves of rats. Multiple sclerosis (MS)
is an autoimmune disease characterized by chronic inflammation, demyelination, and glio-
sis mainly affecting the central nervous system (CNS). However, peripheral nervous system
(PNS) damage is also observed in traditionally perceived demyelination diseases [29].This
also has been proven by electro-physiological as well as neuro-pathological examinations,
which indicates the significant effect of MS on PNS [30].

The Cup-induced demyelination model, which closely matches the pathogenesis of
MS in terms of myelin and axonal degeneration and subsequent regeneration, was used
to achieve the goal of our study. A dose of Cup can cause chronic demyelination if taken
for longer than 10 weeks; however, it can cause consistent demyelination for 5 to 6 weeks.
Spontaneous remyelination occurs once Cup administration is ceased [5], so to assess
the effect of LC on Cup induced demyelination, we administered it concomitantly with
Cup from the start of our experimental period for 5 weeks. To support the occurrence
of a peripheral demyelinating process, we investigated the alterations in the structure of
the sciatic nerve by H&E, LFB, and MBP staining and transmission electron microscopy.
Our study revealed that Cuprizone decreased LFB staining intensity and MBP expression
compared with the control group, suggesting the development of demyelination of the PNS.
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Moreover, electron microscopic examination revealed significant deterioration of the sciatic
nerve. Our result was in alignment with that of Yu et al. [31], who stated that Cuprizone
induced neuronal pyknosis, degeneration, demyelination, and a significant reduction in the
level of MBP in the hippocampus and cortex [31]. Moreover, the ultramicroscopic changes
shown by EM in the sciatic nerve in the Cup group of the current study are in agreement
with those described by Love [27].

On the other hand, treatment with LC markedly reversed the process of demyelination
in the sciatic nerve and improved its microscopic structure and nerve conduction velocity,
suggesting a neuroprotective role of LC against Cup-induced demyelination in PNS. Our
results are in agreement with Gharighnia, Omidi [32], who showed that in the demyeli-
nated mouse model, LC enhanced balance and motor coordination, suggesting that it may
function as a therapeutic antioxidant during the myelin regeneration process.

A protective covering called myelin surrounds nerve fibers and aids in the conduction
of action potentials in the neurological system. It participates in and speeds up the saltatory
conduction of brain impulses. Schwann cells produce myelin in the peripheral nervous
system, but oligodendrocytes are the myelinating cells in the central nervous system [33].
In the current study, we found demyelination in the sciatic nerve via LFB stain as well as
downregulation of MBP in the sciatic nerves of the Cup group. The process of demyeli-
nation of nerve fibers was reflected by the conduction velocity of the nerve fibers, which
was markedly reduced with demyelination. This is why we examined the conduction
velocity in the current study on isolated sciatic nerve fibers. In the current research, we
found a significant reduction in NCV in the Cup group compared to the control group,
suggesting that the demyelination of nerve fibers resulted in a reduction in NCV in the
sciatic nerves. This finding is in agreement with Ünsal and Özcan [34], who reported a
significant reduction in sciatic nerve conduction velocity with Cup treatment in both male
and female rats. Also, they reported that males were more sensitive to Cup than females,
which is why we chose male rats in the current study. On the other hand, treatment with LC
significantly attenuated the process of demyelination in the sciatic nerves, upregulated the
expression of MBP, and enhanced the nerve conduction velocity, suggesting a remyelinating
effect of LC against Cup-induced neurotoxicity in peripheral nerves. These findings are
in line with those of Triana et al. [35], who reported that LC may have the function of
stabilizing the process that leads to the integrity of myelin. Also, it has been shown that,
following prolonged hypoperfusion in the rat brain, LC heals white-matter lesions and
increases axonal plasticity [36].

The current study’s second objective was to investigate the potential mechanisms that
might underlie Cup-induced neurotoxicity and LC’s protective effects in Cup-induced de-
myelinating rats. Cup, a copper-chelator, inhibits cytochrome oxidase and monoamine oxi-
dase enzymes in mature oligodendrocytes, leading to mitochondrial dysfunction through
enlargement or clustering, which is followed by their apoptosis, resulting in their death.
The demyelination zones are populated by microglia and reactive astrocytes, which release
pro-inflammatory cytokines such as TNF-α, interleukin-1, and interferon. Thus, the pri-
mary factors that control the Cup-induced demyelination process are neuroinflammation,
oxidative stress, and apoptosis [37].

The process of neuroinflammation was the first mechanism we looked at, and we
achieved this by measuring inflammatory cytokines in the sciatic nerve, including IL-1,
IL-17, iNOS, and NF-KB. Important cellular processes are impacted by IL-1, including
the reduction in DNA content, the reduction in protein synthesis and intracellular energy
production, and the induction of cell death and necrosis [38]. Blood–brain barrier (BBB)
endothelial cells secrete CCL2, IL-6, and IL-8 (CXCL8) in response to IL-17, which also
stimulates the production of reactive oxygen species. It also stimulates the release of CXCL2
and IL-6 by microglia and of IL-6, IL-1, and nitric oxide (NO) by astrocytes, which heightens
inflammation and attracts neutrophils [39]. The NF-kB/I-B pathway is triggered by NF-
kB, which then enhances iNOS activity. The pathophysiology of intricate inflammatory
illnesses is assumed to be significantly influenced by the overexpressed iNOS, which would
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lead to excessively elevated NO levels [40]. Our findings show that Cup significantly
increased the levels of inflammatory mediators like IL-1, iNOS, NF-kB, and IL-17. This
is in accordance with Abdel-Maged et al. [2]. These findings suggest the development
of a neuroinflammatory process in the sciatic nerve with Cup feeding. Moreover, LC
treatment significantly decreased these inflammatory markers in the sciatic nerves, which
is in parallel with results of Koc et al. [41], who reported that nitric oxide generation, iNOS
protein expression, and NF-kB activity were all reduced by LC. This anti-inflammatory
action of LC has been reported in several previous studies [32,42].

Finally, there is compelling evidence that oxidative stress plays a role in MS. The
increased ROS (oxidative stress) caused by Cup exposure causes or stimulates oligoden-
drocyte death [43]. Redox transcription factor Nrf-2 is thought to be a key regulator of
HO-1 induction in the CNS, and is implicated in the activation of several antioxidants [44].
When compared to the normal group in the current investigation, nuclear Nrf-2 and HO-1
expression levels were considerably lower in the Cup group, and this had previously
been reported by Abdel-Maged et al. [2]. However, LC increased the nuclear levels of
Nrf-2 and HO-1 compared to the Cup group, which was in accordance with the results of
Hota et al. [45], who revealed that LC-mediated neuroprotection during hypoxic insult
occurs through Nrf-2-mediated regulation of mitochondrial biogenesis. Also, LC treatment
was associated with increased levels of Nrf-2 and HO-1, which thought to be protective
against retinal ganglion cell damage induced by high glucose levels as previously men-
tioned [46]. Lastly, it was demonstrated that oxidative stress and inflammatory process
resulted in the upregulation of p53 and caspase-3 during the first 3 weeks of Cup adminis-
tration [43]. In accordance with this finding, the current study demonstrated significant
elevation in p53 expression in sciatic nerve tissues, suggesting the development of apoptosis
in peripheral tissues with Cup intoxication. However, LC treatment to improve significantly
the expression of p53 failed in the current work.

5. Conclusions

In conclusion, LC established a reliable protective effect against Cup-induced de-
myelination in the peripheral nervous system and improved the structural and functional
abnormalities in rat sciatic nerves. This neuroprotective effect is partially due to its anti-
inflammatory effect of reducing IL-1β, IL-17, iNOS, and NF-KB, as well as its role in
resisting oxidative stress via the upregulation of nuclear Nrf-2 and HO-1.
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