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Simple Summary: Cancer stem cell have certain metabolic properties that are distinct from their
differentiated counterparts. Our aim is to characterize CSC metabolism in oral cancer. Our study have
several impacts: 1. Previous metabolic studies of CSC mainly focused on few energy metabolism path-
way. Here we used novel transcription/metabolic joint analysis to reveal comprehensive metabolic
alteration of CSC in oral cancer. 2. Assessing CSC metabolic phenotype in vivo is challenging. Here
We used single-cell sequencing to explore the metabolic characteristics of CSC in vivo. 3. Our data
suggested oral CSCs are metabolically inactive compared with differentiated cancer cells. This state
may allow CSCs to resist the metabolic therapeutic strategies currently used for highly proliferative
tumors. This knowledge may allow us to better develop metabolic therapy against CSC in oral cancer.

Abstract: Understanding the distinct metabolic characteristics of cancer stem cells (CSC) may allow
us to better cope with the clinical challenges associated with them. In this study, OSCC cell lines
(CAL27 and HSC3) and multicellular tumor spheroid (MCTS) models were used to generate CSC-like
cells. Quasi-targeted metabolomics and RNA sequencing were used to explore altered metabolites
and metabolism-related genes. Pathview was used to display the metabolites and transcriptome
data in a KEGG pathway. The single-cell RNA sequencing data of six patients with oral cancer were
analyzed to characterize in vivo CSC metabolism. The results showed that 19 metabolites (phospho-
ethanolamine, carbamoylphosphate, etc.) were upregulated and 109 metabolites (2-aminooctanoic
acid, 7-ketocholesterol, etc.) were downregulated in both MCTS cells. Integration pathway anal-
ysis revealed altered activity in energy production (glycolysis, citric cycle, fatty acid oxidation),
macromolecular synthesis (purine/pyrimidine metabolism, glycerophospholipids metabolism) and
redox control (glutathione metabolism). Single-cell RNA sequencing analysis confirmed altered
glycolysis, glutathione and glycerophospholipid metabolism in in vivo CSC. We concluded that CSCs
are metabolically inactive compared with differentiated cancer cells. Thus, oral CSCs may resist
current metabolic-related drugs. Our result may be helpful in developing better therapeutic strategies
against CSC.

Keywords: oral cancer; cancer stem cell; metabolic heterogeneity; metabolomics; single-cell RNA
sequencing
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1. Introduction

Oral cancer is the term for malignancies developing in the oral cavity, and its risk
factors include smoking, tobacco and alcohol [1]. Oral cancer has the 11th-highest incidence
rate among all cancers [2]. Each year from 2010 to 2019, the incidence increased by about
1% and the mortality rate increased by 0.4% [3]. Oral squamous cell carcinoma (OSCC)
accounts for about 90% of all oral cancers. Despite recent advances in imaging, surgery,
radiation and systemic therapies, the overall survival of patients with OSCC has improved
by only 5% in the last 20 years. The main reasons for treatment failure are local recurrence
and lymph node metastasis [4,5].

Cancer cells reprogram their metabolism to meet the energy and anabolic require-
ments for survival and proliferation. Warburg [6] first observed that even when adequate
oxygen is available, cancer cells preferentially perform glycolysis rather than oxidative
phosphorylation. Recent studies have shown that metabolites are not only essential for
the cellular structure and energy generation but also serve critical functions as signal-
ing molecules, immune modulators, endogenous toxins and environmental sensors [7].
Natalya [8] outlined several key aspects of cancer metabolism, such as dysregulated glu-
cose and amino acid uptake, a heightened demand for electron acceptors and metabolic
interactions within the tumor microenvironment. These distinct metabolic traits associ-
ated with cancer offer insights into tumor imaging, prognostic assessments and potential
therapeutic approaches [9].

Understanding cancer metabolism has implications for clinical oncology. Researchers
have recently begun to pay more attention to intratumoral metabolic heterogeneity. A typi-
cal example is the metabolic heterogeneity between cancer stem cells (CSCs) and normal
tumor cells. According to CSC theory, CSCs are a distinct population of cancer cells that
have a high self-renewal ability and tumorigenic potential, and these characteristics play
an important role in cancer relapse, metastasis and radiotherapy/chemotherapy resis-
tance [10,11]. CSCs were first identified in patients with leukemia and then in many solid
tumors, including OSCC [12–15]. Recent evidence suggests that CSC populations are in a
dynamic and plastic state [16,17].

CSCs may have certain metabolic properties distinct from their differentiated coun-
terparts [18]. Research in the fields of liver cancer, glioma, breast cancer and other types
of cancer has elucidated these properties [19,20]. Understanding the distinct metabolic
characteristics of CSCs may allow us to better cope with the clinical challenges associated
with them. Our research team is interested in the metabolic characteristics of oral CSCs,
which are currently unknown. In this study, we used OSCC cell lines and multicellular
tumor spheroid (MCTS) models to generate CSC-like cells. We then used quasi-targeted
metabolomics to quantify thousands of metabolites and performed RNA sequencing (RNA-
seq) to analyze the transcriptional level of metabolic genes. The altered metabolites and
genes were integrated into a Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way analysis. In addition, we performed a single-cell transcriptome analysis of six OSCC
tumors to preliminarily explore the metabolic phenotypes of oral CSCs in their native
microenvironments in humans.

2. Materials and Methods
2.1. Cells and Culture Conditions

Experiments using HSC3 and CAL27 cell lines were maintained by the Laboratory of
Stomatology, Zhejiang University. Both cell lines were cultured in Dulbecco’s modified
Eagle’s medium/Nutrient Mixture F-12 (DMEM/F-12, Cellmax, Beijing, China) containing
10% fetal bovine serum and incubated at 37 ◦C in humidified air with 5% carbon dioxide.

2.2. MCTS Models

MCTS models were used to enrich CSCs in the HSC3 and CAL27 cell lines, as described
in a previous report [21]. Briefly, when the adherent cells reached 85–90% confluence, they
were dissociated into a single-cell suspension and resuspended in serum-free DMEM/F-12
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supplemented with 2% B-27 (Gibco, Waltham, MA, USA), 10 ng/mL epidermal growth
factor (EGF) (PeproTech, Cranbury, NJ, USA) and 10 ng/mL basic fibroblast growth fac-
tor (bFGF) (PeproTech) at a cell density of 1 × 105 cells/mL in a poly(2-hydroxyethyl
methacrylate)-coated plate [22,23]. The culture medium was refreshed every 3 days. On
day 7, the MCTS models were used for further testing and analysis.

2.3. Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR)

Total cellular RNA was extracted using a Universal RNA Extraction Kit (Takara,
Beijing, China) according to the manufacturer’s instructions. The mRNA was reverse-
transcribed using a PrimeScript IV 1st strand cDNA Synthesis Mix (Takara). Then, RT-qPCR
of the cDNA was performed using a TB Green Premix Ex Taq™ II FAST qPCR (Takara) on a
ViiA7 System (Thermo Fisher Scientific, Waltham, MA, USA). The primer sequences used in
this study were designed at the NCBI website (https://www.ncbi.nlm.nih.gov/, accessed on
10 April 2023) and were as follows: SOX2 (forward, 5′-AACTCCATGACCAGCTCGCAGA-3′

and reverse, 5′-GGACTTGACCACCGAACCCAT-3′), NANOG (forward, 5′-TGGCTCTGT-
TTTGCTATATCCC-3′ and reverse, 5′-CATTACGATGCAGCAAATACGAGA-3′), OCT4 (for-
ward, 5′-TATGCAAAGCAGAAACCCTCGT-3′ and reverse, 5′-TTCTCCAGGTTGCCTCTC-
ACTCG-3′) and GAPDH or actin (forward, 5′-GGAGCGAGATCCCTCCAAAAT-3′ and
reverse, 5′-GGCTGTTGTCATACTTCTCATGG-3′).

2.4. Flow Cytometry

The collected cells were dissociated and resuspended into a single-cell suspension.
Fluorescence-conjugated CD133 antibody (ab252126, diluted to 1:1000; Abcam, Cam-
bridge, UK) was added, and the samples were incubated for 30 min on ice. The proportions
of CD133+ cells were determined using a cytometer (CytoFLEX; Beckman Coulter Life
Sciences, Brea, CA, USA).

2.5. Sphere-Forming Assays

The experimental procedure for the sphere-forming assays was similar to that for the
MCTS models; the main difference was that the single-cell suspension was seeded at a
density of 2000 cells and the serum-free DMEM/F-12 medium contained 20 ng/mL EGF,
20 ng/mL bFGF and 2% B-27 [24]. The medium was refreshed every 2–3 days. Seven days
later, spheres larger than 50 µm were counted using an inverted microscope.

2.6. Transcriptome Sequencing

For transcriptome sequencing, all samples were processed in triplicate. A total of
1 × 106 adherent cells or multicellular sphere cells were collected and sent to a commer-
cialized testing company (Novogene, Tianjin, China) for transcriptome sequencing. The
experimental procedures and subsequent data processing of transcriptome sequencing are
provided in the Supplementary Materials and Methods (Method S1). Briefly, after library
preparation, low-quality bases were removed from raw data, and Hisat2 (v2.0.5) [25] was
used to map reads to the reference genome. FeatureCounts (v1.5.0-p3) [26] was used to
count the reads numbers mapped to each gene; then, the FPKM of each gene was calculated.
The differential expression analysis of experiment/control groups was performed using the
DESeq2 R package (1.20.0) [27]. A corrected p-value of 0.05 and absolute fold-change of 1.5
were set as the threshold for significantly differential expression. The KEGG enrichment
analysis of differentially expressed genes was implemented by the clusterProfiler R package
(3.8.1) [28].

2.7. Quasi-Targeted Metabolomics

For quasi-targeted metabolomics, all samples were processed in quintuplicate. A total of
5 × 106 adherent cells or multicellular sphere cells were seeded at 2.5 × 105/mL in DMEM/F-
12 without fetal bovine serum or B-27/EGF/bFGF for 24 h. All cells were then collected
and sent to a commercial testing company (Novogene) for quasi-targeted metabolomics. The

https://www.ncbi.nlm.nih.gov/
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experimental procedures and subsequent data processing of quasi-targeted metabolomics are
provided in the Supplementary Materials and Methods (Method S2). Briefly, the metabolomics
samples were injected into the LC-MS/MS system (ExionLC™ AD system (SCIEX) coupled
with a QTRAP® 6500+ mass spectrometer (SCIEX)). The detection of the experimental
samples using MRM (Multiple Reaction Monitoring) were based on the novogene in-house
database. The data files generated by HPLC-MS/MS were processed using SCIEX OS
Version 1.4 to integrate and correct the peak. These metabolites were annotated using the
KEGG database (http://www.genome.jp/kegg/, accessed on 13 November 2022), HMDB
database (http://www.hmdb.ca/, accessed on 13 November 2022) and Lipidmaps database
(http://www.lipidmaps.org/, accessed on 13 November 2022). We applied univariate anal-
ysis (t-test) to calculate the statistical significance (p-value). The metabolites with a VIP > 1,
a p-value< 0.05 and a fold change > 1.5 were considered to be differential metabolites.

2.8. Single-Cell RNA Sequencing Analysis

The single-cell RNA sequencing data of tumor samples from six patients with oral
cancer were downloaded from the Gene Expression Omnibus database (accession number
GSE172577) [29]. Seurat (Version 4.3.0) [30] was used for downstream analysis. The data
analysis was performed as follows: (1) the data of the six samples were integrated after
being filtered by the minimum number of cells (n = 3), a feature count of 200–6000 and
a mitochondrial gene proportion of <0.05. (2) We employ a global-scaling normalization
method to normalizes the feature expression measurements for each cell. (3) After applying
linear transformation to scale the data, PCA was performed on the scaled data. (4) A graph-
based clustering approach was used to cluster the cells, and non-linear dimensional reduction
(UMAP) was performed to visualize and explore these datasets. (5) After differential expressed
features were analyzed, cluster definition and annotation were performed by SingleR (Ver-
sion 2.2.0) [31] combined with manual annotation according to existing knowledge. Fourth,
the FindMarkers function was used to identify differentially expressed genes (fold change of
>1.5 and adjusted p-value of <0.05) between CSC clusters and non-CSC clusters.

2.9. Survival Analysis

A survival analysis was performed using the R package “survival” (version 3.5-7). The
mRNA expression data (Z-score) and relevant clinical information of 528 samples of head
and neck squamous cell carcinoma (The Cancer Genome Atlas of the Pan-Cancer Atlas)
were downloaded from the cBioPortal website (http://www.cbioportal.org/, accessed on
28 June 2023). For each gene analyzed, samples with a Z-score above the median were
defined as exhibiting a high expression, and those with a Z-score below the median were
defined as exhibiting a low expression.

3. Results
3.1. MCTS Increases the Stemness of Tumor Cells

Metabolomics research requires a very large number of cells. Because of the very low
proportion of CSCs (<3%), several commonly used methods for isolating CSCs (e.g., flow
cytometry sorting by CSC markers [32] or spheroid colony formation [33]) seem unacceptable
from the viewpoints of cost and labor. Therefore, we employed MCTS models [21,34] to obtain
an adequate number of cells with CSC properties. To validate the changes in stemness of the
tumor cells processed by the MCTS model, we evaluated the changes in transcription factors
(OCT4, NANOG, and SOX2) using qRT-PCR. As shown in Figure 1, the expression of these
genes in tumor cells processed by the MCTS model increased significantly (Figure 1A,B). The
sphere-forming assays suggested that the MCTS cells had an increased sphere-forming ability
compared with the adherent cancer cells (Figure 1C). We subsequently used flow cytometry
(with the CSC surface marker CD133) to evaluate the changes in the proportion of CSCs. After
processing with the MCTS model, the proportion of CD133+ cells in both the CAL27 and
HSC3 cell lines increased significantly (Figure 1D). These results indicate that, compared with
adherent cells, MCTS cells have significantly enhanced stemness.

http://www.genome.jp/kegg/
http://www.hmdb.ca/
http://www.lipidmaps.org/
http://www.cbioportal.org/
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Figure 1. MCTs increase the stemness of tumor cells. (A,B) Relative mRNA levels of the stemness-related
gene, as determined by qRT-PCR. Data are given as relative expression levels (n = 3, **** p < 0.0001,
t-test) (C) Sphere formation assay of control- and MCT-treated cells in cal27 and hsc3 (n = 3). (D) FACS
strategy for sorting CD133+ cells and the percentage of CD133+ cells (n = 3, * p < 0.05, t-test).

3.2. Metabolomics and Transcriptome Results

Metabolomics technologies allow us to identify and quantify hundreds of metabo-
lites in biological samples [35]. In this study, we conducted quasi-targeted metabolomics,
a method that offers higher quantitative precision than untargeted metabolomics. Our ob-
jective was to quantify alterations in intracellular metabolites within OSCC cell lines, specif-
ically MCTS. The sample details are present in Table S1. Our quasi-targeted metabolomics
procedures were based on the Novogene database, which includes 2200 metabolites. The
results are shown in Table S2. Finally, 368 metabolites (upregulated, n = 102; downregu-
lated, n = 266) were found to be significantly changed in the CAL27 cells (Figure 2A), and
314 metabolites (upregulated, n = 40; downregulated, n = 274) were found to be significantly
changed between the control and MCTS in HSC3 cells (Figure 2B).

We also performed transcriptome sequencing to explore global gene alterations after
the MCTS process. We found a total of 4743 upregulated and 4412 downregulated genes in
HSC3 MCTS and 5269 upregulated and 4578 downregulated genes in CAL27 cells. The
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KEGG pathway enrichment analysis (Figure 2E,F) shows that differential expressed genes
were enriched in the cell cycle, DNA replication and cell senescence, suggesting a state of
cell senescence.
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Figure 2. (A,B), Volcano plots of differential metabolites between the control and MCTS, in CAL27
(A) and HSC3 (B). The yellow point, green point and grey point indicate the metabolites that were
significantly upregulated, significantly downregulated and non-significantly different, respectively.
The top ten metabolites with the greatest difference in expression between the control and MCTS are
annotated in a red color. (C,D) Venn diagrams show the number of metabolites (C) and genes (D) that
are significantly increased or decreased in CAL27 and HSC3 cells. (E,F) KEGG pathway enrichment
of differentiated expressed genes between the control and MCTS in CAL27 (E) and HSC3 (F).

The Venn diagram shows that 19/109 metabolites were upregulated or downregulated
in both HSC and CAL27 MCTS (Figure 2C), and 3116/3268 genes were upregulated or
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downregulated in these cells (Figure 2D). These metabolites and genes were selected for
subsequent analysis.

3.3. Integration of Metabolomic and Transcriptome Pathway Analysis

Pathview (https://pathview.uncc.edu/, accessed on 18 June 2023) [36] was used to
display the metabolites and transcriptome data in KEGG pathway graphs. We mainly
focused our analysis on the metabolic properties of energy production, macromolecular
synthesis and redox control in cancers [37].

3.3.1. Energy Production

Glucose metabolism is the main pathway by which tumor cells obtain energy. In glycoly-
sis, we found that fructose 6-phosphate, glucose 6-phosphate and fructose 1,6-bisphosphate
were upregulated in MCTS, while lactic acid was downregulated. Some genes involved in
glycolysis were upregulated, whereas others were downregulated (Figure S1). The expression
of HK2, a key enzyme for glycolysis, was significantly high. In the citric cycle, cis-aconitic
acid and succinic acid were downregulated, and most genes in this pathway were also down-
regulated (Figure S1). Fatty acid oxidation (FAO) is another energy source for cancer cells.
We found that carnitines (decanoylcarnitine, isovalerylcarnitine and hexanoylcarnitine) were
upregulated in MCTS. A marked decline in FAO-related genes was observed (Figure S1).
CPT1A, the key enzyme of FAO, was also significantly downregulated in MCTS.

3.3.2. Macromolecular Synthesis

Purines and pyrimidines are important building blocks for proliferating cells. We ob-
served the significant downregulation of metabolites (guanine, adenosine, dTMP, UMP and
others) and decreased expression levels of several enzymes involved in purine/pyrimidine
metabolism (Figure S1). Glycerophospholipids are involved in the composition of the
cell membrane. In the present study, phosphoethanolamine was the most significantly
elevated metabolite in CSCs, while lysophospholipids (lysophosphatidylethanolamine and
lysophosphatidylcholine) were significantly downregulated in CSCs. Pathway analysis
showed that several enzymes related to glycerophospholipid synthesis/degradation were
altered in MCTS (Figure S1).

3.3.3. Redox Control and Other Pathways

The glutathione (GSH) system is an important cellular antioxidant defense mechanism.
We found decreased levels of both GSH and oxidized GSH in CSCs. The expression of
several related enzymes was found to be upregulated or downregulated in CSCs (Figure S1).
GPX4, a key molecule for maintaining redox homeostasis, was upregulated. Besides
the above-mentioned energy production, macromolecular synthesis and redox control
pathways, there were also many altered metabolites involved in known or unknown related
pathways, such as carbamoyl phosphate, 1-methylhistamine and adipic acid, among others.

3.4. Alteration of Metabolism Genes in Clinical Samples

The metabolic heterogeneity of cancer results from a complex set of factors [37]. Our cell
line data may reflect these metabolic alterations by showing intrinsic molecular heterogeneity
between CSCs and differentiated cancer cells. In vivo, however, CSCs reside in a complex
tumor microenvironment that impacts tumor metabolism. Here, we conducted a single-cell
transcriptomic sequencing analysis of clinical samples to characterize in vivo CSC metabolism.

In total, 25,531 cells were entered into the analysis. After data processing, 23 cell
clusters were identified (Figure 3A), and 10 of these clusters were annotated as epithelial
cells or keratinocytes. The data of these 10 clusters (including 14,484 cells) were extracted
separately and subjected to repeat data processing and clustering. Finally, 16 clusters were
identified (Figure 3B). In previous studies, CD44, ALDH1A1, SOX2, NANOG and POU5F1
were regarded as CSC markers. Here, our violin plots showed that SOX2 was mainly
enriched in cluster 7 and that cluster 7 also had the highest CD44 expression, indicating

https://pathview.uncc.edu/
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that cluster 7 was the CSC group (Figure 3C). We then regrouped the tumor cells into a
CSC group (cluster 7) and a non-CSC group (other clusters). Finally, 864 genes were found
to be differentially expressed in CSCs (Table S3). These genes underwent KEGG pathway
enrichment analysis (Figure 3D).
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Next, we focused on the following pathways: glycolysis, citrate cycle, fatty acid
degradation, GSH metabolism and glycerophospholipid metabolism. The result suggested
active glycolysis, GSH and glycerophospholipid metabolism (Figure S2), while few genes
in the citrate cycle or fatty acid degradation pathway were detected. Thirteen common
differentially expressed genes were identified in these pathways. Nine of them (ENO2, HK2,
GPI, GPX3, GPX4, ODC1, GPCPD1, PLD1 and PLPP2) showed consistent tendencies in both
the cell lines and clinical samples. Because the metabolic phenotype of CSCs may have
prognostic value, we performed a survival analysis of these nine genes. The result showed
that ENO2 had prognostic value; the median survival time for patients with higher ENO2
expression is 50.1 months (31.5–68.7 months), compared to 65.7 months (34.6–96.8 months)
in those with lower ENO2 expression (Figure 3E).

4. Discussion

Divergent metabolic phenotypes reflect the molecular heterogeneity of cancer cells
and inconsistencies in the microenvironment. Greater knowledge of the heterogeneous
metabolic nature of cancer can enable the specific targeting of subclones in a single tumor.
To our knowledge, this is the first metabolomics study to characterize CSC metabolism
in oral cancer. Metabolomics is routinely applied as a tool for biomarker discovery. With
the recent advances in metabolomics technology and bioinformatic tools, metabolomics
can not only establish correlations between altered metabolites and particular cell/disease
phenotypes but can also help us understand the role of these metabolic alterations in
phenotypic outcomes and thus guide novel therapy [38,39]. The use of a multilayered
omics strategy, such as the integration of metabolomics with transcriptomics or proteomics,
can help to determine the relationships between gene/protein expression and metabo-
lites, as well as the balance between metabolite production and consumption [40]. In the
present study, we used an integrated metabolomics/transcriptomics approach to explore
the metabolic heterogeneity between CSCs and normal oral cancer cells, and our results
showed a comprehensive stemness-related metabolic phenotype.

During the past few decades, the metabolic phenotype of CSCs has been a subject of
in-depth research. Most studies to date have focused on the energy metabolism of CSCs.
With respect to glucose metabolism, CSCs have been described as glycolytic or reliant on
oxidative phosphorylation in a tumor type-dependent manner [18,41,42]. With respect
to lipid metabolism, some studies have suggested that CSCs rely on FAO because the
inhibition of FAO can reduce the number of CSCs in patients with leukemia and liver
cancer [43,44]. In the present study, CSCs showed a decrease in metabolites and genes in
the citric acid cycle, along with the overexpression of several glycolytic genes. This suggests
that oral CSCs rely more on glycolytic than oxidative phosphorylation, which is similar
to another type of head and neck cancer: nasopharyngeal cancer [45,46]. Our results also
suggest decreased FAO activity in oral cancer CSCs, indicating that CSCs obtain less energy
from fatty acids than differentiated cancer cells do.

Studies of CSC metabolism focusing on topics beyond energy metabolism are rare.
Here, we found decreased GSH and oxidized GSH but upregulated GPX4 expression in
MCTS. We believe that the CSCs reached redox homeostasis with lower GSH levels because
of reduced mitochondrial metabolism; however, the antioxidant capacity was still sufficient
to overcome potential oxidative stress. Some anabolism pathways are also downregulated
in CSCs, such as purine/pyrimidine metabolism and one-carbon metabolism, which may
explain the weak proliferative characteristics of CSCs (CSC senescence) [47,48]. In addition,
we found that some metabolism pathways or metabolites were significantly altered in
MCTS (e.g., glycerophospholipid metabolism). These metabolites are rarely studied in
cancers. Determining whether these alterations have any effect on the properties of CSCs
requires further validation in experimental models.

According to a review by Heiden [9], the reprogrammed metabolic activities of cancer
can be classified as transforming activities, enabling activities and neutral activities. The
author suggested that transforming and enabling metabolic activities are therapeutic targets,
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whereas neutral metabolic activities may act as diagnostic or predictive biomarkers. Most
existing and investigational metabolic therapies work against enabling metabolic activities,
which support the survival, proliferation and progression of cancers (e.g., drugs targeting
glycolysis, glutamine metabolism or nucleic acid synthesis) [49,50]. Based on our data, we
believe that oral CSCs are not only in a state of senescence but are also metabolically inactive
compared with differentiated cancer cells. This state may allow CSCs to resist the metabolic
therapeutic strategies currently used for highly proliferative tumors. Other metabolic
strategies should be explored to overcome the relapse/metastasis caused by CSCs.

A thorough understanding of the metabolic reprogramming of oral CSCs is an im-
portant step to developing better therapeutic strategies against this therapy-resistant cell
population. However, there is still a large gap between obtaining metabolomics results
and developing novel treatments. In some cases, altered metabolism may result in unique
metabolic dependencies. Identifying the metabolic vulnerabilities of CSCs by experimental
models may aid the development of strategies that inhibit or eliminate CSCs. Additionally,
some metabolites or enzymes may participate in cellular signaling and affect cell functions
or phenotypes, as well as play a role in metabolic reactions [50–52]. If metabolites or
metabolic enzymes are found to participate in the cell signaling involved in stemness, the
opportunity to induce the differentiation of CSCs (also called differentiation therapy) will
arise. Combining differentiation therapy with conventional chemotherapy or radiotherapy
may improve the effects of clinical therapy.

This study had some limitations. First, metabolite identification was incomplete due
to limitations with the library, experimental sensitivity and metabolite extraction. Humans
are estimated to have > 1 million metabolites [7,49]. Many metabolites are not identified
in metabolomics studies because their concentrations are too low or they do not exist in
the annotation library. The second limitation is that although our transcriptome sequenc-
ing reflects the mRNA expression of metabolic genes, metabolite levels are non-linearly
dependent on enzyme abundance [40], and metabolic activity may also be regulated by
other mechanisms (e.g., allosteric regulation). Therefore, the metabolic properties of CSCs
may be more complex than indicated by the metabolomic/transcriptome results. Third, we
used two OSCC cell lines in our experiment, while the results would be more reliable if
more cell lines were used. Fourth, assessing the metabolic phenotypes of in vivo CSCs in
their native microenvironment remains challenging because of limitations in isolating them
and assessing their metabolism at the single-cell level. Our scRNA sequencing analysis is
only the first step. Further progress in metabolic research technology may help us better
understand the heterogeneity of cancer cells.

5. Conclusions

For the first time, we characterize comprehensive CSC metabolism in oral cancer.
CSCs showed a state of senescence but are also metabolically inactive compared with
differentiated cancer cells. Oral CSCs may resist current metabolic therapeutic strategies.
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