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Abstract

For rare diseases, conducting large, randomized trials of new treatments can be infeasible due 

to limited sample size, and it may answer the wrong scientific questions due to heterogeneity 

of treatment effects. Personalized (N-of-1) trials are multi-period crossover studies that aim to 

estimate individual treatment effects, thereby identifying the optimal treatments for individuals. 

This article examines the statistical design issues of evaluating a personalized (N-of-1) treatment 

program in people with amyotrophic lateral sclerosis (ALS). We propose an evaluation framework 

based on an analytical model for longitudinal data observed in a personalized trial. Under this 

framework, we address two design parameters: length of experimentation in each trial and 

number of trials needed. For the former, we consider patient-centric design criteria that aim to 

maximize the benefits of enrolled patients. Using theoretical investigation and numerical studies, 

we demonstrate that, from a patient’s perspective, the duration of an experimentation period 

should be no longer than one-third of the entire follow-up period of the trial. For the latter, 

we provide analytical formulae to calculate the power for testing quality improvement due to 

personalized trials in a randomized evaluation program and hence determine the required number 

of trials needed for the program. We apply our theoretical results to design an evaluation program 

for ALS treatments informed by pilot data and show that the length of experimentation has a small 

impact on power relative to other factors such as the degree of heterogeneity of treatment effects.
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1. Introduction

When managing chronic diseases and conditions, patients commonly try different treatments 

over time before finding the right treatments. The practice of N-of-1 trials operationalizes 

this type of patient-centered experimentation by randomizing treatments to single patients in 

multiple crossover periods, often in a balanced fashion. N-of-1 trials can be used to identify 

the optimal personalized treatment for single patients in situations involving evidence for 

heterogeneity of treatment effects (HTE) or the lack of a cure (Davidson et al. 2021). 

As such, these trials are sometimes called single-patient trials or personalized trials. First 

introduced by (Hogben and Sim 1953), N-of-1 trials have recently been applied to treat rare 

diseases (Roustit et al. 2018), as well as common chronic conditions such as hypertension 

(Kronish et al. 2019)(Samuel et al. 2019). The use of personalized (N-of-1) trials in treating 

rare diseases is particularly appealing because demonstrating comparative effectiveness of 

treatments at the population level via parallel-group randomized trials is often infeasible.

In this article, we consider personalized (N-of-1) trials of treatments for people with 

amyotrophic lateral sclerosis (ALS). ALS is a rare neurodegenerative disease that affects 

motor neurons in the brain and spinal cord. Despite the fact that two modestly effective 

disease-modifying medications have been approved for the treatment of ALS (Edaravone 

[MCI-186] ALS 19 Study Group 2017), the disease has no cure, and thus, symptomatic 

treatments remain an important strategy to improve the quality of life in people with ALS 

(Mitsumoto, Brooks, and Silani 2014). In particular, muscle cramps are disabling symptoms 

affecting over 90% of ALS patients, with demonstrated between-patient variability and 

yet stable manifestation of symptoms in a patient (Caress et al. 2016). Several treatments 

targeting muscle cramps have been evaluated and have shown mixed results, suggesting 

the presence of HTE or inadequate statistical power for definitive conclusions (Baldinger, 

Katzberg, and Weber 2012). Furthermore, ALS itself has been considered markedly 

heterogeneous in its pathogeneses, disease manifestations, and disease progression (Al-

Chalabi and Hardiman 2013)(van den Berg et al. 2019). These are the clinical situations 

in which personalized (N-of-1) trials can help patients identify the best treatments for 

themselves (n.d.a).

Despite renewed interest in N-of-1 trials and numerous recent applications, the literature 

has offered little discussion on the evaluation of the usefulness of N-of-1 trials. As N-of-1 

trials typically require active physician involvement, intense monitoring, and frequent data 

collection compared with usual care, these additional costs and resources warrant careful 

evaluation of effectiveness before said trials are used in practice as regular clinical service. 

The primary evaluation question is “Does the practice of N-of-1 trials in clinical care 

improve outcomes on the standard of care?” However, presuming the quality of treatment 

decisions based on N-of-1 trials is higher than what standard of care would prescribe, reports 

of N-of-1 trials often describe only the applications and results of the trials without plans to 

address the evaluation question. An exception is (Kravitz et al. 2018) who compare N-of-1 

intervention against the usual care for patients with musculoskeletal pain in a randomized 

fashion using data collected after experimentation ends and find no evidence of superior 

outcomes among participants undergoing N-of-1 trials. However, when planning the study, 

the authors had not considered the underlying model that accounts for variability and 
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correlation in the longitudinal observations and the assumptions on the effect size, which 

would in turn drive the appropriate sample size of an evaluation program for N-of-1 trials. 

A design issue related to sample size determination is the duration of experimentation in N-

of-1 trials. In this article, we propose a framework to evaluate the quality and effectiveness 

of N-of-1 trials and develop specific guidance to address these design issues. We will 

introduce the evaluation framework in Section 2 and define the basic analytical model for 

analyzing N-of-1 trials in Section 3. The main findings on the experimentation duration 

and sample size are derived and described in Section 4 and applied to the ALS treatment 

program in Section 5. The article ends with a discussion in Section 6. All technical details 

are provided in the Appendices.

2. An Evaluation Framework for Personalized (N-of-1) Trials

2.1. The Anatomy of a Personalized (N-of-1) Trial

We consider an evaluation program comparing the effectiveness of personalized (N-of-1) 

trials in treating muscle cramps in people with ALS relative to the institutional standard 

of care. Under the program, people with ALS will be randomized to receive personalized 

(N-of-1) trials that compare two standard drugs prescribed for muscle cramps, mexiletine 

and baclofen. In each trial, a patient will be given the two drugs sequentially over T = 18
two-week treatment periods in two phases. The first phase consists of m treatment periods 

(with m < T ) when the two drugs are randomized in a multiple crossover fashion. This phase 

shall be referred to as the experimentation phase. In the remaining T − m treatment periods, 

the patient will continue with a drug treatment selected based on data in the experimentation 

phase. This phase shall be referred to as the validation phase (Figure 1).

During the treatment periods, the Columbia Muscle Cramp Scale (MCS) will be collected 

weekly to result in two MCS measurements for each period: one at the end of week 1 

and one at the end of week 2. The MCS is a validated, composite score summarizing the 

frequency, severity, and clinical relevance of cramps in people with ALS (Mitsumoto et 

al. 2019). While the study does not include washout periods between treatments, only the 

measurement at the end of each two-week period will be used in the primary analysis in 

order to avoid carryover effects of the drugs.

Sandwiched between the two treatment phases is a feedback period where the MCS data 

in the experimentation phase are reviewed with the treating physician and the patient. The 

feedback period enables data-driven treatment decisions by providing the stakeholders with 

data visualization as well as numerical comparison (Davidson et al. 2021).

2.2. Standard of Care

In this article, we focus on a randomized controlled evaluation program where patients are 

randomized between an N-of-1 trial and standard of care (SOC). As depicted in Figure 1, a 

patient under SOC will be given either mexiletine or baclofen for 36 weeks, corresponding 

to the 18 two-week treatment periods in the N-of-1 trials, and will have the same follow-up 

schedule as the N-of-1 trial patients. Treatments in the ‘experimentation phase’ will be 

determined by the treating physicians. The ‘feedback period’ in the SOC arm may be viewed 
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as a sham intervention and be conducted as a regular clinic visit before the patient continues 

into the ‘validation phase’ with the same drug in the remaining T − m treatment periods. By 

the virtue of randomization, MCS collected in the validation phase under SOC will serve 

as the control data and allow for an unbiased comparison with the validation phase in the 

N-of-1 trial patients.

Let p0 denote the probability that mexiletine will be prescribed under SOC and p1 the 

probability baclofen will be prescribed such that p0 + p1 = 1. The special case p0 = 1 and 

p1 = 0 corresponds to a clinical scenario where mexiletine is considered the standard 

treatment. Generally, the program probability parameters p0, p1 are somewhere between 0 

and 1 when no clear best treatment exists. A program equipoise may be defined as when the 

treating physicians will give either of the drugs with equal likelihood, that is, p0 = p1 = 0.5. 

These program parameters apparently affect the quality of treatment under standard of care, 

and hence the advantage of N-of-1 trials over standard of care. At the end of the evaluation 

program, these parameters can be estimated using the control data.

2.3. Design Parameters

While the study duration (or the number of treatment periods T ) is determined based on 

feasibility and how long a patient can be followed in the evaluation program, an N-of-1 trial 

under the evaluation framework is defined by the length m of the experimentation phase, 

and hence the length T − m of the validation phase. Intuitively, the quality of the treatment 

decision by an N-of-1 trial improves with a larger m as more data will be available during 

the feedback period. On the other hand, a long experimentation phase may place excessive 

burden on patients without benefitting them and imply a short validation phase for a given 

T . Rather than maximize accuracy, the experimentation length m will respond to the question 

“How much experimentation is needed for an N-of-1 trial to be beneficial to an individual?”

A second design parameter is the specification of an analytical plan used to guide 

treatment selection during the feedback period. Principled statistical or data science methods 

should be employed to ensure the analysis is rigorous, while a prespecified plan entails 

preprogrammed algorithms that in turn facilitate quick feedback to the stakeholders.

Finally, as in conventional randomized controlled trials, the number of patients randomized 

in an evaluation program will need to be determined to ensure adequate statistical power for 

the primary evaluation question on whether N-of-1 trials improve outcomes.

To summarize, the design parameters that need to be prespecified at the planning stage 

of an evaluation program are the primary analysis plan used in the feedback period, the 

experimentation length (m) for each individual, and the number of individuals required. 

These will be discussed in next two sections.

3. An Analytical Model for N-of-1 Trials

Let yit be the outcome of patient i in treatment period t and xit ∈ − 1, 1  be the 

corresponding treatment for i = 1, …, n and t = 1, …, T . Without loss of generality, we assume 
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a large value of the outcome yit is desirable. To put the notation in the context of our study, 

we let yit denote the negative value of MCS at the end of each two-week treatment period. 

For the treatments, baclofen is coded as xit = 1 and mexiletine as xit = − 1. In this article, we 

focus on balanced sequences between baclofen and mexiletine in the experimentation phase, 

that is, assuming

∑
t = 1

m
xit = 0 .

(3.1)

Consider the outcome model

yit = αi + βixit + ϵit

(3.2)

where βi is the patient-specific treatment effect and the noise ϵits are mean zero normal 

with cov ϵit, ϵis = ρstσ2 and ρtt = 1. To reflect heterogeneous symptoms and HTE among the 

patients, we postulate αi ∼ N μA, σA
2  and βi ∼ N μB, σB

2 . The mean μB indicates the average 

treatment effect and the variance σB
2 indicates the extent of HTE in the disease population. 

While μB = 0 represents the null scenarios where there is no average treatment effects, a large 

value of σB
2 indicates the needs for personalizing treatments.

Under model (3.2), the optimal treatment for patient i can be expressed as 2I βi > 0 − 1, 

where I ⋅  is an indicator function. During the feedback period, we may present to patient i
an estimated treatment effect βi based on the experimentation phase data xit, yit : t = 1, …, m
along with the estimated optimal personalized treatment for the patient:

xi
* = 2I βi > 0 − 1 .

(3.3)

Subsequently, in the event of perfect adherence to analysis result, the patient will receive the 

estimated optimal treatment (3.3) in the validation phase, that is, xit ≡ xi
* for t = m + 1, …, T .

Some practical notes on the choice of βi are in order. For the purposes of providing quick 

feedback, a broad range of estimators can be considered. The theoretical results derived 

in the following sections will hold for any estimators that are approximately normally 

distributed with mean βi and some finite variance τi
2. A simple example is the the patient-

specific least squares estimator βi
LS = ∑t = 1

m xityit/m for patient i. The least squares estimator 

is unbiased for the patient-specific treatment effect βi regardless of the variance-covariance 

structure of ϵ  with variance
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τi
2 = var βi

LS αi, βi = λiσ2/m where λi = 1 + ∑
s ≠ t

xisxitρst/m .

(3.4)

Note that the conditional variance (3.4) is free of the patient-specific parameters αi and 

βi. For the purposes of planning an N-of-1 trial, we will focus on the use of least 

squares. However, in the actual analysis, if additional information is available to inform 

the appropriate correlation structure of the data, likelihood-based estimation or weighted 

least squares accounting for such structure may improve efficiency.

4. How Much Experimentation Is Enough?

4.1. Patient-Centric Criteria and Length of Experimentation Phase

In this subsection, we discuss the choice of the experimentation length m of an N-of-1 trial 

with respect to two different patient-centric criteria, both of which aim to maximize the 

benefits to patients on N-of-1 trials.

The first criterion is defined as the expected number of periods where a patient receives the 

optimal treatment. Mathematically, this criterion is denoted as E zi , where zi is the number 

of periods in which patient i receives the optimal treatment over the T  treatment periods.

Proposition 1.—Suppose βi ∼ N βi, τi
2  under a balanced experimentation phase (3.1). Then 

for 0 < m ≤ T ,

E zi = m
2 + T − m Pr W ≤ |μB + σBU |

τi

where W , U are independent standard normal variables. Furthermore, if μB = 0, then

E zi = m
2 + T − m G σB/τi

(4.1)

where G is the cumulative distribution function of W / |U |, which is a pivotal distribution.

The second patient-centric criterion is defined as the expected average outcome of a patient 

during an N-of-1 trial. This criterion is denoted as E ȳi , where ȳi = ∑t = 1
T yit/T  is the average 

outcome of the patient in all T  treatment periods.

Proposition 2.—Under the same condition as in Proposition 1, for 0 < m ≤ T ,

E ȳi = μA + 1 − m
T μB 2Φ μB

σB
2 + τi

2 − 1 + 2σB
2

σB
2 + τi

2 ϕ μB

σB
2 + τi

2
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where Φ and ϕ respectively denote the standard normal distribution function and density.

We can derive a few practical principles from Proposition 1 and Proposition 2. First, 

conducting an N-of-1 trial with an experimentation length m < T  is generally beneficial 

for the patient compared to experimentation in all T  period. Specifically, we can derive from 

Proposition 1 that the patient will receive at least half of the time, that is, E zi ≥ T /2 for 

all m, and attain the minimum when m = T . Analogously from Proposition 2, the expected 

average outcome will be no smaller than the population average, that is, E ȳi ≥ μA for all m, 

and equality holds when m = T .

Second, we can derive from the propositions that E zi  and E ȳi  are increasing in σB under 

the null μB = 0. In other words, an N-of-1 trial becomes more beneficial to the patient when 

there is a larger variability in the treatment effects across patients.

Third, and importantly, considering the null case where μB = 0 and when the least squares 

βi
LS

 is used to make inference based on the experimentation phase data is instructive. Under 

these conditions, we can derive from Proposition 2 that the criterion E ȳi  is maximized at

m* = 2T
9 + 8ξiT + 3

(4.2)

where ξi = σB
2

λiσ2  and λi is defined in (3.4). While Equation (4.2) gives the optimal length m* as 

a function σB, σ, and λi, it provides some general guidance:

Main Result 1.—The optimal experimentation length m* is less than one-third of the total 

N-of-1 trial duration from a patient’s perspective, that is, m* ≲ T /3.

4.2. Sample Size

In this subsection, we discuss how much experimentation is adequate in terms of the sample 

size enrolled to the evaluation program. We first define the quality of an N-of-1 trial as the 

expected health outcome under the estimated optimal treatment xi
* (3.3). Assuming perfect 

adherence to the analysis results in the feedback period, the quality of an N-of-1 trial can 

be defined as E yi
*  where yi

* = ∑t = m + 1
T yit/ T − m  and the expectation is taken with respect 

to the distributions of αi, βi, xi
*, and ϵit . Analogously, we can define the quality of standard 

of care as E yi′  where yi′ is the average outcome observed in the validation phase for a 

patient under SOC and the expectation is taken under the assumption that the treatment in 

the experimentation phase continues to the validation phase. The primary objective of the 

evaluation program is to compare the quality of an N-of-1 trial and the quality of SOC. This 

can be formulated into a hypothesis testing problem with

H0:Δ: = E yi
* − E yi′ ≤ 0 versus H1:Δ > 0

(4.3)
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where Δ measures the degree of quality improvement due to N-of-1 trials defined over the 

patient population. The hypotheses (4.3) can in turn be tested using the regular Z-statistic:

Z = n ȳ* − ȳ′
v* + v′

(4.4)

where ȳ* and v* are respectively the sample mean and the sample variance of yi
*  in the 

n patients randomized to an N-of-1 trial and ȳ′ and v′ are the sample mean and sample 

variance of yi′  in the n patients randomized to SOC. Using standard arguments gives the 

power of the Z-test

Pr Z > cα Δ ≈ Φ nΔ
var yi

* + var yi′
− cα

(4.5)

where cα is the upper αth percentile of standard normal. In Appendix C, we derive the 

expressions for Δ, var yi
* , and var yi′  in (4.5) under the condition that τi

2 ≡ τ2 for all 

i. This condition is met when the N-of-1 trial patients receive the same sequence xit in 

the experimentation phase or when ϵit  has a specific variance-covariance structure. For 

example, under a compound symmetry, that is, ρst ≡ ρ, we can show λi ≡ λ = 1 − ρ, that is, 

having τi
2 ≡ 1 − ρ σ2/m for all i. Specifically, under the assumption that the SOC treatment xi′

for a given patient is independent of the patient-specific treatment effect βi, we have

Δ = 2μB Φ μB

σB
2 + τi

2 − p1 + 2σB
2

σB
2 + τi

2 ϕ μB

σB
2 + τi

2 ,

(4.6)

var yi
* = σA

2 + σB
2 + μB

2 − Δ + μB 2p1 − 1
2

+ σ2
T − m ,

(4.7)

and

var yi′ = σA
2 + σB

2 + μB
2 − μB

2 2p1 − 1 2 + σ2
T − m .

(4.8)

The above expressions account for population-level information about the treatments 

through the program parameter p1. For example, if emerging evidence in the literature 

suggests slight advantage of xi = 1 over xi = − 1, we may assume the physicians in the 

program will select xi′ = 1 with p1 > 0.5. In Appendix C, we provide expressions analogous 
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to (4.6)–(4.8) for the situations where the physician may prescribe treatment xi′ with patient-

specific knowledge in addition to the population-level parameter p1. However, we note that 

using expressions (4.6)–(4.8) may adequately reflect the standard of care where treatments 

are chosen based on population-level information rather than patient-specific knowledge. 

Furthermore, under the independence assumption of xi′ and βi, the power expression depends 

only on model parameters σA, σB, μB, σ, τi  for which information may be available to provide 

preliminary estimates and the known design parameters p1, m, n, T . Finally, under the null 

case μB = 0:

Main Result 2.—All else being equal, the power to demonstrate quality improvement due 

to N-of-1 trials (vs SOC) increases as heterogeneity of treatment effects σB
2 increases.

5. Numerical Illustrations: Application to ALS Patients

5.1. Optimal Length of Experimentation

We use the MCS natural history data in (Mitsumoto et al. 2019) to inform the design 

of the evaluation program for people with ALS. Specifically, we fitted a random effects 

model to the data and obtained an estimate of σA = 4.8 and σ = 1.6. For simplicity in 

illustration, we further assume that the within-subject noise is conditionally independent 

given the population-level parameters. Figure 2 plots the patient-centric criteria against 

different values of μB, σB, and m for T = 18. While the two criteria adopt different metrics, 

they are maximized when m is relatively small. In Figure 2 and in all μB, σB  that we have 

considered (not shown here), the optimal values of m range from 2 to 6 for both criteria. This 

is consistent with what Main Result 1 implies: m* ≲ T /3 = 6.

5.2. Sample Size and Effect Size

Main Result 2 implies that σB
2 may be viewed as an effect size in power calculation, while the 

power also depends on other model parameters and design parameters. As in conventional 

practice, the choice of an effect size should be based on a clinically meaningful difference, 

whereas the other model parameters (e.g., σA, σ, etc) may be based on pilot data if available. 

Figure 3 plots the power against n, m  for three different effect sizes σB for a one-sided test at 

5% significance. Under each effect size, we identify the smallest n that achieves 80% power 

for any m and obtain that the required n, m  are 210, 12 , 60, 6 , and 34, 4  respectively for 

σB = 1.6, 3.2, and 4.8. We note that under a small effect size σB = 1.6, the required m = 12 is 

greater than T /3. In light of Main Result 1, we may instead adopt n, m = 210, 6  in order to 

maximize the benefits of the N-of-1 trials to the patients. The power of this modified design 

is 78%, which is slightly lower than the target 80%. Generally, we observe from Figure 3 

that the impact of m on power is relatively small compared to that of n and σB except when 

the effect size is small (σB = 1.6).

To determine if a specific value of σB corresponds to a clinically meaningful effect size, 

relating σB to Δ using (4.6) may be useful, as Δ lives on the same scale as the measurement 

outcomes. In our application, a 3- to 4-point change on the MCS will represent a clinical 

meaningful shift. Based on the pilot data and assumptions, the effect size σB = 1.6, 3.2, 4.8
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translate to a degree of quality improvement Δ = 1.2, 2.5, 3.8 respectively. Thus, we set the 

sample size for this evaluation program at n = 34 with four treatment periods (two on 

mexiletine and two on baclofen) based on the results for σB = 4.8. Generally, the minimally 

clinically important heterogeneity (MCIH σB, min) may be determined relating to the minimally 

clinically important change (MCID, Δmin) using (4.6).

5.3. Power for Comparing to Fully Informed SOC

The calculations in the previous subsection assume the null case μB = 0 under which the 

power (4.5) does not depend on the parameter p1. Under a non-null case, the value of 

p1 reflects how informed the practice is about the population-level treatment effect. For 

example, if evidence in the literature suggests μB > 0, an informed practice will prescribe 

xi′ = 1 with p1 > 0.5. Specifically, standard of care that is fully informed by the literature may 

correspond to p1 = Pr βi > 0 = Φ μB/σB .

Table 1 shows that as the average treatment effect μB grows larger and a fully informed 

SOC practice prescribes xi′ = 1 more often (i.e., larger p1), the power to demonstrate quality 

improvement in (4.3) becomes smaller. On the one hand, this suggests that if there is 

overwhelming evidence favoring xi′ = 1 over xi′ = − 1 in the literature, conducting N-of-1 

trials will have diminished effect provided that the standard of care is fully informed. 

On the other hand, even with a large average treatment effect μB = 2.4 = 0.5σB, quality 

improvement due to N-of-1 trials Δ > 3, which is still clinically meaningful and the power is 

still reasonable high (68%) in this sensitivity analysis. This suggests that evaluating N-of-1 

trials is a worthwhile endeavor unless there is overwhelming evidence of a large average 

treatment effect.

The numerical results in this article, and power and the patient-centric criteria in general, can 

be computed using tools are available at: https://roadmap2health.io/hdsr/n1power/.

6. Discussion

N-of-1 trials have been increasingly used as a design tool to bridge practice and science 

in rare diseases (Müller et al. 2021)(n.d.b). However, the literature is missing concrete 

guidelines on N-of-1 designs as to how much experimentation is appropriate. A fundamental 

issue is the articulation of a framework that will facilitate the evaluation of the usefulness 

of N-of-1 trials. In this article, we introduce an evaluation framework and outline the basic 

elements in an evaluation program for N-of-1 trials—namely, an experimentation phase, 

a feedback period, and a validation phase. In the literature, the reporting of N-of-1 trials 

mostly focuses only on the results of the experimentation phase, where patients explore the 

different treatments sequentially under a rigorous clinical protocol such as randomization, 

blinding, and scheduled follow-up. The feedback period and the validation phase are the 

critical elements in the planning and the conduct of N-of-1 trials but are, unfortunately, often 

omitted in the description of the design and the analytical plan.

Specifically, the length of the validation phase, relative to that of the experimentation phase, 

should be given careful consideration. We have demonstrated theoretically and numerically 
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that the optimal length of experimentation from the patient’s perspective should be no 

greater than one-third of the entire study duration. This implies a relatively long validation 

phase, suggesting the importance of reproducing the quality of the decisions due to N-of-1 

trials with additional follow-up. Our theoretical results also provide guidance on how 

many patients are needed in order to adequately power for testing quality improvement. 

Importantly, the relative length of experimentation and validation has minimal impact on the 

power. In other words, little conflict exists between the goal of maximizing patient benefits 

and maximizing power.

The feedback period facilitates evidence-based treatment decisions using data measured in 

the experimentation phase. Summarizing the relative benefits of the treatments via a single 

numerical statistic is a pragmatic way to present such evidence, because the information can 

be objectively presented and quickly digested by stakeholders. We have developed design 

calculus based on the model-based least squares estimation, which is quick to compute 

and produces unbiased estimates of patient-specific treatment effects under a broad range 

of scenarios. Other more sophisticated model-based methods may be used to deal with 

the more complex situations. For example, when we observe high volume of outcome 

measures via wearable devices, we could extend model (3.2) to an autoregressive model 

with multiple observations per treatment period (Kronish et al. 2019). In practice, treatment 

decisions are likely determined based on the totality of evidence. For example, in situations 

where a treatment that apparently benefits a patient may have side effects, a possibly less 

effective treatment may be preferred if it is more easily tolerated. Considerations of multiple 

outcomes in the analysis during the feedback period will likely increase adherence and 

will warrant further empirical, domain-specific research. Overall, as the feedback period 

potentially changes the treatment decisions—and hence, the outcomes—in the validation 

phase, it can be viewed as an integral part of the intervention component. We may 

thus experiment in a randomized fashion different elements in the feedback period for 

different individuals: we may consider presenting different endpoints (e.g., muscle cramp 

or safety), using a single endpoint, a composite outcome, or multivariate endpoints, using 

different types of analyses (e.g., intent-to-treat vs per-protocol), and asking patients for their 

satisfaction and preference (Cheung et al. 2020).

Some considerations, assumptions, and limitations for power calculation in conventional 

randomized controlled trials also apply for N-of-1 trials. First, power calculation involves 

the inputs of a number of nuisance model parameters (e.g., σA, σ) as well as the effect size 

(σB
2). While the effect size σB

2 should be determined based on clinical relevance shift, the other 

parameters ideally can be based on estimates from pilot data. However, in situations where 

robust pilot data are not available, a potential useful strategy is to leverage the concepts of 

adaptive designs (U.S. Food & Drug Administration 2019) whereby the model parameters 

are updated using interim data in the evaluation program and the updates in turn inform a 

reassessment of the degree of quality improvement and the sample size required.

Second, our derivations assume that patients in both arms comply with their treatments 

in the following sense: patients in the N-of-1 trials adhere to the estimated optimal 

treatments based on the experimentation phase data, and patients in the SOC continue 

with the same treatment as in the experimentation phase. If there is prior information about 
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noncompliance rate, power expressions can be derived accordingly under the proposed 

framework. However, from the viewpoint that the feedback period is part of the N-of-1 trial 

intervention, it should be designed to maximize adherence by choosing the outcomes and 

analyses that most reflect patient preference as discussed in the previous paragraph. Third, 

approaches to deal with missing data should be prespecified and implemented during the 

feedback period. An advantage of using model-based estimation is that the model can also 

serve as the basis for multiple imputations. That being said, no statistical approach can 

replace a well-conducted trial that is characterized by good compliance to treatment and 

minimal missing data.
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Appendices

Appendix A. Theoretical Results Concerning E zi

A.1. Proof of Proposition 1.

First, consider the case βi > 0 for patient i so the optimal treatment is xit = 1. Then, the 

number of periods the patient is on the optimal treatment equals

zi = m
2 + T − m I xi

* = 1 = m
2 + T − m I βi > 0 .

(A.1)

The first term in the right-hand-side of (A.1) is the number of optimal treatment periods 

received in the experimental phase, and the second term is the number in the validation 

phase. Since βi ∼ N βi, τi
2 , we have

E I βi > 0 αi, βi = Pr βi > 0 αi, βi = Φ βi/τi ,

and therefore,

E zi αi, βi = m
2 + T − m Φ βi/τi when βi > 0 .

(A.2)

Next, under the case βi < 0, we can analogously derive that
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E zi αi, βi = m
2 + T − m Φ −βi/τi when βi < 0 .

(A.3)

Combining (A.2) and (A.3) gives

E zi αi, βi = E zi βi = m
2 + T − m Φ |βi | /τi ,

(A.4)

which is free of αi. Since E zi = E E zi βi , the expectations of both sides in (A.4) are to be 

taken with respect to the distribution of βi ∼ N μB, σB
2  to complete the proof. By change of 

variable, we have

E Φ |βi | /τi = ∫
−∞

∞∫
−∞

|b|
τi 1

σB
ϕ w ϕ b − μB

σB
dwdb

= ∫
−∞

∞∫
−∞

|μB + σBu|
τi ϕ w ϕ u dwdu

= Pr W ≤ |μB + σBU |
τi

.

(A.5)

The proof is completed by substituting (A.5) into (A.4).

Appendix B. Theoretical Results Concerning E ȳi

B.1. Lemma 1

Derivations of E ȳi  will be facilitated by first noting the following lemma:

Lemma 1.

Let V ∼ N μV , σV
2 . Then,

E V Φ V = μV Φ μV

σV
2 + 1

+ σV
2

σV
2 + 1

ϕ μV

σV
2 + 1

where Φ and ϕ respectively denote the standard normal distribution function and density 
function.

Proof of Lemma 1:

Using definition of expectation, we derive
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E V Φ V = ∫
−∞

∞∫
−∞

v
vϕ u 1

σV
ϕ v − μV

σV
dudv

= ∫
−∞

∞∫
−∞

μV + σV w

μV + σV w ϕ u ϕ w dudw

= μV Pr U < μV + σV W + σV∫
−∞

∞
wΦ μV + σV w ϕ w dw

= μV Φ μV

1 + σV
2 + σV

2∫
−∞

∞
ϕ w ϕ μV + σV w dw

(B.1)

where U, W  are independent standard normal variables. Thus, U − σV W ∼ N 0, 1 + σV
2 , and 

the first term in (B.1) can be evaluated as

μV Pr U < μV + σV W = μV Φ μV

1 + σV
2 .

(B.2)

Next, the single integral in the second term in (B.2) can be evaluated using integration by 

parts

∫
−∞

∞
wΦ μV + σV w ϕ w dw = σV∫

−∞

∞
ϕ μV + σV w ϕ w dw

= σV
1

σV
2 + 1

ϕ μV

σV
2 + 1

.

(B.3)

Equation (B.3) can be derived by straightforward derivation. The proof of Lemma 1 is thus 

completed by plugging (B.2) and (B.3) into (B.1).

B.2. Proof of Proposition 2

Recall that ȳi denotes the average outcome of patient i in all T  treatment periods in an N-of-1 

trial. Hence,

E ȳi = 1
T ∑

t = 1

T
E αi + βixit + ϵit = μA + 1

T ∑
t = 1

T
E βixit

= μA + 1 − m
T E βixi

* .

(B.4)

Equation (B.4) holds as because of balanced design ∑i = 1
m xit = 0. Next, since βi ∼ N βi, τi

2 , 

we have
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E βixi
* = E βiE xi

* βi = E βiE 2I βi > 0 − 1|βi = E 2βiΦ
βi
τi

− βi

= 2E βiΦ
mβi
σ − μB

= 2τiE
βi
τi

Φ βi
τi

− μB

= μB 2Φ μB

σB
2 + τi

2 − 1 + 2σB
2

σB
2 + τi

2 ϕ μB

σB
2 + τi

2 .

(B.5)

Expression (B.5) is obtained by applying Lemma 1 with V = βi/τi. Putting (B.5) into (B.4) 

gives

E ȳi = μA + 1 − m
T μB 2Φ μB

σB
2 + τi

2 − 1 + 2σB
2

σB
2 + τi

2 ϕ μB

σB
2 + τi

2

(B.6)

thus completing the proof of Proposition 2.

B.3. Derivation of optimal experimentation length m* and Main Result 1

For least squares βi
LS

, the variance τi
2 = λiσ2/m, where λi = 1 + ∑s ≠ txisxitρst/m. Further 

supposing μB = 0 simplifies (B.6) to

E ȳi = μA + 1 − m
T

2σB
2

σB
2 + λiσ2/m

ϕ 0 .

Hence, maximizing E ȳi  as a function of m is equivalent to maximizing the function

ℎ m = 1 − m
T

1
ξi + 1/m

where ξi = σB
2 / λiσ2  is free of m. Using standard calculus arguments, we can show that the 

maximizer m* of ℎ m  solves the equation 2ξim*2 + 3m* − T = 0 or equivalently,

m* = 9 + 8ξiT − 3
4ξi

.

(B.7)

The derivation of m* is completed by multiplying 9 + 8ξi + 3 in the numerator and the 

denominator of (B.7), which gives

m* = 2T
9 + 8ξiT + 3 .
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Now, since ξi ≥ 0, we have m* ≤ 2T / 9 + 3 = T /3. As a practical note, due to discreteness in 

m, the optimal m may be a result of rounding up m*. Hence a slightly less sharp inequality 

would be m* ≲ T /3 < T /3 + 1.

Appendix C. Theoretical Results Concerning Power

In this section, we derive the expressions involved in the power of the Z-test—namely, Δ, var 

yi
* , and var yi′ .

Recall that p0 and p1 respectively denote the probabilities that the treating physicians will 

prescribe mexiletine xit = − 1  and baclofen xit = 1  under the treatment program. Based on 

model (3.2), we can express the quality of an N-of-1 trial as:

E yi
* = 1

T − m ∑
t = m + 1

T
E αi + βixit + ϵit = 1

T − m ∑
t = m + 1

T
E αi + βixi

* + ϵit = μA + E βixi
* .

and analogously E yi′ = μA + E βixi′  where xi′ is the treatment given to patient i in SOC. 

Hence Δ = E βixi
* − E βixi′ . Under the independence assumption of xi′ and βi, we further 

obtain E yi′ = μA + 2p1 − 1 μB, and

Δ = E βixi
* − μB 2p1 − 1

= μB 2Φ μB

σB
2 + τi

2 − 1 + 2σB
2

σB
2 + τi

2 ϕ μB

σB
2 + τi

2 − μB 2p1 − 1

= 2μB Φ μB

σB
2 + τi

2 − p1 + 2σB
2

σB
2 + τi

2 ϕ μB

σB
2 + τi

2

(C.1)

where E βixi
*  is given in (B.5).

Next,

var yi
* = var αi + βixi

* + ∑
t = m + 1

T
ϵit/ T − m

= σA
2 + var βixi

* + σ2
T − m = σA

2 + σB
2 + μB

2 − E βixi
*

2
+ σ2

T − m

= σA
2 + σB

2 + μB
2 − Δ + μB 2p1 − 1

2
+ σ2

T − m . : = σ*2

The last equality is a result of (C.1). Similarly, we can show

var yi′ = σA
2 + σB

2 + μB
2 − μB

2 Exi′ 2 + σ2
T − m

= σA
2 + σB

2 + μB
2 − μB

2 2p1 − 1 2 + σ2
T − m .
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Finally, under the null μB = 0, we have

Δ
var yi

* + var yi′
= 2σB

2ϕ 0

σB
2 + τi

2 2σA
2 + 2σB

2 −
4σB

4ϕ2 0
σB

2 + τi
2 + 2σ2/ T − m

.

Main Result 2 is proved by dividing σB
2 on the numerator and the denominator in the above 

expression, as a result of which the numerator will be a constant and the denominator will be 

a decreasing function σB
2.

For the situations where the physicians have patient-specific knowledge to inform treatments 

under the SOC, we may postulate that

xi′ =
2I βi > 0 − 1 with probability θC

1 with probability 1 − θC p1

−1 with probability 1 − θC 1 − p1 .

(C.2)

The parameter θC indicates how perfect the knowledge the physicians have about the 

specific best treatments for their patients, with θC = 1 indicating perfect knowledge and 

θC = 0 indicating no additional knowledge beyond the population-level information p1. Under 

the SOC treatment system (C.2), we have

E βixi′ = E βiE xi′ βi = 2θCE βiI βi > 0 − θCμB + 1 − θC μB 2p1 − 1

(C.3)

where

E βiI βi > 0 = σBϕ μB/σB + μBΦ μB/σB .

(C.4)

Using (B.5), (C.3), and (C.4), after some algebra, we have

Δ = E βixi
* − E βixi′

= 2 1 − θC μB Φ μB

σB
2 + τi

2 − p1 + 2 1 − θC σB
2

σB
2 + τi

2 ϕ μB

σB
2 + τi

2 +

2θCμB Φ μB

σB
2 + τi

2 − Φ μB
σB

+ 2θC
σB

2

σB
2 + τi

2 ϕ μB

σB
2 + τi

2 − σBϕ μB
σB

It is instructive to consider the null case μB = 0, under which

Δ = 2σB
2ϕ 0

σB
2 + τi

2 − 2θCσBϕ 0 .
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Hence, quality improvement Δ due to N-of-1 trials diminishes as the standard of care (SOC) 

patient-specific knowledge θC increases. Also under this special case, Δ > 0 if and only if 

θC
2 < σB

2 / σB
2 + τi

2

Similarly, we can obtain var yi
*  and var yi′  under the SOC treatment system (C.2) by 

plugging (B.5) and (C.3) respectively in the followings:

var yi
* = σA

2 + σB
2 + μB

2 − E βixi
* 2 + σ2

T − m

and

var yi′ = σA
2 + σB

2 + μB
2 − E βixi′ 2 + σ2

T − m

Then under the null μB = 0, we have

Δ
var yi

* + var yi′
=

2σB
2ϕ 0 − 2θCσB σB

2 + τi
2ϕ 0

σB
2 + τi

2 2σA
2 + 2σB

2 −
4σB

4ϕ2 0
σB

2 + τi
2 − 4θC

2σB
2ϕ2 0 + 2σ2/ T − m

.

By dividing σB
2 on the numerator and the denominator in the above expression, we can 

see that the numerator is an increasing function in σB
2 and the denominator is a decreasing 

function in σB
2. Hence, Main Result 2 holds under this general case.
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Figure 1. 
Schema of an evaluation program for personalized (N-of-1) trials comparing treatment A 

and treatment B. Under the evaluation program, patients are randomized to either an N-of-1 

trial or the standard of care.
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Figure 2. 
Patient-centric criteria vs experimentation length m under different values of μB and σB. 

Left: Expected number of optimal treatment periods vs m. Right: Expected average outcome 

(negative of MCS) of patient vs m.
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Figure 3. 
Power vs (n, m) for different values of σB with μB = 0, σA = 4.8, σ = 1.6, ρ = 0, and T = 18.
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Table 1.

Quality improvement Δ and power for comparing to a fully informed SOC (standard of care) with p1 = Φ μB/σB

with n = 34,, m = 4, T = 18, σA = 4.8, σB = 4.8, σ = 1.6 and ρ = 0.

μB p1 = Φ μB/σB Δ Power

0 0.50 3.8 80%

1.2 0.60 3.7 77%

1.6 0.63 3.6 75%

2.4 0.69 3.3 68%

4.8 0.84 2.3 39%
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