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Abstract

The advent of spatial transcriptomics technologies has heralded a renaissance in research to 

advance our understanding of the spatial cellular and transcriptional heterogeneity within tissues. 

Spatial transcriptomics allows investigation of the interplay between cells, molecular pathways, 

and the surrounding tissue architecture and can help elucidate developmental trajectories, disease 

pathogenesis, and various niches in the tumor microenvironment. Photoaging is the histological 

and molecular skin damage resulting from chronic/acute sun exposure and is a major risk factor 

for skin cancer. Spatial transcriptomics technologies hold promise for improving the reliability of 

evaluating photoaging and developing new therapeutics. Challenges to current methods include 

limited focus on dermal elastosis variations and reliance on self-reported measures, which can 

introduce subjectivity and inconsistency. Spatial transcriptomics offers an opportunity to assess 

photoaging objectively and reproducibly in studies of carcinogenesis and discern the effectiveness 

of therapies that intervene in photoaging and preventing cancer. Evaluation of distinct histological 

architectures using highly-multiplexed spatial technologies can identify specific cell lineages that 

have been understudied due to their location beyond the depth of UV penetration. However, the 

cost and interpatient variability using state-of-the-art assays such as the 10x Genomics Spatial 

Transcriptomics assays limits the scope and scale of large-scale molecular epidemiologic studies. 

Here, we investigate the inference of spatial transcriptomics information from routine hematoxylin 

and eosin-stained (H&E) tissue slides. We employed the Visium CytAssist spatial transcriptomics 

assay to analyze over 18,000 genes at a 50-micron resolution for four patients from a cohort 

of 261 skin specimens collected adjacent to surgical resection sites for basal cell and squamous 
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cell keratinocyte tumors. The spatial transcriptomics data was co-registered with 40x resolution 

whole slide imaging (WSI) information. We developed machine learning models that achieved a 

macro-averaged median AUC and F1 score of 0.80 and 0.61 and Spearman coefficient of 0.60 

in inferring transcriptomic profiles across the slides, and accurately captured biological pathways 

across various tissue architectures.
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1. Introduction

Spatial transcriptomics is an innovative and rapidly evolving field in biomedical research 

that combines the power of genomics and spatial mapping techniques to gain insights into 

the spatial organization of gene expression within complex tissues, such as the skin. By 

providing a detailed view of gene expression patterns in relation to cellular and tissue 

architecture, spatial transcriptomics has quickly become a valuable tool for biomedical 

research, including dermatological research.

The skin is the largest organ in the body, composed of multiple cell types that each play a 

crucial role in maintaining its structure and function. Though traditional genomic analysis 

techniques, such as bulk-RNA sequencing (RNA-seq), and disaggregated techniques, such 

as single cell RNA sequencing (scRNA-seq), have provided valuable information about 

cellular heterogeneity and disease progression, they lack the ability to assess localized gene 

expression patterns that may relate with cell-cell interactions and architecture to support 

tissue function. Spatial transcriptomics approaches uniquely allow researchers to examine 

gene expression patterns within their anatomical and histological context, enabling a deeper 

understanding of the underlying molecular mechanisms driving skin biology, carcinogenesis, 

and disease progression.

An important potential application of spatial transcriptomics in dermatology is to advance 

the emerging study of skin aging.1 The skin serves as a barrier between the environment and 

the body where it is exposed to near-constant insults, including ultraviolet radiation (UVR), 

mechanical stress, and toxicants.2 These exposures, along with genetic influences, combine 

to induce skin damage, reduced function, and, ultimately, a characteristic loss of elasticity 

of the skin largely reflecting degradation of the collagen matrix.3 More recently, Zou et 

al. created a single-cell transcriptomic atlas of human skin aging using eyelid tissue and 

identified cell-type-specific associations with human skin aging.1 Further characterization of 

cellular changes that incorporate spatial information in skin can inform therapeutic strategies 

and interventions to combat age-related skin alterations and disease.

Currently, spatial transcriptomics technologies at whole transcriptomic-level multiplexing 

are incredibly costly and prone to several sources of variation (e.g., within/between-subject 

variation), limiting broad application. Recently, deep learning models have been proposed 

as a cost-saving alternative to predict spatial gene expression from routine tissue stains.4–6 

For instance, the DeepSpaCE approach includes convolutional neural networks (CNNs) 

Srinivasan et al. Page 3

Pac Symp Biocomput. Author manuscript; available in PMC 2024 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for spatial gene cluster and gene expression prediction in human breast cancer tissue 

sections.4 Another modeling paradigm aimed at predicting spatial gene expression across 

breast and cutaneous tumor data used a mix of transformer and graph neural network-based 

approaches.6 In addition, the performance of several different modeling approaches for 

spatial gene expression prediction in tissue was recently compared using stage-III (pT3) 

colorectal tumors. Though these studies demonstrate the potential to infer spatial expression 

patterns using histomorphological data, several crucial questions remained unanswered, 

including the applicability of these methods to non-cancerous tissue sections, to other 

biological domains (e.g., dermatology), as well as the extent to which prediction modeling 

can preserve salient biological pathways and relationships required for downstream analysis 

on larger cohorts.

In this pilot study, we develop and validate a deep learning method for the prediction of 

spatial gene expression across spatially variable genes in routine H&E-stained skin tissue. 

Predictions can be used to create synthetic multidimensional tissue maps—similar to those 

produced through spatial transcriptomic profiling—for tissues without corresponding spatial 

transcriptomics data. Use of deep learning models promises to reduce the cost and time 

associated with spatial transcriptomics data acquisition for dermatological applications, 

greatly expanding access to the technology and its range of unique insights. Interrogating 

pathways associated with spatially inferred genes can advance our knowledge of skin 

biology, improve diagnostic tools, and pave the way for more personalized treatment 

strategies.

2. Methods and Materials

In this work, we attempt to predict the spatial gene expression of Visium spatial 

transcriptomics spots distributed across 40X magnification H&E slides. To this end, we 

use the following methods:

1. Data collection and annotation:

Acquired H&E whole slide images (WSI), and spatially registered Visium CytAssist assayed 

spatial transcriptomics slides from 4 human cheek skin tissue samples collected from sites 

histologically adjacent to basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) 

during skin cancer removal surgery. These samples were then graded by dermatologists for 

their solar elastosis status (two mild, two severe). Additionally, dermatologists annotated 

regions corresponding to distinct histological entities (e.g., epidermis, eccrine glands, hair 

follicles, sebaceous glands, and vascular/endothelial infrastructure). Instances of actinic 

keratoses were documented from a larger cohort.

2. Preprocessing:

Preprocess gene expression and WSI subarrays to capture spatially variable genes and 

genetically dense regions of tissue.
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3. Model development:

Configure the SWIN-T transformer to perform two distinct modeling tasks, binary 

(dichotomized expression) and continuous gene expression prediction, on the 1000 most 

spatially variable genes.

4. Leave one-patient-out cross-validation:

Evaluation on held-out slides/patients as a measure of external applicability.

5. Recover spatial biology inferences:

Model performance was further measured using: 1) pathway analysis for high performing 

genes, 2) topological consistency between ground truth and predicted expression, and 3) the 

ability to recapitulate genes and pathways associated with distinct histological structures.

Each of these steps will be further detailed in the ensuing sections.

2.1. Data Collection

Four specimens were collected for profiling from a cohort of 261 tissue samples obtained 

in a single site Mohs micrographic surgery (MMS) clinic between March 1st 2022, and 

October 10th 2022. The samples were mostly from the head and neck, and all from 

sites histologically adjacent to either basal cell carcinoma or squamous cell carcinoma, 

as confirmed by histologic analysis of frozen section slides. The tissue was removed as 

part of standard surgical practice as Burow’s triangle flaps for skin grafting/reconstruction. 

Triangles are normally discarded—two triangles were collected per patient, in some cases 

bisected. One triangle underwent formalin fixation while the other triangle was frozen. 

Formalin-fixed specimens were breadloafed, encased in paraffin-embedded tissue blocks, 

and sectioned and stained for hematoxylin and eosin (H&E) using Autostainers for 

subsequent imaging at 40x resolution (0.25 micron/pixel) using Aperio GT450 scanners. 

Tissue slides were transported to the Genomics core, where after tissue decoverslipping, 

the Visium CytAssist device was used to transfer transcriptomic probes from the original 

glass slides to 11mmx11mm capture areas on Visium slides. Sections from two patients 

were placed into each capture area to conserve costs and separated during the analysis 

stage. Whole transcriptomic profiling was accomplished after mRNA permeabilization, 

poly(A) capture, and probe hybridization. The eosin stain for the tissue sections were 

imaged using CytAssist, which were then co-registered to the original 40X whole slide 

images (WSI). Given the limited sample size due to the spatial transcriptomics assay costs, 

four specimens were selected, representing cheek tissue from four females, two with mild 

elastosis (participant #178 and #14, ages 24 and 76 respectively), two with severe elastosis 

(participant #167 and #107, ages 55 and 84) respectively.

2.2. Preprocessing

Prior to processing, Visium spatial transcriptomics profiles for samples contained 18,085 

genes measured across several thousand locations throughout each slide. Each profile was 

then subjected to preliminary filtering, where genes and spots were filtered according to 

their abundance (i.e., cells with less than 500 genes, genes expressed in less than 3 cells, and 
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cells with more than 15% mitochondrial gene expression were filtered out). After filtering 

out the regions lacking tissue using a custom annotation tool augmented by the SAM, the 

total number of Visium spots per slide reached 2561, 3279, 3547, and 1737, each sampled in 

a honeycomb formation. Each Visium spot covers a circular capture area with a diameter of 

50-micron (~200 pixels) at 40x magnification. After sequencing, we used the SpaceRanger 

package to preprocess the Visium reads into gene count matrices.

Every whole slide image (WSIs) used for the Visium assay captures an area (size of capture 

area– 11 × 5.5 mm– half the capture area per patient) that spans tens of thousands of pixels 

along each dimension. Accordingly, to make the prediction task computationally tractable, 

we subdivided every WSI into square 512 by 512-pixel image patches (i.e., subarrays) 

centered on each Visium spot. The gene expression of the central 50-micron Visium spots 

were aligned to each image patch. Data present within the image patch but falling outside 

the capture area of the Visium spot were considered to have less direct relevance to the 

cells being assayed. Spots were additionally annotated based on the aforementioned tissue 

histological structure using the Annotorious OpenSeadragon plugin.

2.3. Model Development

2.3.1. Inference Targets—As predicting all of the genes assayed is computationally 

intractable, we used the SpatialDE library to select the top 1000 genes based on their mean 

spatial variance (MSV) across all slides (i.e., selected genes that exhibited the greatest 

spatial variation across the 4 slides). We then tested the capacity of our models to predict 

both dichotomized and log gene expression for all 1000 genes.

More specifically, in the dichotomized prediction task, patches were classified as having a 

“high” or “low” gene expression for each gene if the expression of the gene at that patch 

location was greater or lower than its mean gene expression across all other Visium spots in 

the corresponding WSI. This approach follows existing work detailed in Fatemi et al.5 For 

this task, models were trained using a binary cross entropy loss function.

In the continuous expression task, by contrast, models were trained to predict the log-

pseudocount log(1+counts) gene expression for each gene within the corresponding image 

patch region. For this task, loss was calculated using the mean squared error, which was 

found to be comparable to modeling counts using the zero-inflated negative binomial 

distribution.5

2.3.2. Modeling Approach—Previous work has established the importance of spatial 

and neighborhood context information in both the dichotomized and continuous gene 

expression tasks.5 In this study, we leveraged the SWINT vision transformer, a hierarchical 

transformer that has gained repute for building hierarchical feature maps by iteratively 

merging information from nearby image patches in deeper layers.7 Transformers divide 

images into smaller subimages, and numerical descriptors are extracted for each subimage 

using convolutional filters, along with information on the relative positioning of the 

subimages. Self-attention mechanisms are used to route information across the image based 

the relevance of one subregion of the image to another. In both the dichotomized and 

continuous expression tasks, the output layer of the base SWIN-T model was modified. In 
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particular, the output layer was expanded to consist of two feed-forward layers of sizes 768 

and 2000, chosen through coarse experimentation to maximize model performance. Both 

the dichotomized and continuous expression models yielded predictions for the 1000 most 

spatially variable genes.

2.3.3. Data Augmentation and Hyperparameter Selection—To improve the 

robustness and generalizability of these models to varied histological contexts, all images in 

the training set were subject to a series of data augmentation transformations implemented 

using the Albumentations package.8 Images were first resized to 448 by 448 pixels in size, 

the input dimensionality for the SWIN-T model. Horizontal flips and random brightness 

contrast were then performed with probabilities 0.5 and 0.2, respectively. A shift, scale, and 

rotate transformation was also applied to every image with a probability of 0.3. A shifting 

limit of 0.1, a scaling limit of 0.1, and a rotation limit of 30 were used here. Additionally, 

random rectangular areas of the images were erased– a maximum of 8 holes were produced 

per image, each hole obscuring at most 16 by 16 pixels.

Hyperparameters were obtained for both the dichotomized and continuous expression 

models via a coarse hyperparameter grid search. For the dichotomized models, optimal 

performance was observed while using a batch size, learning rate, and training length of 

64, 0.5×10−6, and 20 epochs. Whereas for the continuous models, optimal performance was 

observed while using a batch size, learning rate, and training length of 64, 0.33 × 10−6, and 

20 epochs. The Lion optimizer was used in both cases.9

2.4. Cross Validation

Model performance was measured via leave-one-patient-out cross-validation (LOOCV). In 

this procedure, three of the four Visium spatial transcriptomics samples were used for 

training and validation, while the remaining sample was used for testing. This procedure 

was repeated four times to account for all possible training/testing combinations. Reported 

performance metrics for each gene are the macro-averaged (across slides, weighting each 

slide equally) median (across genes) area under the receiver operating characteristic curve 

(AUROC) and F1 score (F1) statistics for the dichotomized task, and correlation coefficients 

(Spearman coefficient) to compare true versus predicted pseudocounts– log(1+counts)– for 

the continuous task. Macro performance statistics underwent 1,000 sample nonparametric 

bootstrapping across the Visium spots to yield 95% confidence intervals.

2.5. Biological Salience

To assess for the model’s ability to capture meaningful biological information from tissue 

histology, model predictions were also scrutinized for their ability to 1) recapitulate a range 

of biologically salient pathways, 2) maintain the shape and spatial signature of ground truth 

spatial gene expression data in lower dimensional space (i.e., preserves key relationships; 

spots cluster similarly) using the aligned-UMAP procedure, and 3) facilitate the inference of 

biologically salient features, such as histological markers. These tasks are detailed below.

2.5.1. Pathway Analyses—Given the nature of histomorphological data, it is 

unreasonable to expect that every gene can be predicted from tissue histology alone. 
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Accordingly, we sought to determine the biological pathways associated with sets of 

differentially performing genes to answer understand what biological properties make a 

gene amenable to prediction. We utilized the GO Biological Process 2023 database through 

the EnrichR package, to perform a pathway analysis on predicted genes stratified by decile 

after ranking genes based on predictive performance.10,11 The top 3 pathways were selected 

for each decile—from 90th to 100th decile (i.e., top performing genes) to the 0th to 10th 

device (i.e., worst performing genes)—based on their combined score (i.e., magnitude of 

representation and statistical significance). Detected pathways were also filtered by tissue 

specificity (i.e., could reasonably be involved with the skin).

We further sought to identify whether the gene signatures correspondent to different 

histological architectures was congruent between true and predicted expression. First, the 

top 100 most differentially expressed genes were found using the Wilcoxon rank-sum test 

in a one vs. rest fashion for each tissue architecture (e.g., follicles versus non-follicular 

structures) using both predicted and ground truth data. A pathway analysis using GO 

Biological Process 2023 database through the EnrichR package was then performed for 

the top true and predicted differentially expressed genes for each architecture. The top 

10 pathways were selected by combined score for each histological category. Detected 

pathways were compared between ground truth and predicted gene expression for each 

sample under the hypothesis that similar pathways should be associated with the same 

architectures.

2.5.2. Similar Clustering of Visium Spots and Consistent Topology via 
Aligned-UMAP—Model predictions were further assessed for their ability recapitulate the 

topology (i.e., relationships between spots) of ground truth Visium spatial gene expression 

data within a lower dimensional space. This was accomplished through the comparison 

of Uniform Manifold Approximation and Projection (UMAP) embeddings (i.e., numerical 

representations that could be plotted in a 2D scatterplot; closer points share similar 

expression/biological relevance) for the ground truth and predicted expression profiles 

(on held-out slides) extracted using the SWIN-T model. Ground truth and predicted gene 

expression profiles for each slide were co-projected to a lower dimensional space using 

the Aligned-UMAP procedure to preserve the relative orientation and alignment between 

spots to enable comparison between the approaches. Each Visium spot from the WSI was 

plotted as 2D scatterplot point and colored according to its gene expression profile as 

dictated by the Leiden clustering algorithm. In other words, ground truth Visium spots 

sharing similar transcriptional information are grouped to the same Leiden cluster, while 

genetically dissimilar spots are grouped to different Leiden clusters. These ground truth 

cluster assignments were overlaid on the scatterplots for the predicted expression patterns. 

It is expected that the relative positioning between the clusters would be preserved in the 

2D scatterplot for the predicted expression, which would measure the extent to which model 

predictions recapitulated patterns associated with distinct histological regions of each WSI.

Aside from overlaying the original ground truth clusters, predicted expression profiles 

were also separately clustered through the Leiden algorithm, yielding a separate set of 

cluster assignments for the same Visium spots. These assignments were compared to the 

ground truth Visium spatial transcriptomics profiles’ clusters. Similar clustering assignments 
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would provide further evidence for greater correspondence between transcriptional data and 

information derived from the histology.

3. Results†

3.1. Prediction of Spatial Transcriptomic Patterns from Histology

In the dichotomized prediction task, the SWIN-T vision transformer model achieved a 

macro-averaged (i.e., across genes) median AUC and F1 score of 0.80 and 0.61, respectively, 

across the testing sets (Supplementary Table 1). The model performed best on genes 

ADIPOQ, PLIN1, and PKP3 (involved in fatty acid metabolism12, triacylglycerol storage13, 

and desmosome function and stability14, respectively) , and worst on genes ANKRD35, 

ALAS1, and MIA (of which the latter two are known to be involved in heme biosynthesis15 

and melanocyte migration16, respectively) . Dichotomized model predictions for genes 

ADIPOQ, PLIN1, and PKP3 are visualized across sample #14 and #178 (Figure 2), 

demonstrating spatial concordance between true and predicted expression. In the continuous 

prediction task, models achieved a macro-averaged median Spearman coefficient of 0.60 

across the testing sets (Supplementary Table 1). The model performed best on genes KRT14, 

CXCL14, and COL1A2 (involved in epithelial cell integrity17, keratinocyte function18, and 

collagen synthesis19, respectively) and worst on genes CKM, MYLPF, and ODF21 (the 

former two are known to be involved in energy homeostasis20 and muscle development21). 

Continuous model predictions for genes KRT14, CXCL14, PI16 were visualized across 

samples 107 and 167 (Supplementary Figure 2), demonstrating spatial concordance between 

true and predicted expression. Note that models in both the dichotomized and continuous 

prediction tasks were trained to predict the same set of 1000 spatially variable genes.

3.2. Pathway Analysis

For each performance decile, the top 3 most salient biological pathways by combined 

score were determined (Supplementary Table 2). Across both the dichotomized and 

continuous prediction tasks, biological pathways associated with the top performance 

decile (i.e., 90th to 100th percentile genes ranked by performance) pertained to skin and 

epidermis development and maintenance, skin cell proliferation, and the regulation of 

extracellular matrix and cell-cell adhesion (Table 1). By contrast, biological pathways 

associated with genes in the worst performance decile (i.e., 0th to 10th percentile genes 

ranked by performance) across both the dichotomized and continuous prediction were far 

less associated with relevant biological phenomena, pertaining to immune signaling, cell-

turnover regulation, gas transport, and muscle cell development (Table 1). More generally, 

biological pathways associated with higher-performing genes tended to be more closely 

related to skin development, differentiation, pigmentation, and fat metabolism, while distinct 

trends were less clear for those biological pathways associated with lower-performing genes 

(Supplementary Table 2).

The top 100 differentially expressed genes for each histological sub-type were determined 

for both ground truth and predicted data samples, and these genes were leveraged for 

†Supplementary materials can be found at the following DOI: https://doi.org/10.5281/zenodo.8197850
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further pathway analyses. The pathway analysis results for the top 100 differentially 

expressed genes for dichotomized and continuous gene expression data are reported 

in Supplementary Table 3 and Supplementary Table 4. Across both dichotomized and 

continuous gene expression data, pathways associated with the formation of the sebaceous 

gland and epidermis were found to be in high agreement between ground truth and predicted 

expression, while the agreement was more modest other in histological features (Table 1; 

Supplementary Table 3).

3.3. Topological Consistency

3.3.1. Leiden Clustering—A visual inspection of the aligned-UMAP diagrams 

demonstrates similar clustering patterns and topological consistency between the predicted 

and the ground truth expression data across both models trained for dichotomized and 

continuous regression tasks (Figure 3; Supplementary Figure 2). We noted that the 

Leiden clusters assigned to the ground truth expression were similar to those assigned to 

predicted expression embeddings. Nonetheless, differences remained. We did not observe 

complete separation in the predicted expression embeddings, representing a fuzzier or more 

connected/intermediate topological structure (Figure 3; Supplementary Figure 2). These 

spots in the predicted data were, accordingly, located between Leiden clusters more often 

than spots in the ground truth genetic data, where Leiden clusters tended to be far more 

spatially distinct. This feature was noted for both dichotomized and continuous expression 

models, although this pattern was more prevalent for dichotomized expression (Figure 3; 

Supplementary Figure 2).

Model predictions in both the dichotomized and continuous expression tasks also preserved 

the general shape of ground truth genetic data while plotted across each whole slide image 

(Supplementary Figures 3 and 4). We further observed, however, that predicted data tended 

to contain genetically intermediate states, as evidenced by the greater number of Leiden 

clusters produced in the predicted data compared to the ground truth data while using the 

same Leiden clustering resolution (Supplementary Figures 3 and 4). Though models in both 

tasks produced data that captured larger macro-architectural differences in gene expression 

found across skin tissue, the dichotomized model tended to produce data that more closely 

preserved the relationships determined using Leiden clustering plotted across the slide 

found across the ground truth data (Supplementary Figure 3). Models in the continuous 

expression task, though high performing, tended to produce data that recapitulated the 

spatial genetic variation of macro-architectural features in skin tissue less well, evidenced, 

again, by disparities in the number and placement of Leiden clusters when comparing the 

predicted and ground truth data (Supplementary Figure 4).

3.3.2. Histological Annotations—Performing Aligned-UMAP on the ground truth and 

predicted expression data for Visium spots tagged by histological structures demonstrated 

that embeddings in both groups clustered by distinct histological regions of skin tissue 

(Figure 4; Supplementary Figure 5). That is, Visium spots corresponding to similar 

histological structures clustered in similar locations across both UMAP plots, preserving 

the genetic relationships between these histological architectures. The distinctness of these 

clusters was preserved for both dichotomized and continuous gene expression predictions, 
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though predicted continuous expression data appeared to preserve the topology better than 

dichotomized gene expression data (Figure 4; Supplementary Figure 5).

4. Discussion

In this work, we developed a set of spatial gene expression inference models for 

histopathologically normal skin tissue in the context of molecular changes associated 

with photoaging. We make use of the novel CytAssist co-registration/imaging technology, 

allowing for 40X resolution imaging of tissue slides. Beyond quantitative validation of 

performance (e.g., AUC, F1, Spearman coefficient), we also reaffirmed the biological 

relevance of the predicted expression pattern. In particular, extracted histological features 

from our models remained faithful to underlying biological pathways, buttressing their 

potential use across a range of biological inference tasks, and lending credibility to their role 

in democratizing the spatial transcriptomics paradigm to the broader research community.

With the Visium CytAssist technology, our models were trained with histological 

information at >4 times the spatial resolution of previous studies. We achieved comparable 

performance to a prior study that utilized an Inception convolutional neural network for both 

dichotomized and continuous prediction of gene expression.5 While acknowledging the need 

for caution when comparing these models, as they represent different biological domains 

(Skin vs Colon; different genes used in the models), observed performance disparities may 

arise from variations in methodology. These differences could include the utilization of 

distinct imaging resolutions (40X vs 20X) or the selection of different modeling approaches 

(ZINB vs raw log gene expression). Since our predictions were made within a more focused 

visual receptive field, disregarding the surrounding wider tissue architecture, future work 

can explore the examination of larger-scale histological context.

The pathway and topological analysis provided useful insights on the nature of spatial 

RNA inference from histology. It is important to highlight that our findings suggest that 

genes with a clear histological basis are more likely to be accurately predicted compared 

to genes lacking such a theoretical histological foundation. Our results also demonstrate 

the importance of developing models germane to the biological question at hand: a 

model trained on colon tissue is not expected to perform well on skin tissue. Hence, 

investigating modeling approaches that prioritize specific biological phenomena emerges 

as a promising direction for future research. Genes that demonstrate good performance, or 

effectively recapitulate histological patterns, could potentially be utilized for further research 

applications across larger cohorts.

The topological analysis demonstrated that predicted expression profiles did not cluster as 

distinctly as the original expression patterns. When coloring by Leiden cluster affiliation 

and histological association, the predicted spot level gene expression fell between ground 

truth clusters, representing intermediate histological states learned by the neural networks. 

Future work may seek to understand which histomorphological features relate to different 

molecular pathways through newly established interpretation approaches22. The integration 

of coregistered slide imaging with spatial molecular information can facilitate such analyses. 

Moreover, by subsetting predicted and true gene expression based on shared molecular 
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pathways (such as genes involved in epithelium development, cell-cell junctions, immune 

function, etc.) and conducting comparable topological analyses, it is possible to identify 

the molecular pathways that exhibit the highest degree of topological distinctiveness. 

Nevertheless, topological analyses have emerged as a timely and relevant topic in the realm 

of single-cell and spatial analyses, offering the potential to uncover additional dimensions of 

cellular and histological heterogeneity23–25.

This study reinforces the potential of spatial transcriptomics approaches for research and 

clinical applications. For example, photoaging, which is linked to skin cancer risk, lacks 

reliable measurement tools due to variations in histological assessments and self-reported 

UV exposure. Existing analyses typically focus on specific cellular components (e.g., 

dermal fibroblasts, elastosis, keratoses), often disregarding or unaware of photoaging-related 

factors. Expanding spatial molecular findings through RNA inference to a larger cohort can 

help identify cell-type specific sources of photoaging in specific tissue architectures while 

controlling for numerous potential confounders and presents an intriguing area of follow 

up given the models established in this study. Spatial RNA inference can uncover novel 

cellular components related to precancerous alterations resulting from chronic sun exposure. 

By targeting profiling of these tissue regions, researchers can explore residual heterogeneity, 

while examining cell-type specific alterations and additional factors related to accelerated 

aging, with the caveat that tissue from this cohort is histologically adjacent to surgical site of 

repair, potentially harboring a cancerization field effect.

In clinical practice, the use of virtual RNA models has the potential to inform treatment 

planning and assess treatment response. If these models can identify proxy measures of 

photoaging, spatial molecular inference can be employed to evaluate the effectiveness of 

skin therapeutics through quantitative assessment of biomolecular changes at screening, 

baseline, and endpoint. This approach offers a more objective and quantitative measurement 

of the impact of treatments on skin health and can enhance the validity of therapeutic 

interventions. Similarly, applications are envisioned for treatment of non-healing skin ulcers 

and separately hair loss driven by an autoimmune response (e.g., alopecia areata), revealing 

potential components of relevant immune polarity (e.g., M1/M2 macrophage balance, 

etc.).26,27 Additionally, virtual RNA inference models can inform disease management 

options for various solid tumors, functioning similar to immunohistochemical assays 

(e.g., immunoscore) that shed light on the infiltration of cytotoxic immune cell lineages, 

identifying independent risk factors of tumor recurrence and survival. Spatial molecular 

assessments can identify targetable therapeutic pathways for personalized treatment options.

This study is not without limitations that can direct for future research. Our sample 

size was small, limiting our ability to account for potential variability in histology and 

surgical sites. Additionally, the non-biopsied nature of the samples and their proximity to 

potentially precancerous tumor tissue may introduce differences in gene expression related 

to factors other than UV exposure. Introducing matching normal control tissue, considering 

factors like limited sun exposure and low field effect potential, along with expanding 

the cohort to control for additional age ranges, sex, and tissue site, could help reveal 

photoaging differences specific to these groups. Skin tone is another confounding factor 

that should be addressed, and it can be controlled using measures such as the Fitzpatrick 
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skin phototype scale or derived continuous measures. To improve rigorous quantitative 

photoaging assessments, various measures of photoaging can be combined using factor 

analyses, leading to meaningful composite measures, such as DNA methylation, age-related 

measures, elastosis, and UV questionnaires. Additionally, one general limitation of our 

topological analyses included their more qualitative, rather than quantitative, nature. Shifts 

in distribution between ground truth and predicted Visium spot topology could also be 

captured using more nuanced mathematical notions such as the KL-divergence, Wasserstein 

distance, maximum mean discrepancy, and silhouette score. Addressing these limitations 

and incorporating a more diverse and extensive sample size can enhance the reliability and 

applicability of future studies in this field.

5. Conclusion

Machine learning technologies that can infer spatial molecular information from routine 

tissue stains have the potential to facilitate low-cost accessible spatial transcriptomic 

assessments for large scale molecular epidemiological studies. Such studies can uncover 

novel risk factors of early photocarcinogenesis or inform relevant treatment/therapeutic 

options by expanding the set of targetable molecular pathways within specific tissue 

architectures. Our skin study sets the stage for larger-scale studies to identify spatial 

molecular correlates of skin sun damage and evaluate novel therapeutics that may 

reverse this damage. While our models exhibited impressive performance in predicting 

dichotomized and continuous gene expression within tissue slides, it is crucial to 

acknowledge the need for further development and validation of this approach. When 

utilizing these algorithms, it is important to consider the genes that are known to be 

influenced by histological characteristics. Additionally, any novel findings obtained through 

these tools should be corroborated and validated using well-established immunostaining 

techniques, ensuring the reliability and robustness of the results.
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Figure 1: Cohort Description.
261 WSIs were scanned. Four of these slides underwent further spatial transcriptomics 

profiling and were annotated for distinct histological architectures. Two are shown here. 

From left to right, the WSI, histological annotations, and Visium spatial transcriptomics spot 

array for (A) sample 14 and (B) sample 167.
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Figure 2: Dichotomized RNA Expression Prediction.
Dichotomized spatial gene expression was inferred for (A) samples #14 and (B) #167 and 

compared with the respective ground truths. A spot is colored yellow if gene expression 

in this spot exceeds global mean gene expression. Performance is displayed for the top 

performing genes, ADIPOQ, PLIN1, and PKP3, which achieved macro-averaged AUC 

values of 0.942, 0.938, and 0.918, respectively.
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Figure 3: Dichotomized Expression Topological Analysis.
(A) From left to right, ground truth spatial Leiden clustering, ground truth aligned UMAP, 

and predicted aligned UMAP for sample #14. (B) From left to right, ground truth spatial 

Leiden clustering, ground truth aligned UMAP, and predicted aligned UMAP for sample 

#178. In both rows, the same spots are colored identically according to their ground truth 

gene expression profiles after Leiden clustering analysis. Dichotomized gene expression data 

was used here. The Leiden clustering resolution was set to 0.2.
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Figure 4: Dichotomized Expression Histological Analysis.
Aligned-UMAP procedure was used to reduce the dimensionality of both the ground truth 

and predicted dichotomized gene expression vectors for (A) sample #14 and (B) sample 

#178. Spots are colored according to their histological annotations.
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Table 1:
Performance Pathway Analysis.

Combined performance statistics for both the dichotomized and continuous models were used to perform a 

performance-stratified pathway analysis. AUC and Spearman coefficient were used to stratify genes in the 

dichotomized and continuous tasks, respectively. The top 3 pathways, measured via EnrichR using the Go 

Biological Process 2023 database, are reported for the highest and lowest performance deciles. Refer to 

Supplementary Table 2 for an extended version of this table detailing all performance deciles.

Gene Performance Task Pathway Score Overlap P-value

Top performing genes: 90–100th Percentile Genes Dichotomized Establishment of Skin Barrier 2127 6/19 6.9E-10

Skin Epidermis Development 1785 6/21 4.0E-04

Keratinocyte Proliferation 803 2/6 1.4E-11

Continuous Positive Regulation of Epidermis 
Development

2725 4/9 7.3E-08

Desmosome Organization 2654 3/6 2.4E-06

Intermediate Filament Bundle 
Assembly

1905 4/7 4.2E-06

Bottom performing genes: 0–10th Percentile Genes Dichotomized Interleukin-2-Mediated Signaling 
Pathway

615 2/7 2.8E-04

Cellular Response to Interleukin-2 615 2/7 5.1E-04

Negative Regulation of T Cell 
Apoptotic Process

615 2/7 5.1E-04

Continuous Gas Transport 504 3/15 5.3E-05

Positive Regulation of Respiratory 
Burst

493 2/8 6.7E-04

Regulation Of Skeletal Muscle Cell 
Differentiation

493 2/8 6.7E-04
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