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Abstract: Localized jawbone invasion is a milestone in the progression of oral squamous cell carci-
noma (OSCC). The factors that promote this process are not well understood. Sclerostin is known to
be involved in bone metabolism and there are preliminary reports of its involvement in bone tumors
and bone metastasis. To identify a possible involvement of sclerostin in the bone invasion process of
OSCC, sclerostin expression was analyzed in vitro in two different human OSCC tumor cell lines by
quantitative real-time polymerase chain reaction (qRT-PCR), and the effect of recombinant human
(rh)-sclerostin treatment on tumor cell capabilities was evaluated using proliferation, migration, and
invasion assays. Undifferentiated human mesenchymal stem cells (hMSCs) were osteogenically differ-
entiated and co-cultured with OSCC tumor cells to demonstrate potential interactions and migration
characteristics. Sclerostin expression was evaluated in clinical cases by immunohistochemistry at the
OSCC–jawbone interface in a cohort of 15 patients. Sclerostin expression was detected in both OSCC
tumor cell lines in vitro and was also detected at the OSCC–jawbone interface in clinical cases. Tumor
cell proliferation rate, migration and invasion ability were increased by rh-sclerostin treatment. The
migration rate of tumor cells co-cultured with osteogenically differentiated hMSCs was increased.
The results presented are the first data suggesting a possible involvement of sclerostin in the bone
invasion process of OSCC, which deserves further investigation and may be a potential approach for
drug-based tumor therapy.

Keywords: oral squamous cell carcinoma; bone invasion; sclerostin; SOST

1. Introduction

Oral squamous cell carcinoma (OSCC) is one of the most common forms of malignant
head and neck tumors, with worldwide impact [1]. In advanced tumor stages, it is associ-
ated with poor patient prognosis and reduced health-related quality of life (HRQOL) [2–4].
Invasion of the locally adjacent jawbone occurs in 12% to 56% of cases [5,6]. It has been
shown that OSCC bone invasion is associated with the incidence of lymph node metastasis
and a poor prognosis [7–9].

Destroyed bone sections require resection and reconstruction with free vascularized
bone grafts, primarily from the fibula [10], scapula [11] or iliac crest [12]. Such procedures
are time-consuming, surgically complex, and associated with functional and aesthetic
limitations and patient morbidity [13]. OSCC bone invasion is a complex process involving
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a variety of different cellular and molecular mechanisms that are still poorly understood.
However, a better understanding of these processes could have a significant impact on
patient care.

The Wnt (wingless/integrated) signaling pathway is a highly conserved pathway in
biological evolution that is involved in cell proliferation, differentiation, migration and
polarity of physiological processes such as embryonic development and organ morphology,
but also in the pathology of various diseases [14]. It has also been shown to play an
important role in the regulation of bone metabolism and osteoblastic gene expression [15,16],
as well as in the initiation and development of various malignant tumors. For example, it
has been implicated in the malignant transformation of intestinal epithelia, hyperplasia
of breast tissue, skin cancer, and cell proliferation in lung cancer [17,18]. It has been also
associated with inhibition of breast cancer cell invasion and downregulation of four-and-
a-half LIM domain protein 2 (FHL2) in human osteosarcoma cells [19,20]. The pathway
is involved in the regulation of chondrocyte proliferation and mesenchymal stem cell
fate [16,21]. Inappropriate stimulation of the Wnt signaling pathway has been shown to
promote several pathological conditions, including malignancies [22].

The SOST gene (sclerostin gene) encodes sclerostin, a protein that acts as a negative
regulator of the Wnt signaling pathway [23]. By binding to low-density lipoprotein recep-
tor protein 5 and 6 (LRP5/6) on the surface of osteoblasts, it reduces bone formation and
promotes bone resorption [23]. In addition, it competes with type I and type II bone mor-
phogenetic protein (BMP) receptors for binding to BMPs, thereby reducing BMP signaling
and suppressing mineralization of osteoblastic cells [23,24]. Sclerostin has been implicated
in the pathogenesis of several Wnt-related musculoskeletal disorders [25]. There is evidence
that sclerostin is associated with the biology of bone metastases and primary bone tumors
in several entities. For example, breast cancer often causes bone metastases and osteolytic
bone destruction by stimulating osteoclasts to resorb bone and preventing osteoblasts from
forming new bone [26]. Sclerostin is overexpressed in breast cancer tumor tissue and cells
and promotes growth, invasion, and bone osteolysis [27]. Inhibition of sclerostin reduces
migration and invasion of this tumor entity in a time- and dose-dependent manner [27].
Runt-related transcription factor 2 (Runx2) is known to mediate activation of osteoclast
activity and inhibition of osteoblast differentiation by metastatic breast cancer cells [26].
Runx2 requires co-activator core-binding factor beta (CBFb) to regulate gene expression
in breast cancer cells. The combination of Runx2 and CBFb mediates the inhibition of
osteoblast differentiation through the induction of sclerostin [26]. In vivo models in mice
with breast cancer-related bone metastases have shown that pharmacological sclerostin
inhibition reduces metastatic burden [28], prolongs animal survival [27] and prevents
cancer-related bone destruction [27,29].

A similar effect as in breast cancer has also been demonstrated in multiple myeloma.
Myeloma cells are known to produce and shed sclerostin into the serum/plasma of pa-
tients [30]. Increased serum sclerostin levels correlate with more extensive bone disease
and negative myeloma features [30]. Pharmacological sclerostin inhibition prevented bone
loss and preserved bone strength in preclinical studies without significantly affecting tumor
growth [31].

Several risk factors and causative genes for the development of osteosarcoma have
been reported in the literature [28]. However, the etiology remains largely unknown.
Bone formation is a common phenomenon in all types of osteosarcoma. Sclerostin has
also been shown to suppress the proliferative and migratory capacity of osteosarcoma
cells, and administration of sclerostin inhibits tumor growth in mice and prolongs animal
survival [28].

In prostate cancer, sclerostin expression is reduced and can be used in combination
with BMP-6 and noggin expression as a prognostic factor for metastatic progression [30].

The involvement of sclerostin in the bone invasion by OSCC has not yet been demon-
strated. In a pilot study, we have shown that a human OSCC tumor cell line treated
with transforming growth factor beta (TGF-β) upregulates SOST gene expression and
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that sclerostin protein expression has a significant prognostic impact on patients [32]. To
further explore these interesting findings, we investigated the influence of sclerostin on
the proliferation, migration, and invasion of OSCC tumor cells in an in vitro approach and
evaluated sclerostin expression at the OSCC–jawbone interface in clinical cases. We show
here for the first time that sclerostin can alter the properties of tumor cells toward a more
aggressive phenotype and contribute to a tumor-friendly microenvironment at the OSCC–
jawbone interface, thereby promoting bone invasion. These findings may contribute to a
better understanding of bone invasion in OSCC and, with therapeutic sclerostin inhibition,
have the potential to contribute to broader clinical relevance by reducing locally destroyed
bone sections.

2. Materials and Methods

In this study, a possible influence of sclerostin on the bone invasiveness of OSCC was
evaluated using three different approaches: (1) treatment of OSCC tumor cells with rh-
sclerostin and its influence on cellular characteristics proliferation, migration and invasion;
(2) co-cultivation of OSCC tumor cells with osteogenically differentiated human bone
marrow-derived human mesenchymal stem cells (hMSCs) and its influence on tumor cell
migration; and (3) immunohistochemical analysis of the OSCC–jawbone interface in human
tissue samples.

2.1. Cell Culture

PCI-13 (UPCI, Pittsburgh, PA, USA) [33] and UPCI-SCC-040 (SCC-040) cells (DSMZ,
Braunschweig, Germany) were cultured in DMEM + GlutaMAX (31966021, Thermo Fisher,
Waltham, MA, USA) and MEM Earle’s (FG0325, Merck, Darmstadt, Germany) with 10%
fetal bovine serum (v/v) and 1% penicillin–streptomycin (v/v), respectively (37 ◦C, 5%
CO2, 80% humidity). For cell expansion or cell seeding, cells were enzymatically detached
from the surface using 0.05% (w/v) trypsin–0.02% (w/v) EDTA and resuspended in serum-
free medium.

Human bone marrow-derived mesenchymal stem cells (hMSCs) were provided by
the Bader laboratory of the Centre for Biotechnology and Biomedicine, Leipzig, Germany.
The isolation of hMSCs from donors was approved by the local ethics committee (Sax-
ony Regional Authority, EK-BR-86/14-1). HMSCs were cultured in DMEM (P04-01159,
PAN-Biotech, Aidenbach, Germany) containing 10% fetal bovine serum (v/v), 0.2% gentam-
icin/ampicillin (v/v) and 4 mM glutamine (37 ◦C, 5% CO2, 80% humidity). For differentia-
tion, further supplements were added to the medium (2 mM glutamine; 0.05 µM sodium
ascorbate; 0.1 dexamethasone; 10 mM β-glycerol phosphate; 0.015 mM CaCl2; 0.05 µM
vitamin D3). Before each experiment, cells were stained with trypan blue and counted
using a cell counter (Logos Biosystems, Anyang, Republic of Korea). All cell biological
experiments were performed in triplicate in at least three separate experiments.

2.2. qRT-PCR Analysis

For qRT-PCR analysis, RNA was isolated from cells using a Qiagen RNA Isolation
Kit (74104, Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Prior
to RNA isolation, the analyzed cells were seeded in a 6-well plate and grown to 80%
confluence. For the analysis of differentiated hMSCs, cells were cultured as described
above and RNA was isolated after 14 days of cultivation with differentiation media.

The isolated RNA was used as input for subsequent cDNA synthesis using RevertAid
first-strand cDNA synthesis from Thermo Fisher (K1622, Thermo Fisher, Waltham, MA,
USA). From each sample, 1 µg of RNA was used for reverse transcription. Finally, 10 ng
of cDNA was used for each SYBR green qRT-PCR reaction. A 25 µL reaction volume was
prepared for each well of a 96-well plate using Luna® Universal Probe qPCR Master Mix
(New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s instructions.
The Ct value was determined in a 40-cycle reaction using a QuantStudio 3 (Thermo Fisher,
Waltham, MA, USA). Delta Ct was further calculated using the design and analysis software
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DA2 version 2.6.0 from Thermo Fisher (Thermo Fisher, Waltham, MA, USA) using the
relative quantification method. GAPDH was used for endogenous normalization, and
Ct values of untreated hMSCs were used as reference. Desalted oligonucleotides were
purchased from Merck (Merck, Darmstadt, Germany). The sequences of all primer pairs
are shown in Table 1.

Table 1. Primer sequences.

Gene Sense Sequence Antisense Sequence

Osteopontin CATATGATGGCCGAGGTGATAG AGGTGATGTCCTCGTCTGTA
RUNX2 CATCACTGTCCTTTGGGAGTAG ATGTCAAAGGCTGTCTGTAGG
COL1A1 CCTGTCTGCTTCCTGTAAACTC GTTCAGTTTGGGTTGCTTGTC

ALPL GGAGTATGAGAGTGACGAGAAAG GAAGTGGGAGTGCTTGTATCT
Osteocalcin AAATAGCCCTGGCAGATTCC CAGCCTCCAGCACTGTTTAT

Osterix GCAAAGCAGGCACAAAGAAG CAGGTGAAAGGAGCCCATTAG
Sclerostin GGTGAGAGAGAGAGAGAGAAAGA CTGTCAGAAGAGAGCATCACAA
GADPH GGTGTGAACCATGAGAAGTATGA GAGTCCTTCCACGATACCAAAG

2.3. Proliferation Assay

Cell proliferation was measured using the RealTime GloTM assay (G9711, Promega,
Madison, WI, USA). The assay was performed according to the manufacturer’s instructions
and the luciferase reaction was measured every 24 h. To analyze the influence of recombi-
nant human (rh)-sclerostin (100-49, Peprotech, Hamburg, Germany) on cell proliferation,
1500 cells were seeded per well of a 96-well plate and four different concentrations of scle-
rostin (0; 1; 5; 10 ng/mL) were tested. To achieve a critical number of technical replicates
in each independent experiment, six wells were seeded per concentration. After initial
seeding, proliferation was measured every 24 h. The medium was completely changed
before each measurement and new sclerostin was added with each medium change. Reduc-
tion in luciferase substrate was measured using a microtiter plate reader (Biotek, Winooski,
VT, USA). The proliferation assay was repeated three times and all experiments showed
the same trend. However, due to the large variance, statistical analysis over all three
experiments was not sufficient. Therefore, a representative data set is shown in the results.

2.4. Migration and Invasion Assays

The SOST gene has previously been shown to influence the cellular phenotype of
tumor cells [27]. There is clear evidence that neutralizing antibody treatment reduces the
migration and invasion of breast tumor cells. Since OSCC is a highly invasive tumor in
bone tissue where sclerostin is endogenously expressed, it was hypothesized that OSCC
cells might also be affected by higher levels of SOST in the environment. Therefore, whether
OSCC cell lines show the expected phenotype regarding migration and invasion when
SOST is applied in a gradient was tested.

Migration and invasion were performed as described previously [34] with some
modifications. Briefly, for migration and invasion, 20,000 PCI-13 cells were seeded in
the upper volume of a transwell insert with a pore size of 8.0 µm for a 12-well plate
(9318012 cellQART®, Northeim, Germany, Figure 1). For invasion analysis, the membrane
of each transwell insert was additionally coated with 1 mg/mL collagen type 1 solution
(50301, Matrix Bioscience, Moerlenbach, Germany). To avoid collagen fibrillation, the
collagen was diluted in ice-cold 0.1% acetic acid and 200 µL of the solution was added to
each membrane. All membranes were then incubated for a further 2 h under cell culture
conditions. Excess collagen was again removed and 1 mL of cell culture medium was
added to the transwell to neutralize the membrane-bound collagen. The inserts were
then incubated for a further 2 h under cell culture conditions. The cells were diluted in
400 µL of serum-free cell culture medium. The lower compartment was filled with 1 mL
of cell culture medium containing 10% fetal calf serum. In addition, the medium in the
lower compartment was supplemented with sclerostin. To investigate the sensitivity of
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the cells to sclerostin, three different concentrations (0, 1, 5 ng/mL) were prepared for
each experiment. The wells without SOST in the lower volume were also the control, as
only reduced migration/invasion was expected in these wells compared to the wells with
SOST in the medium. After seeding, the cells were incubated for 24 h under cell culture
conditions. The cells were then fixed on the membrane with 4% PFA for 20 min at room
temperature. Before and after fixation, the membranes were washed three times by adding
500 µL in PBS in the upper and lower compartments of the transwell. Finally, the cells were
stained with 5 µg/mL Hoechst 33258 (K1622, Thermo Fisher, Waltham, MA, USA) and
washed three times with PBS. After staining, cells on the upper side of the membrane were
removed from the insert using an ear swab. Migrated/invaded cells on the underside of the
membrane were imaged with a fluorescence microscope at 10× magnification (AxioImager
2, Zeiss, Oberkochen, Germany). An area of at least 5 × 5 mm was imaged from each
membrane. Automated cell counting was performed using Arivis4D version 3.2 (Zeiss,
Oberkochen, Germany). To avoid side effects and high background signal in the outer
areas of the membrane, a standardized region of interest was defined and positioned in the
central area of each stitched image. Finally, stained nuclei were counted using a particle
detection tool of the Arivis4D software (version 3.2). Each independent experiment was
repeated at least three times with three technical replicates for each condition.
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Figure 1. Illustration of the Boyden chamber assay used for migration, invasion, and co-cultivation
experiments. For the migration assay, PCI-13 OSCC tumor cells were added to the upper compartment
of the transwell insert and cell passage was determined at 8 µm pore size. For invasion analysis, the
membrane of each transwell insert was additionally coated with 1 mg/mL collagen type 1 solution.
For co-culture, PCI-13 tumor cells were cultured in the upper compartment and hMSCs were cultured
in the lower compartment of the transwell.

2.5. Co-Cultivation Experiments

Co-cultivation was performed as described above with slight modifications regarding
the cultivation of hMSCs in the lower compartment of the transwell. For the differentiation
of hMSCs, 31,500 cells were seeded in a 12-well plate from cells with passages fewer than 9.
After three days of cultivation with proliferation medium, the cells were further incubated
with differentiation medium until day 14. The medium was changed every three days, the
last time two days before the start of co-culture. After this period, the transwell was placed
in the well and PCI-13 cells were seeded at the same density in the upper compartment
of the transwell as described above. In the experimental design, four different conditions
were analyzed. Two conditions with cells and two conditions without cells. The PCI-13
cells were incubated with pre-differentiated and undifferentiated hMSC and the respective
hMSC cell culture media only in the lower compartment. Co-incubation with hMSCs was
performed to show that hMSCs are able to induce OSCC cell migration, and it was expected
that the effect would correlate with differentiation due to the increasing SOST level during
MSC differentiation. The samples without cells were chosen as controls to exclude side
effects due to the different media composition. The co-culture was incubated for 24 h and
analyzed as described above. The experiment was repeated three times with three technical
replicates for each condition in a single experiment.
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2.6. Scratch Assay

For the scratch assay, a confluent cell monolayer was established by seeding 47,500 PCI-
13 cells in a well of a 24-well plate and incubating for 24 h under cell culture conditions. The
monolayer was scraped by hand with a 2.5 mL pipette tip to set the scratch. Immediately
after scraping, a first image was taken at 4× magnification (Olympus IX81, EVIDENT,
Hamburg, Germany). Further images were taken every 12 h over a period of 36 h. To test
the effect of sclerostin on the cell phenotype, cells were incubated in media containing
three different concentrations of sclerostin (0, 1 and 5 ng/mL). Scratch size was analyzed
using Fiji Image J version 2.14.0/1.54f (https://fiji.sc/, accessed on 15 October 2023) and
the cell-free area was measured using the wound healing size tool. Before using the tool, a
region of interest (ROI) of a defined size was placed in the center of the image for all images,
and only the area within the ROI was finally analyzed. All experiments were repeated
three times with three technical replicates for each condition in a single experiment.

2.7. Semi-Quantitative Immunohistochemical Evaluation of Sclerostin Expression at the
OSCC–Jawbone Interface in Clinical Cases

Tissue samples from 15 OSCC patients undergoing primary surgical treatment between
2016 and 2020 were retrospectively used for visualization of the OSCC–jawbone interface
and immunohistochemical sclerostin evaluation. The clinical characteristics of the patients
are given in Table 2. Patients provided written informed consent before participation in the
study. The study was approved by the clinical ethics committee of the University Medical
Center Goettingen (vote 07/06/09, updated April 2018).

Table 2. Clinical patient characteristics and H-score values derived from semiquantitative immuno-
histochemical evaluation of sclerostin expression at the OSCC–jawbone interface. pT indicates the
extent of primary OSCC (pT2: tumor extent ≤2 cm with depth of invasion >5 mm and ≤10 mm; or
tumor extent >2 cm and ≤4 cm with depth of invasion ≤10 mm; pT3: tumor extent >2 cm and ≤4 cm
with depth of invasion >10 mm; or tumor extension >4 cm with depth of invasion ≤10 mm; pT4a:
tumor extension >4 cm with depth of invasion >10 mm; or tumor invades adjacent structures (e.g.,
through the cortical bone of the mandible or maxilla). pN indicates cervical lymph node metastasis
(pN0: no lymph node metastasis; pN2b: metastasis in multiple ipsilateral nodes, none >6 cm in
largest dimension, and no extranodal extension. pN2c: metastasis in bilateral or contralateral lymph
nodes, none >6 cm in largest dimension, and no extranodal extension; pN3b: metastasis in one or
more nodes and clinically evident extranodal extension). pM indicates distant metastases (pM0: no
distant metastases). H-score values range from 0 to 300, with 0 indicating that no cells are positive
and 300 indicating that all cells are strongly positive.

Sex Age Localization pT pN pM Grading AJCC Stage H-Score

Male 65 Gum 4a 0 0 1 IVA 61
Female 54 Gum 4a 2b 0 2 IVA 93
Male 67 Gum 4a 0 0 2 IVA 120
Male 59 Cheek mucosa 4a 3b 0 3 IVB 112

Female 65 Gum 4a 0 0 2 IVA 109
Female 81 Gum 4a 0 0 2 IVA 61
Female 72 Floor of mouth 4a 2c 0 2 IVA 105
Female 75 Gum 3 2b 0 3 IVA 92
Male 63 Gum 4a 2b 0 2 IVA 84

Female 86 Gum 4a 0 0 2 IVA 107
Male 77 Gum 2 0 0 2 II 60
Male 76 Palate 4a 0 0 2 IVA 81
Male 81 Gum 3 2b 0 2 IVA 94

Female 48 Palate 4a 2b 0 2 IVA 100
Male 56 Floor of mouth 4a 2c 0 2 IVA 127

https://fiji.sc/
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Tissue samples were collected immediately after tumor resection, fixed in neutral
buffered 4% formalin, and embedded in paraffin. Immunohistochemical reactions (Table 3)
were performed on 2 µm sections using a fully automated slide stainer (Agilent Technolo-
gies, Santa Clara, CA, USA). Tissue slides were digitized using a Motic EasyScan One slide
scanner (Motic, Hong Kong, China) at 80× magnification and 0.13 µm/pixel resolution.
For semi-automated, semi-quantitative immunohistochemical analysis, we used the open-
source image analysis software quPath (version 0.4.4, https://qupath.github.io/, accessed
on 1 November 2023) in the default settings [35].

Table 3. Immunohistochemical staining protocol.

Antigen Antibody Pretreatment Detection Method Source

Sclerostin
Mouse, monoclonal, clone

AbD09097_h/mIgG 2a,
1:1200

HIER (pH 9) Dako EnVision FLEX BioRad, Hercules, CA,
USA (HCA230Z)

In each case, three different regions of interest (ROIs) were digitally defined at the
OSCC–jawbone interface. Each ROI was approximately 1 cm2 in size. As part of the
immunohistochemical evaluation, color separation was achieved using color deconvolution
with spot vector and background data [36]. First, automatic cell detection was performed
using default software settings to identify all cells in each ROI. This function produces
up to 33 individual measurements, which were refined using the QuPath “add smoothed
features” command. A two-way random tree classifier was then trained to distinguish
OSCC tumor cells from other cell or tissue types. Intensity thresholds were defined in the
software’s default settings to further subdivide tumor cells with negative, weak, moderate,
or strong positive staining based on mean optical DAB densities [35].

For each ROI, a histoscore (H-score) was calculated by adding 3×% strongly stained
tumor cells, 2×% moderately stained tumor cells, and 1×% weakly stained tumor cells [37],
resulting in scores ranging from 0 (all tumor cells negative) to 300 (all tumor cells strongly
positive). The means of the three different ROIs were calculated for statistical analysis.

2.8. Statistical Analysis

All data were tested for normal distribution using the Shapiro–Wilk test. Since all data
were normally distributed, group comparisons were performed using one-way ANOVA
analysis. Post hoc comparisons were performed using Tukey’s tests. All statistical analyses
were performed at a significance level of α = 5% using Prism 10.10 software (GraphPad, La
Jolla, CA, USA). A p-value less than 0.05 was considered statistically significant.

3. Results
3.1. Sclerostin Expression in Different OSCC Tumor Cell Lines

To detect sclerostin expression in the two different OSCC tumor cell lines (SCC-040 and
PCI-13), qRT-PCR analysis was performed and cycle threshold (CT) values were determined
as shown in Figure 2. Sclerostin expression was detected in both cell lines, although its
expression was higher in the OSCC cell line SCC-040 (MV 24.57) than in the PCI-13 cell
line (MV 31.26).

https://qupath.github.io/
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3.2. Evidence of Osteogenic Differentiation of hMSCs and Their Sclerostin Expression

For co-culture experiments, hMSCs were cultured in osteogenic differentiation medium
(DMEM) for 14 days. To demonstrate successful differentiation, qRT-PCR analysis of known
osteogenic markers (ALPL, COL1A1, osteocalcin, osteopontin, osterix, and RUNX2) [38]
and sclerostin expression was performed. Undifferentiated hMSCs were used as a control
and GAPDH was used as endogenous reference gene. The analysis revealed overexpression
of the known osteogenic markers ALPL, osteocalcin, and osterix, indicating successful
differentiation of the hMSCs. In addition, higher sclerostin expression was detected in the
osteogenically differentiated hMSCs compared to the undifferentiated controls (Figure 3).
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Figure 3. Graphical representation of the relative mRNA expression from the qRT-PCR experiments
for the different osteogenesis markers ALPL, COL1A1, osteocalcin, osteopontin, osterix, and Runx2,
as well as sclerostin expression. Undifferentiated hMSCs served as controls, GAPDH was used as
internal housekeeping gene. Successful osteogenic differentiation of hMSCs is shown.

3.3. Effect of Sclerostin Treatment on Tumor Cell Proliferation

To evaluate the influence of sclerostin on tumor cell proliferation, the two OSCC
tumor cell lines SCC-040 and PCI-13 were treated with different concentrations (1 ng/mL,
5 ng/mL, and 10 ng/mL) of rh-sclerostin for different time periods (24 h, 36 h, 48 h, 60 h,
and 72 h). The experiments showed a significant increase in tumor cell proliferation for the
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SCC-040 tumor cell line at the higher sclerostin concentrations (5 and 10 ng/mL) after all
treatment times (24 h, 36 h, 48 h, 60 h and 72 h, all p-values < 0.05). In addition, a significant
effect was also demonstrated for the highly proliferative PCI-13 tumor cell line for all
sclerostin concentrations after treatment periods of 24 h, 36 h and 48 h (all p-values < 0.05,
Figure 4).
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Figure 4. Illustration of tumor cell proliferation under sclerostin treatment at different concentrations
(1, 5, and 10 ng/mL) and time periods (24 h, 36 h, 48 h, 60 h, and 72 h). Untreated tumor cells
(0 ng/mL) were used as controls: (a) SCC-040 cell line; (b) PCI-13 cell line. Statistical test: one-way
ANOVA with Tukey’s tests for post hoc comparisons; * p-values between 0.01 and 0.05 (significant);
** p-values between 0.001 and 0.01 (very significant). A significant influence of sclerostin on the tumor
cell proliferation rate is shown, which seems to be time- and dose-dependent.

3.4. Effect of Sclerostin Treatment on Tumor Cell Migration and Invasion

A Boyden chamber assay was performed to evaluate the influence of sclerostin on
tumor cell migration and invasion. Preliminary experiments have shown that the low
proliferative SCC-040 tumor cell line grows strongly in clusters, and evaluation of migration
and invasion using the described assay was not practical. For this reason, migration and
invasion assays were performed only on the PCI-13 cell line. For this purpose, PCI-13 cells
were placed in the upper compartment of Boyden chambers and treated with different
concentrations of sclerostin (1 and 5 ng/mL). After a period of 24 h, the migration of the
tumor cells to the lower compartment of the chamber was evaluated by using fluorescence
microscopy and cell nucleus counting with Arivis4D.

The analysis revealed significantly increased PCI-13 tumor cell migration for the higher
concentration of sclerostin (5 ng/mL) compared to the low concentration (1 ng/mL) and the
untreated controls (0 ng/mL), as shown in Figure 5a (all p-values < 0.05). Subsequently, the
porous membrane of the Boyden chamber assay was additionally coated with collagen to
simulate tumor cell invasion into the extracellular matrix. The tumor cells were treated with
1 and 5 ng/mL rh-sclerostin, equivalent to the migration assay, and tumor cell invasion into
the membrane was evaluated by fluorescence microscopy. The results showed increased
tumor cell invasiveness with increasing sclerostin concentration, with only the higher dose
of sclerostin (5 ng/mL) showing a statistically significant result (p < 0.05), as shown in
Figure 5b.
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Figure 5. Illustration of PCI-13 tumor cell migration and invasion after 24 h under sclerostin treatment
at different concentrations (1 and 5 ng/mL). Untreated tumor cells (0 ng/mL) were used as controls:
(a) Migration of PCI-13 tumor cells; (b) Invasion of PCI-13 tumor cells. Statistical test: one-way
ANOVA with Tukey’s tests for post hoc comparisons; ** p-values between 0.001 and 0.01 (very
significant); **** p-values < 0.0001 (extremely significant). A significant effect of sclerostin on tumor
cell migration and invasion rate is shown, which seems to be dose-dependent.

3.5. Migration Analysis by Scratch Assay

To additionally evaluate PCI-13 cell migration, a scratch assay was performed under
sclerostin treatment of tumor cells at different concentrations (1, 5 ng/mL) and time periods
(0 h, 12 h, 24 h, 36 h). As shown in Figures 6 and 7, scratch closure was observed regardless
of the sclerostin concentration.
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OSCC tumor cell line with (1 and 5 ng/mL) and without (0 ng/mL, control) sclerostin treatment.
Magnification ×4.
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Figure 7. Illustration of the scratch assay to visualize the migration rate of PCI-13 tumor cells under
sclerostin treatment at different concentrations (1 and 5 ng/mL) over different time periods (0 h, 12 h,
24 h, 36 h). No significant effect of sclerostin was observed in the scratch assay.

3.6. Tumor Cell Migration in Co-Culture with Osteogenic Differentiated hMSC Cells

To simulate the influence of osteogenic active cells on tumor cell characteristics, PCI-
13 cells were co-cultured with osteogenically differentiated and undifferentiated hMSCs
and the tumor cell migration rate was evaluated equivalently to that described in the
previous experiments. In addition, tumor cells were treated with differentiation medium
alone. Monocultured PCI-13 in normal cell culture medium served as a control. The
study revealed the highest tumor cell migration rate for the PCI-13 cells co-cultured with
osteogenically differentiated hMSCs (p-value < 0.05), as shown in Figure 8. Lower tumor
cell migration rates were observed both in co-culture with undifferentiated hMSCs and in
monoculture with the differentiation medium, but still higher than the untreated controls.
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Figure 8. Illustration of the migration rate of PCI-13 tumor cells in co-culture with osteogenically
differentiated and undifferentiated hMSCs, as well as in monoculture treated with differentiation
medium. Monocultured PCI-13 cells in normal cell culture medium serve as control. Statistical test:
one-way ANOVA with Tukey’s tests for post hoc comparisons; * p-values between 0.01 and 0.05
(significant). A significant influence of osteogenically differentiated hMSCs on the migration rate of
PCI-13 tumor cells was demonstrated.

3.7. Sclerostin Expression of Tumor Cells at the OSCC–Jawbone Interface

To evaluate sclerostin expression in tumor cells at the OSCC–jawbone interface in
clinical cases, histological slides from 15 patients with bone-invasive OSCC were prepared
and immunohistochemically evaluated. H-score values ranged from 61 to 127 (MV 94,
SD 21), indicating significant sclerostin expression in tumor cells at the OSCC–jawbone
interface. The results of all H-score values are shown in Table 1. H-score values range
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from 0 to 300, with 0 indicating that no cells are positive and 300 indicating that all cells
are strongly positive. The OSCC–jawbone interface is highlighted in Figure 9, indicating
significant sclerostin expression in tumor cells and bone-associated osteoclasts.
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Figure 9. Histological illustration of the OSCC–jawbone interface with additional sclerostin immuno-
histochemistry. (A) Overview of the boundary between the local jawbone and the surrounding tumor
cell clusters of OSCC; (B) enlarged view; (C) highly magnified image of direct tumor cell–bone contact
with osteolysis lacunae; (D) visualization of multinucleated osteoclasts within osteolysis lacunae
(OL). Significant sclerostin expression was found in both OSCC tumor cells and bone-associated cells
at the OSCC–jawbone interface.

4. Discussion

The process of local jawbone invasion in OSCC is a milestone in tumor progression [9],
indicating aggressive tumor biology [39], and is considered a prognostic indicator asso-
ciated with increased recurrence frequency and decreased survival rates [39–42]. The
negative clinical impact in terms of impaired functionality, aesthetics and associated re-
duced HRQOL [43] is a major challenge that requires aggressive oncological treatment
with resection of the involved bone sections and functional and aesthetic plastic reconstruc-
tion [44]. Its clinical significance has led to the inclusion of bone invasion status in the
T-status of the International Union Against Cancer (UICC) and American Joint Commit-
tee on Cancer (AJCC) OSCC staging systems, reflecting its importance in disease staging
and treatment decision-making [45]. However, the mechanisms of OSCC bone invasion
involve complex cellular and molecular processes, including regulation of osteoclast dif-
ferentiation [46], bone resorption [9], and expression of various molecular targets such as
parathyroid hormone-related protein [47], fractalkine [48], and the Axin2–snail axis [49],
and remain poorly understood [9].

The invasion of solid tumors into bone is known to be based on a complex interaction
between tumor cells, bone-forming osteoblasts, and bone-resolving osteoclasts [50]. Tumor-
derived cytokines in the tumor microenvironment (TME) alter the balance of osteoclast
and osteoblast activity, disrupting physiological bone homeostasis and promoting bone
destruction by enhancing osteoclast and inhibiting osteoblast function [50–52]. Osteolytic
bone lesions provide niches for tumor cells to further interact with osteoblasts and osteo-
clasts, creating a vicious cycle that perpetuates tumor growth in bone [52,53]. While the
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interaction between tumor cells and osteoclasts is well established, the influence of tumors
on osteoblasts at sites of bone invasion has received less attention [54,55].

There is increasing evidence in the literature that sclerostin plays a key role in sev-
eral Wnt-related musculoskeletal disorders [25,31], primary bone tumors of various enti-
ties [28,30], and the development of bone metastases [26–29]. Mendoza-Villanueva and
colleagues have shown that Runx2 and CBFb inhibit osteoblast differentiation in bone
metastatic breast cancer cells and that this inhibition is mediated by the induction of scle-
rostin expression [26]. In addition, two target genes, IL-11 and GM-CSF, were identified
as being involved in the enhanced osteoclast activation [26]. Wijenayaka and colleagues
treated human pre-osteocyte cultures and mouse osteocyte-like cells with recombinant
sclerostin and observed that it upregulated the expression of receptor activator of nuclear
factor kappa B (RANKL) mRNA and downregulated osteoprotegerin (OPG) mRNA, lead-
ing to increased osteoclast activity [56]. In addition, sclerostin reduces BMP signaling and
suppresses osteoblast cell mineralization [24]. In breast cancer, the SOST gene was found
to interact with signal transducer and activator of transcription 3 (STAT3) and enhance
TGF-β/KRAS (Kirsten rat sarcoma virus) signaling, leading to increased tumor growth
and bone metastasis [57]. Knockdown of SOST has been shown to activate the Wnt/β-
catenin signaling pathway to promote proliferation and invasion and decrease apoptosis in
retinoblastoma cells [58].

In the present investigation, we demonstrate significant levels of sclerostin expression
in tumor cells at the OSCC–jawbone interface in patients with locally advanced, bone-
invasive, growing OSCC. OSCC tumor cells can actively synthesize sclerostin in vitro, and
their cellular properties in terms of proliferation, migration, and invasion can be enhanced
by sclerostin treatment, which appears to be dose- and time-dependent, with these effects
most evident at higher doses of sclerostin and longer treatment times. Initial data from
our co-culture experiments with osteogenically differentiated hMSCs confirm this effect.
Similar results have been reported by Zhu and colleagues [27]. The effect of sclerostin on
the proliferation, migration, and invasion abilities of two different breast cancer cell lines
(MCF-7 and MDA-MB-231) was investigated by inhibiting sclerostin with an inhibitory
antibody at different doses (1 and 4 µg/mL) and time periods (1, 2 and 3 days). While
no effect on tumor cell proliferation was observed, migration and invasion rates were
significantly reduced. The authors concluded that sclerostin inhibition may reduce the
potential of breast cancer tumor cells to form bone metastases [27].

To date, no studies have been published demonstrating a direct relationship between
sclerostin function and bone invasion in OSCC. The data presented here provide the first ev-
idence of such an association, which is of high clinical interest. We have recently shown that
human OSCC tumor cells upregulate sclerostin expression under TGF-β treatment and that
sclerostin expression has significant prognostic implications for patients [32]. Tumor cells
that increase their migratory and invasive capabilities undergo an epithelial–mesenchymal
transition (EMT) process, and the TGF-β signaling pathway is known to be primarily
involved [59]. The increase in sclerostin expression during this process may represent a
priming of tumor cells prior to local bone invasion. It may play an important role in mod-
ulating tumor cell behavior by affecting key signaling pathways such as Wnt/β-catenin
and TGF-β/KRAS, which ultimately influences the proliferation, migration and invasion
of OSCC tumor cells. In addition, sclerostin appears to be involved in the establishment of
a tumor-friendly microenvironment by inhibiting osteoblast differentiation and function
and promoting osteoclast formation and activity at the site of tumor invasion [26,56].

However, the results of this study must be interpreted with caution because the func-
tional studies were performed on only two OSCC tumor cell lines, and OSCC belongs to a
heterogeneous group of tumors with different tumor cell clones and characteristics. Further
studies are needed to evaluate these effects on different stages of OSCC transformation
and to focus on the molecular background and possible interaction partners. The clinical
presentation of sclerostin expression at the jawbone interface of OSCC was demonstrated in
only a small number of cases, with no statistically significant effect on clinical parameters,
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such as factors of the TNM classification system. Future studies need to overcome this
limitation and include osteoblast and osteoclast activity in this region.

As anti-sclerostin drugs such as romosozumab [60] and raloxifene [61] are already
approved for the treatment of overt postmenopausal osteoporosis, the impact of these drugs
on sclerostin–bone metabolism interactions in OSCC should also be evaluated to assess
a potential therapeutic benefit for the treatment of patients with advanced tumor stage.
Inhibition of sclerostin may offer the clinical potential to reduce local bone destruction
in OSCC, reduce the extent of surgical intervention with corresponding functional and
aesthetic benefits, and improve patient quality of life.

5. Conclusions

The data presented here provide a first indication of a possible involvement of scle-
rostin function in OSCC bone invasion by altering the cellular properties of tumor cells
towards a more aggressive phenotype. The immunohistochemical data confirm high scle-
rostin expression at the OSCC–jawbone interface, which may maintain a tumor-friendly
microenvironment and support bone invasion. Further functional and clinical studies are
needed to elucidate the molecular background and to potentially exploit drug inhibition of
sclerostin therapeutically to reduce local jawbone destruction and improve patient quality
of life.
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