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Simple Summary: Metabolic-dysfunction-associated steatotic liver disease (previously known as
non-alcoholic fatty liver disease) is a term for a range of liver conditions in which excess fat builds up
in the liver. This can eventually lead to liver inflammation, chronic liver disease and, in some cases, a
form of liver cancer (hepatocellular carcinoma). This condition is increasing worldwide, with patients
most at risk being overweight or obese or having type 2 diabetes. Hepatocellular carcinoma is seen in
patients with this condition at different stages, and research is ongoing to identify why some patients
appear to develop cancer at an earlier stage of liver disease than others, and how to best treat them,
as there appear to be variations in how well patients respond depending on what caused the liver
inflammation initially. Here, we summarise the research to date and discuss the potential rationale
for what has been observed.

Abstract: Metabolic-dysfunction-associated steatotic liver disease (MASLD, previously known as
non-alcoholic fatty liver disease (NAFLD)) represents a rapidly increasing cause of chronic liver
disease and hepatocellular carcinoma (HCC), mirroring increasing rates of obesity and metabolic
syndrome in the Western world. MASLD-HCC can develop at an earlier stage of fibrosis compared
to other causes of chronic liver disease, presenting challenges in how to risk-stratify patients to set up
effective screening programmes. Therapeutic decision making for MASLD-HCC is also complicated
by medical comorbidities and disease presentation at a later stage. The response to treatment,
particularly immune checkpoint inhibitors, may vary by the aetiology of the disease, and, in the
future, patient stratification will be key to optimizing the therapeutic pathways.

Keywords: non-alcoholic fatty liver disease (NAFLD); metabolic-dysfunction-associated steatotic
liver disease (MASLD); cancer; liver; hepatocellular carcinoma (HCC); immunotherapy

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is an encompassing term for a spectrum of
chronic liver diseases, ranging from simple steatosis of at least 5% in an imaging or histologi-
cal assessment of the liver (also known as non-alcoholic fatty liver (NAFL)) to non-alcoholic
steatohepatitis (NASH), which is characterised by inflammation associated with steatosis,
to the development of fibrosis and established cirrhosis. A key complication of NAFLD is
the development of hepatocellular carcinoma. The term metabolic-dysfunction-associated
steatotic liver disease (MASLD) has now replaced NAFLD [1,2]. MASLD is defined as the
presence of hepatic steatosis in conjunction with at least one cardiometabolic risk factor,
while the presence of steatohepatitis is now termed metabolic dysfunction-associated steato-
hepatitis (MASH). This review will use the newly accepted MASLD/MASH nomenclatures.

2. Epidemiology of MASLD

Obesity rates are rising, having almost tripled since 1975, with 39% of adults estimated
by the WHO to be either obese or overweight in 2016 [3]. MASLD rates mirror the increas-
ing incidence of obesity, and represents a major cause of chronic liver disease worldwide,
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with a recent meta-analysis reporting an overall global prevalence of 30%, increasing by
50% between 1990 and 2019 [4]. The rates by country have been reported as 33% in SE Asia
and South Asia, 44% in Latin America and 25% in Western Europe [4]. The true prevalence
is likely underestimated in the literature due to the previous practice of diagnosing “crypto-
genic cirrhosis” in the absence of evidence of viral, alcohol or immune-related liver disease.
This increase is also further demonstrated in a recent European liver transplant registry
analysis showing an increase in the percentage of recipients transplanted for MASH-related
complications from 1.2% in 2002 to 8.4% in 2016 [5].

3. Pathogenesis and Progression of MASLD

MASLD is characterised by excessive lipid accumulation associated with insulin
resistance in patients for whom alternative causes, such as viral hepatitis, significant
alcohol intake and other secondary causes, have been excluded. There is a strong and
complex relationship between MASLD and metabolic syndrome, which is defined as the
combination of insulin resistance/type 2 diabetes mellitus, obesity, hypertension and
dyslipidaemia [6]. It is being recognised as a complex multi-system disorder, and MASLD
is increasingly being described as its hepatic manifestation. One study of patients with
MASH observed that, within this population, the prevalence of obesity was 82%, that of
type 2 diabetes mellitus was 47%, that of hyperlipidaemia was 72% and that of metabolic
syndrome was 71% [7]. Type 2 diabetes mellitus in MASLD has been recognised as a risk
factor for progression to MASH, cirrhosis and mortality, and poor glycaemic control is
associated with a higher likelihood of MASH and/or advanced fibrosis [8,9].

The pathological processes behind MASLD have been described through the concept
of a “multiple hit” hypothesis that asserts that genetically susceptible patients are impacted
by environmental factors (lifestyle, gut microbiome, dietary choices, obesity) leading to
lipid accumulation, insulin resistance, obesity and unfavourable alterations in the gut
microbiota [10]. This, in turn, leads to increased hepatic de novo lipogenesis and the
impaired inhibition of adipose tissue lipolysis, resulting in the increased delivery of free
fatty acids to the liver and the accumulation of hepatic fat. The subsequent lipotoxicity
contributes to mitochondrial dysfunction, with the production of reactive oxygen species
and endoplasmic-reticulum stress. This is compounded by insulin resistance and increased
levels of the absorption of lipopolysaccharides (LPSs) from the gut due to increased gut
permeability secondary to the abovementioned altered gut microbiome. Cellular damage
can then trigger immune cell infiltration, fibrogenesis and subsequent hepatic progenitor
cell activation. Insulin resistance additionally results in adipose tissue dysfunction via the
secretion of adipokines and proinflammatory cytokines, thereby potentiating inflamma-
tion [9]. At the cellular level, these processes result in oxidative stress and DNA damage in
hepatocytes, which, combined with inflammation, is thought to eventually lead to fibrosis
and cirrhosis. This has been reviewed in more detail elsewhere [11,12].

The natural history of MASLD is still not fully understood and is likely influenced by
multiple extra-hepatic factors, as described above. Chronic hepatic inflammation is a key
step leading to the development of MASH from “simple steatosis” and can be important
in the development of HCC [13]. Only a minority of patients with steatosis will develop
MASH, which is thought to be the key determinant in the further progression towards
bridging fibrosis and subsequent liver-related complications/liver-related deaths [14].
However, it is worth noting that, in keeping with the concept of the multi-system effects of
metabolic syndrome, cardiovascular-disease-related death has been shown to be the main
cause of death in MASLD [15]. The progression from simple steatosis to more severe forms
of MASLD does not appear to be a linear, unidirectional relationship. Paired-biopsy studies
have demonstrated a dynamic relationship between MASLD and MASH over time, with a
large single-centre study of 108 patients over a median of 6.7 years reporting that 42% of
them showed signs of progression, 40% demonstrated stable disease and 18% demonstrated
regression from either condition [16].
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The management of MASLD includes lifestyle modifications to reduce weight, in-
cluding dietary modifications and exercise [17–19]. These have limited benefits in many
individuals and therefore therapeutic strategies are also important. Diabetes mellitus
should be controlled and there is currently a great deal of interest in GLP-1 agonists, such
as liraglutide and semaglutide [20–25].

4. Hepatocellular Carcinoma in MASLD

Hepatocellular carcinoma (HCC) accounts for 90% of primary liver cancer. According
to 2020 estimates, primary liver cancer is the sixth most common cancer worldwide and
the third most common cause of cancer-related death [26]. HCC most commonly develops
against the backdrop of chronic liver disease with varying aetiologies. While, previously,
chronic viral hepatitis was the most common aetiology of chronic liver disease leading to
HCC [27], due to the high prevalence of chronic HBV in sub-Saharan Africa and Southeast
Asia, successful treatment and prevention programmes for viral hepatitis have reduced the
prevalence of these in recent decades [28,29]. Simultaneously, the rates of MASLD have
increased significantly, as described above. A large U.S. healthcare database study of 4406
reported HCC cases identified MASLD as the most common form of chronic liver disease
at 59% [30]. Mortality from HCC remains high, with 5–15% survival at 5 years [31]. As
the prevalence of MASLD continues to rise, so do the rates of MASLD-HCC, with one
study demonstrating an increase of 9% per annum between 2004 and 2009 in the U.S. [32].
MASLD-HCC is now the fastest rising cause of HCC and the fastest growing indication
for orthoptic liver transplantation (from 2.1% to 16.2% from 2000 to 2016) [33]. Dynamic
Markov modelling for MASLD-HCC across eight countries predicts a 122% rise in its
incidence by 2030 [34]. The incidence of HCC in patients with established MASLD cirrhosis
ranges from 0.7 to 2.6%.

There is a significant overlap between the recognised risk factors for the progression of
MASLD to advanced fibrosis and those that are associated with subsequent tumorigenesis.
Key risk factors for MASLD-HCC development are age, male gender and the presence of
advanced fibrosis/cirrhosis [32,35]. As described earlier, metabolic syndrome is strongly
associated with the development of MASLD. The components of this clinical phenotype
have, in turn, been shown to be independent risk factors for HCC, particularly obesity
and diabetes mellitus [36]. Obesity is an independent risk factor for multiple forms of
malignancy [37], including HCC [38]. Additionally, genetic polymorphisms, especially
those related to PNPLA3, may be a contributory factor to disease progression in MASLD as
well as, in some cases, MASLD-HCC, as illustrated in Table 1.

The presence of cirrhosis remains the most important risk factor for the development of
HCC, with a more than 10-fold increase in the risk of HCC with progression to cirrhosis [39].
However, there is increased recognition that MASLD-HCC can develop at an earlier stage,
with up to 25–50% of cases of MASLD-HCC arising in patients without established cirrhosis,
as illustrated in Table 2, which summarises recent studies on the rates of HCC within cohorts
of patients with MASLD.

Looking more closely at the non-cirrhotic population, the risk of HCC has been shown
to be higher in individuals with inflammation than in those without it, at 5.29 per 1000 p.a.
in MASH vs. 0.44 per 1000 p.a. in MASLD [7]. However, there are relatively few studies
that have determined the true incidence of HCC in pre-cirrhotic MASH due to the need
for a liver biopsy to confirm the stage of the disease. Table 3 compares subpopulations
of patients with and without MASLD cirrhosis in recently published cohorts of patients
with HCC.
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Table 1. Genetic polymorphisms associated with MASLD and MASLD-HCC.

Gene Activity Relevant Polymorphism Function Frequency Relationship with MASLD
Progression

Relationship with Development
of HCC

PNPLA3 (Patatin-like
phospholipase domain

containing 3)

Hydrolyses triglycerides
and retinyl esters

rs738409 c.444 C > G,
p.I148M

Encodes a methionine
substitution that delays

proteasomal degradation and
hampers lipid mobilisation

17–49%
[40]

Increased risk of MASLD,
MASH and fibrosis [41,42]

Independent risk factor for
HCC [43–45], independent of
gender, age, BMI, T2DM and

presence of advanced
fibrosis/cirrhosis

MBOAT7 (Membrane bound
0-acetyl transferase domain

containing 7)

Phospholipid remodelling
gene rs641738 C > T

Reduces expression of hepatic
MBOAT7 protein, favouring

fat accumulation
35–40%

Increased hepatic fat
content, MASLD, MASH

and fibrosis [46,47]

Associated with HCC,
independent of presence of

cirrhosis [48]

TM6SF2 (Transmembrane 6
superfamily member 2)

Role in triacylglycerol-rich
lipoprotein lipidation

rs58542926 c.449 C > T,
p.Glu167Lys Retention of VLDL in the liver 3.4–7.2%

Increased hepatic TG
content, MASH and

fibrosis [49,50]

Not significantly associated with
HCC in multivariate analysis [49]

Abbreviations: HCC, hepatocellular carcinoma; MASLD, metabolic dysfunction associated steatotic liver disease; T2DM, type 2 diabetes mellitus.

Table 2. Studies of MASLD cohorts comparing the incidence of HCC with and without cirrhosis.

Ref. Study Design Years Studied Country Size of Cohort HCC Rates Risk Factors Duration of Follow-Up

[39]
Retrospective cohort study of MASLD
and control patients from 130 facilities
in the Veterans Health Administration

2004–2015 U.S.

296,707 MASLD patients with
296,707 matched controls

MASLD: 0.21/1000 PYs
Control: 0.02/1000 PYs

9 years (SD: 2.2)
Cirrhosis (80%) 10.6/1000 PYs

Age > 45 years
Male

Hispanic ethnicity

Without cirrhosis 0.08/1000 PYs

[51]

Retrospective cohort study of patients
with cirrhosis diagnosed between 2001

and 2014 in the Veterans Affairs
healthcare system

2001–2017 U.S.

116,404 patients 2/100 PYs

Age
Male

Hispanic ethnicity
AFP
ALP

AST/ALT ratio
Serum albumin
Platelet count

4.3 years

MASLD (15%) 9/100 PYs T2DM

HCV (45%) 3.3/100 PYs

ALD (31%) 0.86/100 PYs T2DM
Elevated BMI
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Table 2. Cont.

Ref. Study Design Years Studied Country Size of Cohort HCC Rates Risk Factors Duration of Follow-Up

[52] Retrospective cohort study of patients
with MASLD steatosis only Pre 2012 Japan 6508 patients 0.43/1000 PYs

Age
T2DM

Platelet count
AST

5.6 years

[53] Retrospective cohort study of patients
with cirrhosis

2003–2007 U.S.

510 patients Age
Alcohol intake

3.2 years (1.7–5.7)
MASH: 195 Yearly cumulative incidence:

2.6% p.a.

HCV: 315 4.0% p.a.

[54]

Retrospective cohort study of patients
undergoing health check ups between

2004 and 2005 at a tertiary referral
hospital

2004–2015 Korea
25,947 patients MASLD: 33.6%

(NB: patients with cirrhosis
excluded)

782.9/100,000 PYs
High MASLD fibrosis score

(NFS) and high fibrosis-4
(FIB-4) score

7.5 years (3.2–9.3)

Abbreviations: AFP, alpha fetoprotein; ALP, alkaline phosphatase;; ALT, Alanine transaminase; AST, aspartate aminotransferase; HCC, hepatocellular carcinoma; HCV, hepatitis C virus;
MASH, metabolic dysfunction-associated steatohepatitis; MASLD, metabolic dysfunction associated steatotic liver disease; PYs, person years; T2DM, type 2 diabetes mellitus.

Table 3. Studies of HCC cohorts: proportions of MASLD-HCC patients without cirrhosis.

Ref. Study Design Years Studied Country Size of Cohort Proportion with Condition Proportion without Cirrhosis

[55] Retrospective observational study of patients with confirmed
HCC in the U.S. Veterans Administration

2005–2010 U.S.
1500 patients Without cirrhosis overall: 13%

MASLD: 8% 34.6%

[56] Retrospective observational study of patients with histologically
proven MASH who developed HCC 1993–2010 Japan 87 patients MASH: 100% 49%

[57] Multi-centre prospective observational study of patients with
HCC with either HCV or MASLD

2010–2012 Italy 756 patients HCV: 81% 2.8%

MASLD: 19% 46.2%

[30] Retrospective evaluation of patients with verified HCC via U.S.
healthcare insurance database

2002–2008 U.S. 4406 patients Without cirrhosis overall: 25%

MASLD: 59% 54%

[32] Retrospective population-based study of patients within
Medicare-linked HCC registry 2004–2009 U.S. 4929 patients

MASLD: 9% annual
increase from 2004 to 2009

(from 14.4 to 20.3%)
Not able to assess due to data

[58] Prospective cohort study of patients with HCC referred to a
single tertiary liver unit 2000–2010 U.K. 632 patients

MASLD: 35% in 2010,
increased from

none/undefined in 2000
22.5%

Abbreviations: HCC, hepatocellular carcinoma; HCV, hepatitis C virus; MASH, metabolic dysfunction-associated steatohepatitis;.MASLD, metabolic dysfunction associated steatotic
liver disease.
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5. Pathogenesis of MASLD-HCC

The pathogenesis of HCC in MASLD is complex and still being elucidated. An outline
of the potential pathways is illustrated in Figure 1. The lipid accumulation in hepatocytes
and associated lipotoxicity create a dynamic proinflammatory environment and eventually
lead to fibrogenesis [59]. The ongoing hepatocyte regeneration and tissue remodelling lead
to an increased risk of subsequent tumorigenesis. Multiple oncogenic pathways within
this proinflammatory environment are implicated in the development of HCC, impacting
the genomic stability and telomere maintenance, as well as leading to alterations in DNA
damage response pathways and aberrant signal transduction cascades [60–62]. The wide
variety of mechanisms of tumorigenesis results in significant heterogeneity in HCC.
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5.1. Immune Response in MASLD and HCC

The liver is uniquely immunotolerant, which is important to limit inflammation
secondary to ongoing antigen exposure via the portal circulation. The mechanisms that
maintain the homeostasis and immune tolerance are disrupted in the setting of MASLD
and chronic inflammation. Both the adaptive and innate arms of the immune system
are involved.

In a mouse model of MASH, activated CD8+ T cells and NKT cells accelerated the
disease progression and hepatic tumorigenesis through the secretion of proinflammatory
molecules [63]. A second murine study demonstrated that increased CD8+ PD1+ T cells
impairs immunosurveillance and triggers hepatocarcinogenesis [64]. However, it appears
that a subset of CD8+ T cells also plays a protective role, supporting the resolution of
inflammation in the resolution of MASH in mice [65]. Another dysregulated T-cell group is
CD4 T cells, which usually support efficient immune surveillance and impair tumorigenesis
but are reduced in MASH [66].

Dysfunction of the innate immune system is another key player in MASH development.
In the setting of MASH, natural killer (NK) cells appear to be more activated, although
there are contradictory studies regarding the changes in the frequencies of the circulating
cell numbers [67,68]. Kupffer cells, which function as resident macrophages of the liver,
are activated in the setting of hepatic inflammation, increasing the expressions of a range
of proinflammatory cytokines, which contribute to further hepatocyte inflammation and
hepatic stellate cell activation. Thus, an overall ineffective immune response appears
to promote chronic inflammation and hepatocarcinogenesis, whilst an effective immune
response can potentially clear malignant hepatocytes [69].

5.2. Signalling Pathway Deregulation

Several signalling pathways have been reported to be deregulated in HCC. These are
the subject of considerable interest as a means to identify therapeutic targets, particularly
those involving cell proliferation, apoptosis and metabolism. The aberrant pathways
currently under investigation include the following: Wnt/β-catenin signalling (activated
in up to 50% of HCC) [70]; phosphatidylinositol-3-kinase/protein kinase B/mammalian
target of rapamycin (PI3K/Akt/Mtor) (activated in 40–60% of HCC) [71]; Myc (activated
in 30–60% of HCC) [72,73]; Hedgehog signalling (activated in 50–60% of HCC) [74,75];
and mesenchymal epithelial transition (MET) (activated in 30–40% of HCC) responsible
for metastasis and migration [76]. These are excellent potential targets; however, the
modulators of these pathways have yet to reach clinical practice.

6. Clinical Presentation of MASLD-HCC

Due to the issue of the late presentation of HCC, it is important to identify it early in
its clinical course to enhance the potential for curative or ablative therapies. However, HCC
surveillance is challenging, and the guidelines vary. For instance, the AASLD guidelines
currently only recommend HCC surveillance in MASLD for patients with cirrhosis [2], the
EASL guidelines recommend additional individual risk assessment in patients with F3
fibrosis [77] and the American Gastroenterological Association recommends surveillance
in advanced fibrosis if at least two noninvasive testing modalities are concordant [78]. For
patients with MASLD without advanced fibrosis or established cirrhosis, the individual
risk of HCC development remains low (an incidence of 0.03 per 100 person years, 95%
CI: 0.01–0.07 [79]). This coupled with the size of the population would make the cost
of regular USS surveillance in this population prohibitive without further stratification.
Furthermore, with the high rates of obesity in MASLD, there is an increased likelihood
of central obesity, which potentially hampers the quality of USS imaging and reduces
the detection of smaller lesions. There is also the potential for harm as a result of the
overinvestigation of false-positive tests.

In cases of non-cirrhotic HCC, as individuals are generally not in a surveillance
programme, lesions are more likely to be picked up incidentally or symptomatically (the
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latter in particular making curative treatment very unlikely) [58]. Whilst the liver function
tends to be better preserved in MASLD-HCC patients without cirrhosis, the tumours tend
to be more advanced at the time of presentation, resulting in poorer overall outcomes than
other aetiologies of CLD [57,80]. This is due to patients having larger tumours at diagnosis
and more likely to have a diffuse infiltrative pattern into the liver parenchyma [57]. They
are also more likely to be older with more comorbidities, especially heart disease [32]
and other components of metabolic syndrome. As a result of this, they are less likely to
be offered curative surgical therapies, such as orthotopic liver transplantation (OLT) or
resection [81], with fewer options for HCC-specific treatment [55], and, hence, they have
worse outcomes.

7. Identification and Risk Stratification of MASLD Patients for HCC

The EASL policy statement published in April 2023 advocates for risk-based surveil-
lance for hepatocellular carcinoma in cirrhosis [82]. A similar approach for patients in the
pre-cirrhotic stage would allow for the screening of higher-risk patients in an economically
viable fashion. However, there are currently no disease-specific, evidence-based strategies
or reliable biomarkers to identify patients with non-cirrhotic MASLD at a higher risk of
progression and HCC development. Effective, economically viable methods of identifying
which patients with MASLD have significant fibrosis is challenging due to the scale of the
patient group and the difficulty in predicting the rate of progression due to the complexity
of the underlying disease.

There are a number of potential factors allowing MASLD patients to be categorised
into high- and low-risk groups for HCC to allow for targeted surveillance. The combination
of the presence of certain risk factors, as described above, could be used to identify patients
who may benefit from earlier screening, similar to the PAGE-B and REACH-B scores in
patients with chronic hepatitis B [83,84]. This form of precision medicine would require a
well-validated scoring calculator with individualised risk thresholds to trigger screening
for each patient. While no such current risk calculators exist for HCC screening, research is
ongoing in this area, both in clinical studies and via machine learning [85,86]. For example,
the GALAD score has been designed as a tool for earlier detection of HCC whichcombines
gender, age and alpha-fetoprotein (AFP), des-carboxy-prothrombin (DCP) and AFP isoform
L3 (AFP-L3) serum tests. This tool showed excellent diagnostic results in a retrospective
case–control study compared to liver biopsy [87], and it has been validated independently
with an optimal sensitivity of 91% and a specificity of 85% for HCC detection [88]. However,
its usefulness as a surveillance biomarker still requires investigation.

The liquid biopsy is a diagnostic test performed on serum for multiple biomarkers
related to tumour cells. The key markers are circulating tumour cells (CTCs) and circulating
tumour DNA (ctDNA). CTCs are tumour cells shed from the original tumour and are
identified via the presence of specific proteins (e.g., the presence of EpCAM and CK8/18/19
or the absence of CD45). The main limitation is the extremely low number of CTCs in
blood samples, particularly in early cancer, and their very short half-lives. Circulating
tumour DNA (ctDNA) are fragments of DNA released by tumour cells during apoptosis,
and they contain the aberrant genetic information of the tumour, including the modification
of the DNA, such as methylation signatures. However, alongside the detection of ctDNA
is the dilution effect of cell-free DNA (cfDNA), which is similarly fragmented DNA and
released by non-malignant apoptotic host cells. This limits the ability to isolate ctDNA
(which can represent as little as 0.01% of the total cfDNA in the circulation) from non-
malignant cfDNA unless searching for a specific mutation or methylation signature [89]. If
detected, ctDNA can reveal genetic mutations or amplifications relevant to HCCs, such
as P53, Wnt, β catenin and mutations relevant to the cellular response to oxidative stress
(KEAP1, NFE2L2). These traces of tumour biomarkers have the potential to allow for a
personalised medicine approach in which specific DNA changes determine the treatment
protocol. Furthermore, as HCC is a disease that arises against the backdrop of distinct
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conditions, the biomarkers would need to be disease-specific. The identification of specific
biomarkers in HCC arising in the setting of MASLD is an area of ongoing investigation.

8. Therapeutic Approaches to Reduce Progression to MASLD-HCC

There is significant interest in interventions that aim to potentially modulate the HCC
risk profile of high-risk patients. The management of MASLD itself to prevent disease
progression is likely to be key. A number of interventions have been shown to have the
potential to reduce both the MASLD progression and HCC risk.

Lifestyle management strategies, such as dietary modifications aiming at weight loss
and the treatment of the underlying metabolic syndrome, are the mainstays of MASLD
therapy. However, lifestyle changes in particular can be challenging due to the need to
maintain them from the medium to long term. Regular physical activity, and particularly
aerobic and resistance training, have been shown to lead to a decrease in overall liver
fat, independent of weight loss [18], and now form part of recommendations in recently
published guidelines from the British Society of Gastroenterology/British Association for
the Study of the Liver (BASL/BSG) on the management of MASLD 2023 [90]. In terms of the
oncogenic risk, the pan-European EPIC cohort study (European Prospective Investigation
into Cancer and Nutrition) demonstrated an association between physical activity (defined
as 2 or more hours of vigorous activity per week) and a reduction in the HCC risk, with
a hazard ratio of 0.50 (95% CI: 0.33–0.76) in the group that undertook vigorous physical
activity [91]. Weight loss is the intervention most likely to be of benefit. With dietary
changes alone, patients are advised to aim for a calorie deficit targeting 5–10% weight
loss. While as little as 5% weight loss improves steatosis [17], 7–10% weight loss has been
shown to improve histological endpoints such as the MASLD activity score and fibrosis,
with a more than 10% body weight reduction associated with MASH resolution and an
improvement in fibrosis by one stage [19]. However, the optimal dietary recommendation
for MASLD is not known. Currently, the Mediterranean diet is the most widely recom-
mended in view of its positive effects on cardiovascular risk [92] and has recently been
shown to improve the intrahepatic lipid contents [93]. Weight management services should
be considered if weight loss goals are not achieved with dietary changes alone. Bariatric
surgery to achieve weight loss has also been investigated for its impact on the MASLD and
HCC risk. A systematic review and meta-analysis of nine studies assessing the incidence of
HCC post-bariatric surgery demonstrated a reduction in the HCC risk (an incidence rate
ratio of 0.28; 95% CI: 0.18–0.42), although further analysis was limited by incomplete data
on the prevalence of MASLD/MASH [94]. A more recent meta-analysis of 32 studies in
which patients were followed up for at least 3 years post-bariatric surgery versus lifestyle
changes also only identified a reduced overall risk of all cancers, with a similar reduction
in the future incidence of HCC (relative risk: 0.35; 95% CI: 0.22–0.55), although again
there was limited analysis of the liver disease status. A more focused propensity-matched
analysis of patients post-bariatric surgery and obese controls from a single centre (a total of
4112 patients) demonstrated reduced new-onset MASH (6% vs. 10%, p < 0.0001) and HCC
(0.05% vs. 0.34%, p = 0.03) over a median 7.1-year follow-up period.

A detailed review of the pharmacological therapies for MASLD and their supporting
evidence is beyond the scope of this work. Broadly, the aim is for the robust management of
the cardio-metabolic risk factors, including dyslipidaemia, hypertension and type 2 diabetes.
There are currently no approved pharmacological therapies specifically for the treatment
of MASLD. However, of particular interest are agents from two anti-diabetic medication
classes: PPARγ agonists and GLP-1 receptor agonists. Pioglitazone is a PPARγ agonist
that acts as an insulin sensitiser and has been associated with a significant reduction in
insulin resistance, steatosis and hepatic histological improvements (including inflammation
and ballooning). It has been shown to reduce fibrosis progression and the development
of HCC in vitro and in murine models [95,96], with promising results in human case–
control and cohort studies to date [97–99]. However, the significant side-effect burden of
this class of drug, including bladder cancer risk, cardiovascular events and weight loss,
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warrants further review. The GLP-1 receptor agonist semaglutide is currently part of Phase
3 trials as a therapy for MASH, following promising results from earlier studies regarding
improvements in MASH without worsening fibrosis [22]. A recently published cohort
study was the first to compare GLP-1 receptor agonists vs. long-acting insulin therapy in
patients with type 2 diabetes mellitus, demonstrating a lower risk of cirrhosis and HCC in
the GLP1 receptor agonist group [100].

Within the armoury of anti-diabetic medication, whilst tight glycaemic control has
been shown to improve MASLD, overall, metformin appears to have a more significant
chemoprotective effect against HCC than other classes of drugs, including insulin. This is
thought to be related to its role in downregulating the MTOR pathway. It has been shown
to inhibit cancerous cell growth via the induction of cell cycle arrest and the enhancement
of apoptosis [101]. A meta-analysis of five studies of patients with diabetes has shown a
lower risk of developing HCC in patients treated with metformin (odds ratio: 0.38; 95% CI:
0.24–0.59), albeit with significant heterogeneity, and without significant detail regarding the
presence or absence of MASLD [102]. A further systematic review comparing metformin vs.
insulin/sulphonylureas also demonstrated a reduced risk of HCC with metformin, with an
OR of 0.47 (CI: 0.28–0.80), which was not seen with the other therapies [103]. Again, there
were no liver-specific data. One further case–control study showed a dose-dependent effect
in the protective effects of metformin against HCC in diabetic patients, with a 7% reduction
in the HCC risk per incremental year of metformin therapy [104]. In this study, 3.5% of the
HCC patients and 0.3% of the controls had liver cirrhosis not attributed to alcohol or viral
hepatitis. However, there is the potential for bias in the prescription of this drug, which is
traditionally avoided in patients with more advanced liver disease.

Statins are also of great interest for their role in modulating the HCC risk due to their
antioxidative, anti-inflammatory, endothelial function and anti-fibrotic properties. Several
meta-analyses have demonstrated a reduction in the incidence of HCC in patients taking
statins compared to controls, although, again, there were insufficient data for MASLD-
specific analysis [105–107]. A further meta-analysis of 24 studies of patients with HCC
identified a similar protective role of statin exposure, which appeared to remain significant
upon a subgroup analysis of patients with cirrhosis [108].

Overall, there is a need for research specifically focused on patients with MASLD
undergoing such interventions to assess their efficacy, as most studies to date have not
delineated this particular patient group in detail.

9. Therapeutics in HCC

Treatment options for HCC include surgical, locoregional and systemic therapies. The
choice of therapy is guided by the tumour burden, liver function and WHO performance
status. The traditional tumour–node–metastasis classification for the staging of solid-organ
malignancy is less useful in HCC, partly due to the need to incorporate the degree of
liver dysfunction into the decision-making process. While there are multiple proposed
alternative staging systems, the Barcelona Liver Clinic Cancer (BCLC) (shown in Figure 2)
is the most commonly used and is recommended by the AASLD [109] and EASL [77] to
help guide treatment.
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Figure 2. Updated Barcelona Clinic Liver Cancer Staging System 2022. Abbreviations: AFP, alpha
fetoprotein; ALBI, albumin–bilirubin; BSC, best supportive care; ECOG-PS, Eastern Cooperative On-
cology Group performance status; HCC, hepatocellular carcinoma; LT, liver transplant; MELD, Model
for End-Stage Liver Disease; TACE, transarterial chemoembolisation. Reprinted with permission
from Reig et al. [110].

9.1. Curative Treatments

Surgical resection offers a curative treatment for non-cirrhotic patients with single
localised lesions. Patients with cirrhosis are considered candidates for resection if they
have a solitary nodule without evidence of extra-hepatic spread and are well compensated
(Child Pugh A), with no evidence of clinically significant portal hypertension. Individuals
with MASLD may have comorbidities affecting their risk for surgery, which represents
an additional barrier to curative treatment for these individuals. Orthoptic liver trans-
plantation (OLT) is a curative option for patients not eligible for resection (e.g., due to
evidence of liver dysfunction or multinodular disease) who meet the Milan criteria (one
lesion < 5 cm or from two to three lesions between 3 and 5 cm). The risk of recurrence of
HCC post-OLT is significantly lower than in the postresection group, at 10% at 5 years
compared to 50–70% [111], although the prognosis of recurrent HCC in the post-OLT group
is poorer. However, a shortage of organ donors remains a significant limitation. While
being assessed for OLT or on the waiting list, patients should be offered bridging therapy
in the form of neoadjuvant locoregional therapy (e.g., transarterial chemoembolisation
(TACE) or ablation). Ablation is a further treatment with curative intent for single lesions
in patients with preserved liver function who decline or are not eligible for the surgical
treatments described above. This can be performed via radiofrequency (RFA) or thermal
ablation.
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9.2. Non-Curative Treatments

In patients with BCLC stage B HCC, transarterial chemoembolisation (TACE) is rec-
ommended. While not curative, TACE offers a significant improvement in overall survival
(OS) compared to the best supportive care. Combining TACE with systemic therapy has not
so far shown significant improvement compared to TACE alone but further clinical trials
are ongoing. Additional locoregional treatments include the stereotactic body radiotherapy
“cyberknife” and targeted chemotherapy using Yttrium microspheres [112,113].

Systemic treatments are currently offered to patients with BCLC stage C disease, BCLC
stage B disease unsuitable for the treatments described above or progressive disease fol-
lowing locoregional therapy. Another potential role for systemic therapy is as adjuvant
treatment, as the postresection risk of recurrence remains high at 50–70% at 5 years postop-
eratively [114,115]. The currently approved systemic therapies can be classified into either
anti-angiogenic targeted therapies (mTKIs and monoclonal anti-angiogenic antibodies)
and immune checkpoint inhibitors. The AASLD recommends adjuvant immune check-
point inhibitor-based systemic therapy in patients deemed at high risk for recurrence after
resection or ablation.

• Multi-tyrosine kinase inhibitors (mTKIs)

These inhibit multiple protein kinases, including the VEGF receptors. Sorafenib was
the first systemic therapy to offer a survival benefit for patients not eligible for surgical or
locoregional therapy. The SHARP trial compared sorafenib to a placebo, with a median
OS of 10.9 vs. 7.9 months but a significant side-effect burden [116]. Lenvatinib, which has
activity against multiple kinases, including VEGF receptors, has since been shown to be
non-inferior to sorafenib in the 2018 REFLECT study and is now considered a first-line
alternative to sorafenib [117]. Cabozantinib and regorafenib are also being assessed for
efficacy as second-line treatments.

• Immune checkpoint inhibitors

Immune checkpoint inhibitors (ICIs) target specific receptors within the inflammatory
pathways of the tumour microenvironment with the aim of restoring anti-tumour T-cell
activity. The principle behind these treatments is that there are reactive tumour-specific
T cells that can be re-awakened to generate an anti-cancer immune response. The ICIs
currently available include programmed death-1 (PD-1) inhibitors, programmed death
ligand-1 (PD-L1) inhibitors and cytotoxic T lymphocyte antigen (CTLA-4) inhibitors.

PD-1 receptors are expressed on a variety of immune effector cells, including activated
T cells, NK cells and dendritic cells. Tumour cells have been shown to overexpress PD-
L1, leading to PD-1 activation in tumour-infiltrating lymphocytes, thereby dysregulating
immune surveillance. HCCs with higher expressions of PD-L1 are associated with a poorer
prognosis and more aggressive tumours [118–120]. The PD-1 inhibitors currently licensed
for use in HCC are nivolumab and pembrolizumab. CTLA-4 is a transmembrane receptor
expressed on the surfaces of activated T cells that can induce the unresponsiveness of T
cells via the out-competition of part of the co-stimulatory signal required for full T-cell
activation [121]. The CTLA-4 inhibitors of current clinical interest are ipilimumab and
tremelimumab.

Multiple clinical trials assessing these immune checkpoint inhibitors as single agents
or combination therapy are ongoing. In a Phase 2 trial, the KEYNOTE-224 study demon-
strated that the anti-PD-1 antibody pembrolizumab was safe and well tolerated in patients
previously treated with sorafenib. Higher combined positive score (CPS) (calculated as
the percentage of the total viable tumour cells that express PD-L1) was associated with a
higher ORR and longer PFS [122]. This suggests that immunologically active tumours are
more responsive to immunotherapy.

The IMbrave150 trial was a landmark trial in HCC. In this study, the combination
of the PD-L1 inhibitor atezolizumab and the monoclonal anti-angiogenic antibody beva-
cizumab was compared to sorafenib and demonstrated a longer median OS (19.2 months
vs. 13.4 months) [123,124]. Due to the risk of variceal bleeding noted during the study,
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band ligation is recommended prior to initiation. This combination is now licensed by
both the FDA and NICE as an alternative first-line therapy to sorafenib and lenvatinib.
However, the side effects from this treatment remain problematic [125]. More recently,
the CARES-310 study of camrelizumab (anti-PD-1) and revoceranib (a highly selective
VEGFR2 tyrosine kinase inhibitor) also demonstrated superior progression-free and OS
in comparison to sorafenib. In this study, the median survival was 22.1 months with the
camrelizumab/revoceranib combination in comparison to 15.2 months with sorafenib.
Serious adverse events were noted in 24% of patients in the camrelizumab/revoceranib
group [126]. The HIMALAYA study Phase III trial compared the PD-L1 inhibitor durval-
umab in combination with the CTLA4 inhibitor tremelimumab (STRIIDE) versus sorafenib,
with an improved OS (16.4 months vs. 13.7 months) [127]. This combination was approved
by the FDA in 2022. Interestingly, durvalumab monotherapy was non-inferior to sorafenib.
The area of ICI combination is paving the way for further HCC therapeutics; however, due
to their mechanisms of action in boosting immune reactivities, they are not recommended
in autoimmune liver disease or in the post-transplant population.

9.3. Challenges in MASLD-HCC Treatment

While the EASL and AASLD guidelines do not recommend the selection of a treat-
ment pathway based on the aetiology of underlying liver disease, these guidelines have
historically been based on patients with viral hepatitis. Furthermore, as described earlier,
patients with MASLD-HCC are more likely to have other significant comorbidities related
to metabolic syndrome, which can complicate decisions regarding the choice of treatment
and potentially worsen the peri-operative risk profile.

Overall, patients with MASLD-HCC are likely to be older patients with poorer per-
formance statuses (PSs) [32]. They are likely to have larger tumours at diagnosis but are
less likely to have established cirrhosis or clinically significant portal hypertension [30,106],
and therefore they are less frequently enrolled in a surveillance programme. This results in
most patients being diagnosed at more advanced stages of disease (BCLC C or D), with
a lower opportunity for curative treatment [128]. Of note, the BCLC staging does not
account for non-cirrhotic HCC, and therefore patients may be staged as more “advanced”
disease in MASLD-HCC compared to other aetiologies purely on the basis of the tumour
size/number.

In terms of outcomes, in studies focusing on curative therapies in HCC (OLT, resection,
RFA), MASLD patients were older with lower MELD scores [129]. There was no difference
in the recurrence-free survival at a median of 50 months of follow-up. Reassuringly, these
patients had improved OS independent of other clinical features compared to those with
HCV and ARLD. Similar findings were noted in a meta-analysis focusing again on patients
offered curative treatment [130]. However, a further study in Germany that looked at a
cohort of over 1000 MASLD-HCC patients, irrespective of the treatment offered, noted
worse OS in MASLD compared to other aetiologies [80]. This is most likely due to the
selection of patients with less advanced disease in the curative studies. Immediate post-
OLT complications in terms of peri-operative events, such as higher rates of infections
and longer lengths of stay, are observed in patients transplanted for MASLD compared to
other aetiologies, particularly those with multiple components of metabolic syndrome [131].
Reassuringly, the mortality and graft survival rates appear to be similar between aeti-
ologies. The recurrence of MASH post-OLT is also increasingly common [132]. Table 4
summarises several studies comparing the outcomes of patients with MASLD-HCC with
those of patients with other aetiologies of liver disease across the spectrum of surgical and
interventional therapies.
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Table 4. Outcomes of MASLD-HCC from surgical and interventional therapies.

Treatment Study Details Proportion with
MASLD Outcomes Reference

Resection Meta-analysis of 15 cohort
studies/7226 patients MASLD: 19.5% MASLD: better DFS and OS [133]

Resection

Meta-analysis of nine
studies/5579 patients MASLD: 20.1% MASLD: better DFS and OS [130]

Retrospective cohort study via Medicare
database: 17,664 patients undergoing

curative HCC treatment
MASLD: 33.4% MASLD improved survival

postresection [128]

OLT

European Liver Transplant Registry
analysis 2002–2016/68,950 transplant

recipients of all aetiologies
(20,195 patients with HCC)

MASLD: 4%
MASLD HCC: 5.6%

of HCC cohort

MASLD-HCC vs. ARLD:
10-year post-OLT survival of

46.9% vs. 51.8% slightly
worse but no difference

compared to HCV (48.2%)

[5]

Retrospective cohort design study in
two centres in Toronto and San Franciso:

OLT for HCCs of all aetiologies in
2004–2014: 929

MASH: 6.5%

No difference between
MASH and non-MASH

patients at 1-, 3- and 5-year
survival

[134]

Retrospective cohort study via Medicare
database: 17,664 patients undergoing

curative HCC treatment
MASLD: 33.4% MASLD: worse median

survival than non-MASLD [128]

RFA

Multi-centre retrospective cohort study
of 520 HCC patients of all aetiologies MASLD: 12.6% MASLD: no difference in OS,

tumour recurrence [135]

Retrospective cohort study via Medicare
database: 17,664 patients undergoing

curative HCC treatment
MASLD: 33.4% No significant difference [128]

All curative
therapies

Meta-analysis of nine
studies/5579 patients MASLD: 20.1%

MASLD: better OS and DFS
(DFS not statistically

significant)
[130]

TACE

Single-centre retrospective cohort study
of 220 patients treated for 353 HCCs of

all aetiologies between 2011 and
2016, U.S.

MASLD: 13.6%
MASLD: no difference in OS,

time to progression or
complication rates

[136]

Abbreviations: ARLD, alcohol-related liver disease; DFS, disease free survival; HCC, hepatocellular carcinoma;
HCV, hepatitis C virus; MASH, metabolic dysfunction-associated steatohepatitis; MASLD, metabolic dysfunction
associated steatotic liver disease; OLT, orthoptic liver transplant; OS, overall survival; RFA, radiofrequency
ablation; TACE, transarterial chemoembolization.

In terms of systemic therapies, there is increasing evidence that the disease aetiology
influences the treatment response [137]. However, data specific to MASLD-HCC are limited.
The pivotal SHARP study included only patients with viral hepatitis and alcohol-related
liver disease. A recent international cohort study of patients treated with sorafenib did not
show any difference in the outcomes (OS, sorafenib-specific survival and rates of toxicity)
between MASLD-HCC and other aetiologies but had only a small (3.6%) MASLD-HCC
subgroup [138].

There are suggestions based on pre-clinical models that MASLD-HCC does not re-
spond as effectively to immune checkpoint inhibitor therapy, but there is a need for further
confirmatory studies on this subgroup. In individuals with chronic viral hepatitis, the
immune system is already dysfunctional and this may predispose them to altered treat-
ment responses in vivo. A meta-analysis of IMbrave150, KEYNOTE240 and Checkmate459
showed that whilst immunotherapy improved survival in the overall cohort, when di-
vided into viral-hepatitis-related HCC vs. non-viral-HCC, the survival benefit was not
maintained in the non-viral group [64]. However, none of these key studies distinguished
MASLD-HCC as a separate aetiology of liver disease at baseline, with the cohorts being
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divided according to the presence or absence of viral hepatitis. A small study looking at
anti-PD(L)1 immunotherapy compared the outcomes of MASLD-HCC patients (n = 13) to
those with other aetiologies (n = 117) and demonstrated reduced OS in the MASLD-HCC
group [64]. Interestingly, a post hoc analysis of IMbrave150 reviewed 279 of the 336 pa-
tients in the immunotherapy arm of the original study to stratify them into MASLD viral
hepatitis and ARLD-related HCC and did not show statistically significant differences in
the overall response rate, progression-free survival (PFS) or OS between aetiologies [139].
The HIMALYA (~42% non-viral participants) and CARES-310 (~16% non-viral participants)
trials did not selectively report outcomes in MASLD-HCC, and therefore the topic of the
ICI response in MASLD-HCC requires further investigation.

A retrospective cohort study looking at the therapeutic efficacy of lenvatinib has shown
similar OS and PFS between subgroups of MASLD-HCC vs. all other aetiologies [140].
A larger meta-analysis of eight studies assessing the disease response to all systemic
therapies concluded that ICI therapy offers more benefit in viral than non-viral HCC, while
the efficacies of TKI and anti-VEGF agents appear to be independent of the aetiology of
underlying liver disease [141]. None of these studies made further distinctions within
the “non viral HCC” group in terms of MASLD, alcohol or other aetiologies of chronic
liver disease. Overall, patient stratification for HCC treatment is still rudimentary, without
molecular considerations, and more rational therapeutic strategies are currently being
tested in clinical trials using existing therapeutics.

10. Conclusions and Future Directions

MASLD-HCC is increasing in parallel with the MASLD epidemic and is proving to be a
complex disease that is often diagnosed at an advanced stage due to a significant proportion
manifesting before the standard HCC surveillance thresholds are reached. Further work
is needed to generate well-validated scoring systems to identify high-risk patients for the
initiation of HCC surveillance, as well as the refinement of diagnostic methods to detect
HCC at an earlier stage. Treatment for MASLD-HCC, as for all HCCs, is challenging with
the MASLD population, who have specific difficulties related to their comorbidities. A
bespoke approach to MASLD-HCC still needs to be identified in order to better manage
this group of patients.
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