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Abstract: Mature vascular smooth muscle cells (VSMC) exhibit a remarkable degree of plasticity,
a characteristic that has intrigued cardiovascular researchers for decades. Recently, it has become
increasingly evident that the chromatin remodeler SWItch/Sucrose Non-Fermentable (SWI/SNF)
complex plays a pivotal role in orchestrating chromatin conformation, which is critical for gene
regulation. In this review, we provide a summary of research related to the involvement of the
SWI/SNF complexes in VSMC and cardiovascular diseases (CVD), integrating these discoveries into
the current landscape of epigenetic and transcriptional regulation in VSMC. These novel discoveries
shed light on our understanding of VSMC biology and pave the way for developing innovative
therapeutic strategies in CVD treatment.
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1. Introduction

Vascular smooth muscle cells (VSMCs) reside in the tunica media of vessels [1] and
play critical roles in both vascular homeostasis and the pathogenesis of cardiovascular
diseases (CVD). As early as the 1960s, it has been established that VSMC are enriched in
atherosclerotic lesions in human specimens [2] and animal models [3,4]. The plasticity of
VSMC has been identified as one of the major pathological factors in atherogenesis [5,6].
Key transcription factors and cofactors, like serum response factor (SRF) [7], myocardin [8],
and Krüppel-like factor 4 (KLF4) [9], were identified during the investigation of SMC
plasticity. Despite their essential role in DNA–protein interactions, the importance of
chromatin remodelers in VSMC plasticity has often been overlooked. Summarizing the
known and unknown of chromatin remodeling in VSMC research offers valuable insights
into this understudied aspect. This review delves into the role of a primary ATP-dependent
chromatin remodeler, the SWItch/Sucrose Non-Fermentable (SWI/SNF) complexes, in
VSMC biology and its implications for cardiovascular diseases.

2. Roles of VSMCs from Physiology to Pathology

Like skeletal muscle cells and cardiomyocytes, the primary function of VSMCs is con-
traction. Under precise hormonal and neural control, VSMCs regulate blood distribution
and blood pressure. To maintain the contractile phenotype, VSMC undergoes differentia-
tion via the expression of a repertoire of contractile apparatus and regulators [10]. Myosin
heavy chain 11 (MYH11), also known as smooth muscle myosin heavy chain (SMMHC), is
responsible for encoding SMC-specific myosin. Different from myosins in other muscle
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tissues, MYH11 lacks intrinsic ATPase activity. Instead, its activity is triggered when Ser 19
on the regulatory myosin light chain becomes phosphorylated. This phosphorylation is pre-
cisely controlled by myosin light chain kinase (MYLK) and myosin light chain phosphatase
(MLCP). Thin myofilaments are composed of α-actin, also known as α-smooth muscle
actin (α-SMA), which is encoded by actin alpha 2 (ACTA2) [11,12]. Of note, variants of those
genes have already been well-documented in patients with inherited aortic diseases [13,14].
This underscores the importance of fully functional contractile machinery in VSMCs for
maintaining aortic health.

Another important role of VSMCs is to regulate vascular extracellular matrix (ECM)
homeostasis through the production of components including elastin, collagen [15], and pro-
teoglycans and regulation of ECM remodelers including matrix metalloproteinase (MMP)
and tissue inhibitor of matrix metalloproteinases (TIMPs). These determine the vessel
wall’s mechanical strength, compliance, and elastic recoil. As a result, ECM construction
and maintenance of VSMC have emerged as central priorities in the field of bioengineering
for blood vessel grafts [16].

Interestingly, the two major roles of VSMCs seem to be conflicting. During the ini-
tial embryonic development stage, VSMCs exhibit rapid proliferation [17], migrate, and
actively secrete ECM components crucial for vasculogenesis. However, mature VSMCs
lose those properties and become quiescent with a low proliferation rate and synthetic
activity. In the mature aorta, VSMCs possess contractile apparatus and maintain mechanical
strength. Nevertheless, during vascular injury, alterations in the environmental cues cause
the loss of contractile markers, including MYH11 and α-SMA, coupled with increased
proliferation, migration, and protein synthesis in VSMC. This type of dedifferentiated
VSMC is essential for vascular repair. The transition between the contractile and synthetic
states of VSMCs is termed “phenotypic switch”. It is thus logical to infer that the intrinsic
plasticity of VSMCs is beneficial for adaption to complex environments and response to
damage. However, substantial changes in diet and lifestyle may hijack this ability and
disrupt vascular homeostasis.

3. Epigenetic and Transcriptional Regulation of VSMC Plasticity in Health and Diseases

Vascular smooth muscle cell plasticity in CVD, including atherosclerosis, has been
well-documented [2]. Especially in the past decade, the emergence of new technologies,
such as lineage tracing, single-cell RNA sequencing (scRNA-Seq), and spatial transcrip-
tomics [18–21], has largely extended our knowledge of cell origin, characteristics, and tran-
scriptomic profiles in the atherosclerotic lesions. Under pathological conditions, VSMCs
transdifferentiate into various cell types such as foam cells [22,23], mesenchymal-stem-cell
(MSC)-like cells [24], macrophage-like cells [25,26], adipocyte-like cells [27], osteochon-
drogenic cells [28,29], fibromyocytes [19]. Multiple reviews thoroughly discuss this phe-
nomenon [5,30–34]. A dramatic shift in gene expression occurs during dedifferentiation or
transdifferentiation. Such changes necessitate a sophisticated transcriptional regulation net-
work in VSMCs to precisely control specific gene expression in response to environmental
changes [34–36].

In differentiated VSMC, the expressions of contractile genes are governed by an
array of transcription factors and coactivators [35–37] (Table 1; Figures 1 and 2). In 1985,
CC(A/T)6GG, also referred to as the CArG element, was identified in the promoter of
the human cardiac actin gene [38]. Subsequent research has highlighted the crucial role
of the CArG element in regulating muscle-specific genes [39]. Serum response factor
(SRF) was then identified to bind with CArG elements and regulate downstream gene
expression [7,40]. In addition, the discovery of myocardin [8] and its competition with
Elk-1 for SRF interaction [41] revealed the delicate regulation of the VSMC phenotype.
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Table 1. Regulators of contractile gene transcription.

Gene Category Function Effect on Contractile Gene
Transcription Reference

SMARCA4 Chromatin remodeler Mediate chromatin accessibility Dependent on interactors [42,43]
SMARCD3 Chromatin remodeler Mediate chromatin accessibility Promotion [44]

SRF Transcription factor Bind at CArG elements Dependent on interactors [8]

Myocardin Cofactor Interact with SRF Promotion [8,41,45]
MRTFA/B Cofactor Interact with SRF Promotion [41,46,47]

Smad2/3 Transcription factor Bind DNA Promotion [48]
GATA4/6 Transcription factor Bind DNA Promotion [49–53]

CSRP2 Cofactor Interact with SRF, GATA6 Promotion [54,55]
NKX3-2 Transcription factor Bind DNA Promotion [52]

Prx1 Transcription factor Bind DNA Promotion [56]
PITX2 Transcription factor Bind DNA Promotion [57]

PIAS1 Transcription factor Bind DNA Promotion [58]

MEF2 Transcription factor Bind DNA Promotion [59]

Notch/RBPJ Transcription factor Bind DNA Promotion [60,61]

KLF4 Transcription factor Bind G/C repressor element Repression [9,62–65]

Elk1 Cofactor Interact with SRF Repression [47,63,64]

p300 Histone acetyltransferase Increase histone acetylation Promotion [51,66,67]

HDAC Histone deacetylase Decrease Histone modification Repression [47,63,64]

SMYD2 Histone lysine methyltransferase Increase H3K4me1, H3K4me3 Promotion [68]

JMJD1A Histone demethylase Decrease H3K9me2 Promotion [69]

WDR5 Cofactor Increase H3K4me1, H3K4me3 Promotion [70]

PRDM6 Histone lysine methyltransferase Increase H4K20me2 Repression [71,72]

SUV39H1 Histone lysine methyltransferase Increase H3K9me3 Repression [73]

EZH2 Histone lysine methyltransferase Increase H3K27me3 Repression [74,75]

TET2 Methylcytosine dioxygenase DNA demethylation Promotion [76,77]

PRMT5 Histone arginine
methyltransferase H3R8me2, H4R3me2 Repression [78]

Aside from myocardin/SRF, other transcription factors also play essential roles in
regulating contractile genes [35]. The roles of transforming growth factor-β (TGFβ) in
VSMC differentiation have been documented [79]. In 1997, the TGFβ control element
(TCE), proximal to two CArG elements, was discovered in the promoter of ACTA2 [80].
TGFβ increases contractile gene expression by facilitating the binding of SRF to the CArG
elements, possibly through interactions between Smad3 and p300 [81]. Subsequent research
on the synergetic function and direct interaction of Smad3 and myocardin has further
elucidates the roles of TGFβ signaling in VSMC differentiation [48]. Another transcription
factor, GATA binding protein 6 (GATA6), was found to be highly expressed in the VSMCs
during development [82], and it was shown to protect against injury-induced VSMC
phenotypic switch [50]. Further study has revealed that GATA6, NK3 homeobox 2 (NKX3-
2), and SRF form a triad complex to regulate contractile gene expressions [52].

Conversely, in dedifferentiated VSMC, KLF4 plays an essential role [83]. The signif-
icance of KLF4 in VSMC was first discovered through yeast one-hybrid cloning against
TCE [84]. Subsequent studies have firmly demonstrated that KLF4 was a potent repressor
for VSMC differentiation [62,85]. In response to PDGF-BB treatment, Sp1, pELK1, and
KLF4 cooperatively bind to the G/C repressor element flanked by two CArG elements
in the promoters of contractile genes, including MYH11 and TAGLN. In addition, KLF4
recruits HDACs, reducing histone acetylation in the promoters. Consequently, it diminishes
SRF binding and the expression of contractile genes [86]. In the mouse atherosclerosis
model, SMC-specific KLF4 knockout showed less mesenchymal-stem-cell- and macrophage-
like cells derived from SMC, along with less lesion and increased fibrous cap thickness,
underscoring significant roles of KLF4 in the cardiovascular diseases [9].
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CREs of the VSMC contractile genes. Chromatin remodelers that expose DNA regions by unwind-
ing nucleosomes are central to the regulation. Several CArG elements, present at promoters and 
introns, bind to two SRFs and interact with myocardin. Within this region, there are binding sites 
for Smad2/3, NICD/RBPJ, and GATA. Retinoic acid signaling, crucial for VSMC differentiation, fa-
cilitates interactions between RAR/RXR and the SMARCD subunit of the SWI/SNF complexes. 
Other key contributors to VSMC differentiation include Prx1, Nkx3-2, PITX2, MEF2, and PIAS1. In 
addition, chromatin remodelers and transcription factors interact with histone modifiers, such as 
p300 and members of the NCOA family. Such complex interactions determine delicate and compli-
cated regulation of contractile genes. 
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Figure 1. Transcriptional regulation at the CREs (cis-regulatory elements) of VSMC contractile genes.
This diagram showcases the intricate network of interactions involving transcription regulators, such as
chromatin remodelers, histone modifiers, transcription factors, and cofactors, at the CREs of the VSMC
contractile genes. Chromatin remodelers that expose DNA regions by unwinding nucleosomes are
central to the regulation. Several CArG elements, present at promoters and introns, bind to two SRFs
and interact with myocardin. Within this region, there are binding sites for Smad2/3, NICD/RBPJ,
and GATA. Retinoic acid signaling, crucial for VSMC differentiation, facilitates interactions between
RAR/RXR and the SMARCD subunit of the SWI/SNF complexes. Other key contributors to VSMC
differentiation include Prx1, Nkx3-2, PITX2, MEF2, and PIAS1. In addition, chromatin remodelers and
transcription factors interact with histone modifiers, such as p300 and members of the NCOA family.
Such complex interactions determine delicate and complicated regulation of contractile genes.

As we delve deeper into the research on the transcriptional regulation of contractile
genes, epigenetic regulation gains increasing interest [87,88]. Structural investigations
revealed that SRF does not bind to nucleosomal DNA [89–91], implying its exclusive
binding to open DNA regions. Meanwhile, several factors affect the binding activity of
SRF to the CArG elements [80,86,88]. These findings shed light on the significance of
chromatin conformation in the transcriptional regulation of contractile genes. McDonald
et al. discovered that H3K4me2, H3K79me2, H3K9Ac, and H4Ac are enriched in the CArG
elements in the SMC but not in the non-SMC [86]. In addition, H3K4me2 tethers with SRF
and myocardin, and this modification persists even after VSMC dedifferentiation [92]. Loss
of H3K4me2 at the CArG elements causes a decrease in contractile gene expression through
the reduced TET2 (ten-eleven translocation-2)-mediated DNA demethylation [77,93]. In
contrast, in embryonic stem cells or other non-SMCs, H3K9me3 and H3K27me3 govern the
repression of contractile gene expression [91]. Lysine demethylase 3A (KDM3A), previously
known as JMJD1a, interacts with myocardin and demethylates H3K9me3, thus promoting
the expression of contractile genes [69]. In addition, numerous histone modifiers have been
identified to regulate contractile genes, including PR/SET domain 6 (PRDM6), SET and
MYND domain containing 2 (SMYD2), SUV39H1, polycomb repressive complexes 2 (PRC2),
and protein arginine methyltransferase 5 (PRMT5) (Table 1; Figures 1 and 2) [68,71–75,78].
Although previous studies elucidated the intricate regulation of transcription and histone
modification, the specific roles of chromatin remodelers in directly executing chromatin
transformations require further investigation.
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Figure 2. Temporal regulation of VSMC contractile gene expression. (A) Stem cell chromatin state:
specific DNA regions are tightly wrapped into nucleosomes in stem cells. These regions are marked
by repressive histone modifications, notably H4K20me3, H3K9me3, and H3K27me3, which play
pivotal roles in maintaining gene silencing. (B) Activation of chromatin regions: during the transition
to an active chromatin state, repressive histone marks are displaced, and active modifications emerge,
such as H4Ac, H3K4Me2, H3K9Ac, H3K14Ac, and H3K79Me. Key players in this process include
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JMJD1a (H3K9me removal), SMYD2 (H3K4Me induction), and p300 (H3Ac and H4Ac induction).
As histone acetylation weakens histone-DNA binding, pioneer factors can bind with nucleosomal
DNA, subsequently recruiting either chromatin remodelers like the SWI/SNF complex or additional
histone modifiers. (C) Transcription: the SWI/SNF complex introduces nucleosome-free regions,
enabling TET2 to demethylate DNA. As a result, specific transcription factors bind to their respec-
tive elements. Subsequently, cofactors, including myocardin and CSRP, are recruited, promoting
interactions between transcription regulators to promote transcription. (D) Dedifferentiation and
transcriptional inactivation: in response to dedifferentiation signals like platelet-derived growth fac-
tor BB (PDGF-BB), the transcription of contractile genes was suppressed. In this situation, KLF4 binds
to the G/C elements, while SRF partners with Elk1 rather than myocardin. Concurrently, HDACs
and PRC are also recruited to deacetylate and induce methylation of H3K27. Additionally, PRDM6,
PRMT5, and SUV39H1 mediate methylation at H4K20, H4R3 and H3R8, and H3K9, respectively. The
loss of required transcription factors and DNA accessibility cease contractile gene transcription.

4. Chromatin Remodeling and SWI/SNF Complexes

In eukaryotic cells, DNA wraps around histones, forming the basic structural unit:
a nucleosome [94]. In a rigid and delicate manner, DNA accessibility is highly regulated
for complex activities, including replication, repair, and transcription. Chromatin remod-
eling involves altering interactions between histones and DNA, including assembly and
disorganization of nucleosomes. Transcription requires DNA free from histones to interact
with proteins such as polymerase II and transcription factors. Studies have shown that
chromatin remodelers are essential in controlling pluripotency, cell fate, and differentia-
tion [95–97]. Four prominent remodeler families have spiked the most study interest to
date, including SWI/SNF, Imitation switch (ISWI), chromodomain helicase DNA-binding
(CHD), and INOsitol requiring 80/SWI2/SNF2-Related 1 (INO80/SWR1) [98,99]. This
review focuses on the SWI/SNF complexes.

The SWI/SNF chromatin remodeling complexes were first discovered in Saccharomyces
cerevisiae. SWI stands for ‘switch’ as the relevant genes regulate the HO gene, which is
crucial for mating type switching [100]. Similarly, SNF denotes ‘sucrose nonfermenting’
since these genes control the SUC2 gene responsible for sucrose catabolism [101]. Subse-
quent research has found that some genes from these two screenings overlap, forming a
complex that regulates chromatin structure [102]. SWI/SNF complexes use energy from
ATP hydrolysis to mediate nucleosome sliding or ejection [103]. The mammalian SWI/SNF
complex was purified in 1996 [104]. In mammals, either Brg1 or Brm serves as the ATPase
of the complex; the SWI/SNF complex is also named the BRG1/BRM-associated factor
(BAF). The initially isolated complex was termed canonical BAF (cBAF) [104]. Subsequent
research has identified two more types of SWI/SNF assemblies: polybromo-associated
BAF (PBAF) [105] and non-canonical BAF (ncBAF) [106–108]. These complexes are as-
sembled by 9–16 subunits, and some subunits consist of several paralogs (Figure 3 and
Table 2) [109]. Each subunit conveys unique functions for chromatin remodeling [110].
More than 1000 unique combinations of SWI/SNF subunits form diverse complexes with
varied functions [111,112].

Recent advancements have significantly illuminated the structure of SWI/SNF com-
plexes [113–116]. These findings further deepen our understanding of the chromatin re-
modeling mechanism of SWI/SNF complexes and the function of their subunits. According
to Chen et al., SWI/SNF complexes can be divided into three modules: the motor module,
actin-related protein (ARP) module, and substrate recruitment module (SRM) [117]. SRM
can be further divided into nucleosome binding lobe (NBL), DNA binding lobe (DBL), and
histone-tail binding lobe (HBL) [117]. The central motor module is the ATPase, SMARCA4
(BRG1), and SMARCA2 (BRM), which directly hydrolyze ATP to translocate DNA [118].
The ARP module comprises actin beta (ACTB), BCL7, and actin-like 6 (ACTL6). They
serve the dual function of connecting ATPase with SRM and regulating the ATPase activity.
Within the nucleosome binding lobe, SMARCB1, coupled with double PHD fingers (DPF)



Cells 2024, 13, 168 7 of 20

and SMARCC, attaches directly to the nucleosome acidic patch via the C-terminal domain
(CTD) [119]. The DNA binding lobe interacts with extranucleosomal linker DNA and
various factors. This lobe consists of several DNA binding domains like the HMG-box
domain on SMARCE1 and polybromo 1 (PBRM1) [120], AT-rich interaction domain (ARID)
on ARID1A/B, and ARID2 [121].
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Figure 3. Composition of mammalian SWI/SNF complexes. The mammalian SWI/SNF chromatin
remodeling complexes exist in three distinct types of assemblies: canonical BAF (cBAF), non-canonical
BAF (ncBAF), and polybromo-associated BAF (PBAF). All three share several common subunits,
such as the ATPase SMARCA2/4 and the ARP module (which includes ACTB, ACTL6A, and
BCL7A/B/C). There are several differences between three types of assemblies. ARID1A/B and
DPF1/2/3 only exist in cBAF. There are ARID2, BRD7, PHF10, and PBRM1 but no SS18/SS18L in
PBAF. Non-canonical BAF possesses BICRA, BICRAL, and BRD9, and lacks SMARCC2, SMARCD2/3,
SMARCB1, and SMARCE1.

Table 2. SWI/SNF complex subunit HUGO name and common name.

HUGO Name Common Name

SMARCC1 BAF155, SRG3
SMARCC2 BAF170

SMARCD1/2/3 BAF60A/B/C
SMARCB1 BAF47, INI1
SMARCE1 BAF57
ARID1A/B BAF250A/B

ARID2 BAF200
PHF10 BAF45A

DPF1/2/3 BAF45B/D/C
BICRA/BICRAL GLTSCR1/GLTSCR1L

SMARCA4 BRG1
SMARCA2 BRM
ACTL6A/B BAF53A/B

PBRM1 BAF180

Of note, multiple interactors of SWI/SNF complexes exist to orchestrate gene tran-
scription (some interactions validated by the GST pull-down assay are listed in Table 3).
The SMARCD family, including SMARCD1, SMARCD2, and SMARCD3, are reported
to mediate the interactions between the SWI/SNF complex and various factors, such as
PPARG coactivator 1α (PGC1α) and CCAAT enhancer binding protein ε (CEBPε) [122,123].
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Recently, Wolf et al. [124] fused TurboID [125] with SMARCD1 and revealed close associa-
tions of the SWI/SNF complex with various transcription factors and epigenetic machinery,
including lysine-specific methyltransferase 2 (KMT2) family, nuclear receptor coactivator
(NCOA) family and histone acetyltransferases (HATs). The SWI/SNF complex can also rec-
ognize histone modifications. The bromodomains within its subunit BRD7/9, SMARCA4,
SMARCA2, and PBRM1 facilitate their binding to acetylated histones [126]. The chromod-
omains on the subunit SMARCC1 and SMARCC2 recognize methylated H3 [127]. Given
their sophisticated structure and interactors, it is speculated that the whole complexes
remodel the chromatin at precise locations and accurate time points.

Table 3. SWI/SNF subunit-interacting proteins validated by GST pull-down assay.

Interactor SWI/SNF Subunit Reference

AR SMARCC1 [128]
CBP SMARCA4 [129]
ERα SMARCD1 [130]
ERα SMARCD3 [131]
FOS SMARCD1 [132]
JUN SMARCD1 [132]
JUN SMARCD3 [131]
MYC SMARCA2 [133]
MYC SMARCA4 [133]
MYC SMARCB1 [133]
MYC SMARCE1 [133]

Myocardin SMARCD3 [134]
NCOA1 ARID1 [135]
NCOA1 SMARCC1 [128]
NCOA1 SMARCE1 [135,136]
Nkx2-5 SMARCD3 [134]

NR3C1/GR SMARCD1 [130]
NR3C1/GR SMARCE1 [130]

PCG1α SMARCD1 [123]
PPARγ SMARCD1 [123]
PPARγ SMARCD3 [131]
PRMT5 SMARCB1 [133]
PRMT5 SMARCE1 [133]

RAR SMARCD3 [135]
RBP-J SMARCD3 [137]
RORα SMARCD3 [131]
RXR SMARCD3 [131,135]

SREBP1α SMARCD3 [131]
Tbx5 SMARCD3 [134,137]

5. SWI/SNF Complex in Cardiovascular Development

Coffin–Siris syndromes (CSSs) represent congenital disorders predominantly linked
to mutations in the subunits of SWI/SNF complexes and are characterized by mental
retardation [138]. ARID1B is responsible for CSS1, with ARID1A for CSS2, SMARCB1 for
CSS3, SMARCA4 for CSS4, SMARCE1 for CSS5, ARID2 for CSS6, DPF2 for CSS7, SMARCC2
for CSS8, SMARCD1 for CSS11, and BICRA for CSS12. Recently, more phenotypes in the
cardiovascular system have been noticed in CSS patients [139]. Among fetuses, 67% of
patients present cardiac anomalies, and 53% of patients present vascular anomalies [140].
For instance, one case study has reported that one fetus with SMARCC2 deficiency was
diagnosed with tetralogy of Fallot, a rare congenital disease caused by a combination of four
heart defects [141]. Considering the lethality of cardiovascular anomality and the higher
possibility of termination due to poor prognosis, the actual incidence of cardiovascular
complications in CSS might be underestimated.

Over decades of research on the mammalian SWI/SNF complex, numerous animal
models have been developed. In the mouse model, SMARCA4 null embryo dies at day three
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due to the arrest of differentiation [142], while SMARCA2 knockout mice are viable [143].
This indicates that the roles of SMARCA4 and SMARCA2 differ in development. As an
essential subunit in the SWI/SNF complex, DPF3 is highly expressed in the heart and
skeletal muscle and serves as a histone modification reader. DPF3 possesses 2 plant home-
odomains (PHDs), which facilitate its binding with acetylated H3 and H4, and H3K4me1/2.
Knockdown dpf3 in the zebrafish leads to irregular cardiac morphology and muscular
fiber disarray [144]. Constitutive knockout of BIRCA (BRD4 interacting chromatin remodel-
ing complex associated protein) (also known as GLTSCR1 (glioma tumor suppressor candidate
region gene 1)) results in embryonic lethality and cardiac defects, including ventricular
septal defect, double outlet right ventricle and a thinner ventricular wall [145]. These
results indicate the indispensable roles of the SWI/SNF complex in the development of the
cardiovascular system.

6. SMARCA4 and SMARCA2 in VSMC Biology and Cardiovascular Diseases

SMARCA4 and SMARCA2 (also called Brg1 and Brm, respectively) are the two mutu-
ally exclusive ATPase subunits of the SWI/SNF complex, which hydrolyze ATP to provide
energy for the complex to remodel chromatin. Emerging evidence from early cardiovas-
cular studies illuminates the potential significance of the SMARCA family in VSMC. In
2003, Chang et al. [54] found that SMC-enriched protein cysteine and glycine-rich protein
(CSRP) 1/2 bridge SRF with GATA4/5/6 to promote SMC contractile protein expression in
pluripotent 10T1/2 fibroblasts, while skeletal-muscle-enriched CSRP3 inhibits this tran-
sition to VSMC. Further study in 2007 [55] found that CSRP2 overexpression in adult
cardiomyocytes promotes SMC-specific marker gene expression. At VSMC marker promot-
ers, such as MYH11 and Calponin (CNN1), an interplay of SRF, p300, and varying histone
modifications was observed. Notably, SMARCA4 and SMARCB1, but not SMARCA2,
were recruited, underlining the significance of the SWI/SNF complex in SMC marker
gene expression in adult cardiomyocytes. Interestingly, the interaction between CSRP and
the SWI/SNF complex is also captured via SMARCD1-TurboID in the abovementioned
study [124].

Following Chang’s work, Herring and his colleagues conducted a series of studies
investigating the roles of SMARCA4 in VSMCs. They employed a special cell line called
B22 cells derived from NIH-3T3 fibroblast, which express a dominant-negative SMARCA4
(DN-SMARCA4) induced by tetracycline withdrawal [146]. In this system, the increase in
contractile genes via overexpression of myocardin-related transcription factor (MRTFA) is
attenuated by DN-SMARCA4. Notably, MRTFA promotes contractile protein expression
in cervical cancer HeLa cells but not in adrenal carcinoma SW13 cells, as the latter lacks
SMARCA4 or SMARCA2. When SMARCA4 or SMARCA2 is overexpressed in SW13,
the ability of MRTFA to promote contractile protein expression is restored. Furthermore,
DN-SMARCA4 led to a decrease in contractile protein expression in primary colon SMCs.
Through in vitro investigations, it was proved that SMARCA4 directly binds with MRTFA
but not with SRF. DN-SMARCA4 significantly interferes with SRF binding [42]. Similarly,
SMARCA4 interacts with myocardin and permits its effect on contractile proteins [43].
SMARCA4 also regulates miR-143 and miR-145 expression in conjunction with myocardin
or MRTFA. Only when SMARCA4 and myocardin or MRTFA are coexpressed in the SW13
cells can SRF be recruited to CArG elements in the promoter of miR-143/145 [147]. Among
all the SRF targets, ACTA2 is a special case that offers profound insight, as it appears to
be less susceptible to the influence of SMARCA loss. ACTA2 is already highly expressed
in the B22 cells, and SRF binding at its promoters is much higher than that of MYLK and
TAGLN. When MRTFA or myocardin is induced, SRF binding at the ACTA2 promoter and
ACTA2 expression are increased. DN-SMARCA4 did not attenuate the effect of MRTFA
or myocardin for ACTA2. This indicates a possibility that the ACTA2 promoter in B22,
fibroblasts, and SMCs remains accessible for SRF binding. The loss of SMARCA4 does not
close this region, and MRTFA or myocardin can still effectively promote ACTA2 expression.
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Herring and his colleagues further specifically knocked out Smarca4 with or with-
out Smarca2 in SMCs using SMMHC-Cre. About 33% of SMC-Smarca4 knockout mice
demonstrate cardiopulmonary abnormalities, including defects in the cardiac outflow tract,
patent ductus arteriosus (PDA), and ventricular septal defect (VSD). Those defects are
coupled with cyanosis and elevated neonatal mortality rates. In addition, striking pheno-
types are noticed in the gastrointestinal (GI) tract. They found that SMC-Smarca4/Smarca2
double knockout mice died within two weeks after birth, with dilated intestines. While
SMC-Smarca4 knockout mice consistently showed enlarged intestines, the SMC-Smarca2
knockout mice demonstrated relatively fewer aberrations. Consistently, contractile proteins
are significantly decreased in the SMC derived from surviving SMC-Smarca4 knockout and
double knockout mice, including telokin, Myh11, Cnn1, Tagln, and Acta2. Moreover, SMCs
exhibited increased apoptosis and decreased proliferation [148].

Additionally, compelling evidence suggests that SMARCA4 and SMARCA2 regulate
VSMC proliferation and inflammation. Endothelin 1 (ET-1) enhances VSMC contraction,
proliferation, and inflammation in VSMCs, playing multifaceted roles in CVD [149]. ET-1
was found to increase the expression of SMARCA4 in rat aortic smooth muscle cells, while
this can be attenuated by NaHS. Overexpression of Smarca4 promotes VSMC proliferation
and the expression of Ntf3, Pcna, and Pdgfα. Smarca4 binds at the promoters of those genes
and modulates DNA accessibility [150]. SMARCA4 and SMARCA2 are critical for activating
inflammatory genes, including IL6, IL1β, and CCL2, particularly when stimulated by ET-1
in VSMCs. A luciferase assay revealed that the binding of SMARCA4 and SMARCA2 at
the promoters of those genes is increased in VSMC in response to ET-1 [151].

Additional evidence further indicates the roles of SMARCA4 in CVD. Several groups
have reported an increase in SMARCA4 in the human standard type A aortic dissection
specimens [152–154]. To mimic different types of heritable thoracic aortic aneurysm (TAA),
two pathologic variants, TGFR2G357W and ACTA2R179H, were, respectively, overexpressed
in human aortic VSMC. Consistent with the patient’s specimen carrying that allele, con-
tractile genes, including smoothelin-1 (SMTN1), CNN1, vinculin (VCL1), and Tagln, are
decreased, while HDAC9 is increased, especially in the nucleus. In this model, SMARCA4
is indispensable for HDAC9 and EZH2 binding at the promoters of contractile genes,
which are then repressed [155]. In the ligation-induced carotid artery model, SMARCA4 is
also significantly increased in the adventitial SCA1+ smooth muscle cells (AdvSca1-SM).
Oral administration of SMARCA4/SMARCA2 inhibitor PFI-3 can rescue ligation-induced
vascular remodeling and inflammatory cell infiltration. Perivascular administration of
SMARCA4 shRNA attenuates adventitial expansion and vascular fibrosis. Under normal
or TGFβ-stimulated conditions, PFI-3 decreases Myh11, Cnn1, and Acta2 expression, indi-
cating essential roles of SMARCA4/SMARCA2. The cleavage under targets and release
using nuclease (CUT&RUN) assay reveals that, in the presence of PFI-3, the binding of
SMARCA4 and the level of H3K27Ac at the Acta2 promoter are reduced [156].

A prevailing controversy exists that SMARCA4 augments the expression of contractile
proteins in vitro, but SMARCA4 increases with contraction protein decrease in human TAA
samples. Since SMARCA4 and SMARCA2 constitute all SWI/SNF complexes, they might
collaborate with diverse factors to activate and repress genes [157]. SMARCA may serve as
a universal subunit for different regulations in the process of vascular diseases.

7. Roles of the SMARCD Family in VSMC

The human SMARCD family was first cloned and identified in 1996, with specific
tissue distributions observed. Of note, SMARCD1 is universally distributed, SMARCD2 is
predominantly expressed in the pancreas, and SMARCD3 is primarily found in the heart
and skeletal muscle [158]. All three SWI/SNF complexes contain only one of the three
SMARCD subunits: ncBAF only has SMARCD1, whereas cBAF and PBAF can contain
any one of the three SMARCD members. SMARCD1-3 is one of the core subunits in the
SWI/SNF complex. Knockout of SMARCDs disrupts the engagement of the ARID family
and ATPase to the complex core [109].
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The roles of the SMARCD family in myogenesis are extensively documented [159].
Smarcd3 participates in the early myogenesis in zebrafish [160]. Myoblast determination
protein 1 (MyoD) stands as a pioneering transcription factor in myogenesis, initiating
muscular cell differentiation, binding to closed chromatin, and aiding subsequent binding
of other transcription factors. SMARCD3 and SMARCA4 interact with MyoD and bind at
the promoter of myogenin, a muscle-specific transcription factor. The binding of MyoD
at the promoter of Myogenin is facilitated by SMARCD3. SMARCD3 phosphorylation
mediated by p38α is indispensable for SMARCA4 recruitment and muscle subsequent
differentiation [161].

The roles of SMARCD3 in cardiovascular development were first reported in 2004 [162].
Bruneau and his colleague found that SMARCD3 is expressed in the early stages of cardiac
development. Smarcd3 KO causes abnormal cardiac development, including shortened
outflow tract, hypoplastic atrium and ventricle, and left–right asymmetry [137,162]. In
zebrafish, Smarcd3 cooperates with Gata5 (a functional homolog of mammalian Gata4)
and T-box transcription factor 5 (Tbx5) to promote cardiac development [163]. Cardiac
defects are found in both Smarcd3 constitutive KO and cardiac-specific KO models driven
by Nkx2-5 or Myh6 Cre [134].

SMARCD3 interacts with transcription factors to regulate cardiac developmental
markers. Knockdown of Smarcd3 reduces natriuretic peptide A (NPPA), a cardiac differen-
tiation marker. Additionally, NPPA–luciferase reporter is synergistically transactivated by
TBX5, NKX2-5, GATA4, and SMARCD3, and this activation is blocked when SMARCA4 is
depleted. Moreover, the interaction between SMARCA4 and either TBX5 or NKX2-5 is criti-
cally dependent on SMARCD3. This aligns with other studies suggesting that SMARCD3
facilitates the interaction between transcription factors and the SWI/SNF complex [162].
Transient induction of Smarcd3 along with Tbx5, Nkx2-5, and Gata4 in the mouse embryo
induces ectopic expression of cardiac marker actin alpha cardiac muscle 1 (Actc1), myosin light
chain 2 (Myl2), troponin T2 (TNNT2) in the mesoderm non-cardiac cells [164]. Furthermore,
ectopic cardiac myocytes are found to be beating, which indicates the existence of a full
contraction machinery. Notably, Gata4 and Smarcd3 interaction can induce the expression
of Actc1, although the beating phenomenon is not observed. The addition of Tbx5 is re-
quired for the ectopic cardiac myocyte to beat. Moreover, Smarcd3 is essential for guiding
Gata4 to its subsequent targets [164].

Although several studies have demonstrated the critical roles of SMARCD3 in de-
veloping skeletal muscle and cardiomyocytes, its contribution to VSMC biology was first
reported in 2012. Sohni et al. [165] used rat multipotent adult progenitor cells (rMAPCs)
as a platform. These cells exhibit the capability to differentiate into SMCs in MAPC basal
medium supplemented with TGFβ1 and PDGFBB without the presence of Fetal bovine
serum (FBS). During this differentiation process, the expression of Smarcd3 and Myocardin is
increased, along with the increase in contractile markers, including Cnn1, Tagln, Smtn, Acta2,
and Myh11. They found that Smarcd3 is indispensable for the expression of Tagln and Acta2.
Moreover, the elevation of Smarcd3 induced by TGFβ1 in rMAPC can be subdued by the
Smad3-specific inhibitor and TGFβ receptor inhibitor. When the Smad3 binding element
(SBE) upstream of Smarcd3 is mutated, TGFβ can no longer promote Smarcd3-luciferase
activity, indicating that Smarcd3 is indeed regulated by TGFβ via Smad3 signaling. More-
over, Smarcd3 can interact with Srf and CArG elements in the promoters of Acta2 and Tagln.
This interaction indicates that SMARCD3 serves as a coactivator for SRF to promote the
expression of contractile proteins.

Another SMARCD family member, SMARCD1, is also identified in the vascular sys-
tem [166]. In primary rat VSMCs, free fatty acid (FFA, mixture of oleic acid, and palmitic
acid) decreases Smarcd1 in a dose- and time-dependent manner. With gain- and loss-
of-function approaches, Smarcd1 was found to promote the expression of clock genes,
including Bmal1 (basic helix-loop-helix ARNT like 1), Clock, and Dbp (D-box binding PAR
bZIP transcription factor). Notably, both overexpression and knockdown of Smarcd1 only
modulate the basal expression levels of these clock genes without affecting their circadian
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patterns. RORα has been identified to bind with Smarcd1, mediating the expression of
Bmal1. Overexpression of Smarcd1 results in increased levels of H3Ac and H3K4me3 and
decreased H3K9me2 at the ROR-binding sites (RORE). Furthermore, overexpression of
SMARCD1 inhibits FFA-induced Erk phosphorylation and prevents VSMC proliferation
and migration [166]. In 2020, we found that SMARCD1 is significantly upregulated in the
human abdominal aortic aneurysm (AAA) specimen and AAA tissues from the mouse
model [167]. SMC-specific Smarcd1 knockout mice exhibit a dramatic decrease in AAA inci-
dence and maximal diameter in both AAA models induced by elastase and Angiotensin II
with hypercholesterolemia. Extracellular matrix (ECM) degradation and related proteases,
including cathepsin S, matrix metalloproteinase-2 (MMP2), and MMP9, are significantly
reduced in the Smarcd1SMKO AAA specimen. We also observed reduced infiltration of
Mac2+ macrophages and decreased levels of MCP-1 and IL-6 in the serum. Knockdown and
overexpression of SMARCD1 in the human aortic smooth muscle cell (HASMC) demon-
strates that NF-κB downstream inflammatory genes, including TNFα, IL1α, and IL1β, are
modulated by SMARCD1. ChIP-seq data showed reduced SMARCA4 binding at the TSS of
NF-κB downstream genes, accompanied by decreased active histone markers, H3K9Ac and
H3K27Ac. Interaction between p300 and SMARCA4 is also decreased when SMARCD1 is
knocked down.

Of note, SMARCD3 exhibits the opposite effects in AAA pathogenesis in mouse
models [44]. Microarray data indicate that SMARCD3 is significantly reduced in human
AAA samples [168]. In the scRNAseq analysis of the mouse AAA model, Smarcd3 de-
creased specifically in VSMC [169]. SMC-specific Smarcd3 knockout (Smarcd3SMKO) mice
showed higher AAA incidence and larger maximal diameters, accompanied by signifi-
cant increases in ECM degradation, lymphocyte, and macrophage infiltration in the aortic
wall [44]. Consistent with previous studies [165], SMARCD3 is essential for contractile
gene expression in the VSMC. SRF and SMARCA4 binding at the promoters and H3K9Ac
and H3K27Ac at the TSS of contractile genes are all regulated by SMARCD3. SMARCD3 is
also required for interaction among SWI/SNF complex, SRF, and p300.

In addition, SMARCD3 knockdown increases VSMC apoptosis [44]. Knockdown of
SMARCD3 decreases the expression of the anti-apoptotic gene BCL2. ChIP-seq and the
ChIP assay demonstrate decreased SMARCA4, H3K9ac, and H3K27Ac binding at the KLF5
binding region within the promoter of BCL2. Knockdown of SMARCD3 also reduces KLF5
binding at the promoter and its interaction with SMARCA4. In human pulmonary artery
smooth muscle cells, prostate cancer cells, and colorectal cancer cells, KLF5 was found
to serve as a protector against apoptosis, which induces antiapoptotic genes, including
BCL2, baculoviral IAP repeat containing 5 (BIRC5) and repress pro-apoptotic genes like BCL2
associated X (BAX) [170–172]. Our study uniquely highlights the pivotal role of SMARCD3
and the SWI/SNF complex in regulating VSMC apoptosis through KLF5 [44]. In alignment
with our findings, SMARCD3 has been identified as a crucial factor for the survival of
pancreatic ductal adenocarcinoma (PDAC) stem cells. We speculate that those cancer cells
hijack the SMARCD3/KLF5 pathway to resist apoptosis [173].

8. Concluding Remarks and Future Directions

Research on VSMCs has evolved from studying physiological functions and contractile
machinery to exploring transcription and epigenetic regulation. With its intricate plasticity
mechanisms, this unique cell type likely holds the therapeutic potential for CVD.

The SWI/SNF complex has been identified as a target for an increasing number
of drugs in cancer research [174]. For instance, Xiao et al. [175] found that androgen
receptor (AR) and forkhead box A1 (FOXA1)-positive prostate cancer cells are sensitive to
proteolysis-targeting chimera (PROTAC) degrader against SMARCA4 and SMARCA2. In
VSMCs, however, SMARCA4 is essential for simultaneously expressing contractile proteins
and inflammatory genes. Therefore, SMARCA4 and SMARCA2 are not ideal targets for
cardiovascular disease treatment. Of note, the knockout of SMARCD1 in VSMC prevents
inflammation and AAA formation [167]. Several studies have also highlighted the role
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of BRD9 in inflammation in β cells [176] and macrophages [177–179]. BRD9 is a unique
subunit in ncBAF, while SMARCD1 is the only SMARCD family member in ncBAF. Since
both BRD9 and SMARCD1 promote inflammation, we speculate that ncBAF plays an
important role in inflammation in VSMC. Inhibitors targeting BRD9 or SMARCD1 hold
promising potential for mitigating inflammation and addressing associated CVD.

It is crucial to comprehensively investigate the functions of specific SWI/SNF subunits
or complexes in VSMC. There are three major complexes, encompassing 9–16 subunit
families with over 1000 potential combinations. The diversity of the SWI/SNF complex
determines the diversity of its targets and functions. As mentioned above, we have
demonstrated the opposite functions of SMARCD1 and SMARCD3 in VSMC and AAA
formation [44,167]. Contradicting functions between SMARCD1 and SMARCD3 have
also been reported in skeletal muscle differentiation and metabolism regulation [180–182].
However, the role of the remaining family member, SMARCD2, in VSMC remains to be
elucidated. It has been reported that SMARCD2, but not SMARCD1, partially functions as
SMARCD3 in cardiomyocyte differentiation [164]. Interestingly, during in vitro differentia-
tion of VSMC and cardiomyocyte, there is a decrease in SMARCD1 and SMARCD2, along
with an increase in SMARCD3 [183,184]. It is still unknown whether SMARCD2 shares
similar functions with SMARCD3 or SMARCD1 or possesses unique functions in VSMC
biology. Further studies are essential for advancing our understanding of the intricate
epigenetic regulation governing VSMC biology and associated vascular diseases.
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