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Abstract: Objective: The association of cerebrospinal fluid (CSF) protein levels with cognitive function
in the general population remains largely unexplored. We performed Mendelian randomization (MR)
analyses to query which CSF proteins may have potential causal effects on cognitive performance.
Methods and analysis: Genetic associations with CSF proteins were obtained from a genome-wide as-
sociation study conducted in up to 835 European-ancestry individuals and for cognitive performance
from a meta-analysis of GWAS including 257,841 European-ancestry individuals. We performed
Mendelian randomization (MR) analyses to test the effect of randomly allocated variation in 154 genet-
ically predicted CSF protein levels on cognitive performance. Findings were validated by performing
colocalization analyses and considering cognition-related phenotypes. Results: Genetically predicted
C1-esterase inhibitor levels in the CSF were associated with a better cognitive performance (SD units
of cognitive performance per 1 log-relative fluorescence unit (RFU): 0.23, 95% confidence interval: 0.12
to 0.35, p = 7.91 × 10−5), while tyrosine-protein kinase receptor Tie-1 (sTie-1) levels were associated
with a worse cognitive performance (−0.43, −0.62 to −0.23, p = 2.08 × 10−5). These findings were
supported by colocalization analyses and by concordant effects on distinct cognition-related and
brain-volume measures. Conclusions: Human genetics supports a role for the C1-esterase inhibitor
and sTie-1 in cognitive performance.

Keywords: CSF; cognition; tyrosine-protein kinase receptor; SERPING1; TIE1

1. Introduction

Cerebrospinal fluid (CSF) is an ultrafiltrate of plasma produced in the cerebral ven-
tricles and located within the subarachnoid space where it maintains the structural and
physiological integrity of the central nervous system (CNS) [1,2]. The composition of
CSF, including protein levels, provides information about brain health and may help to
stratify neurodegenerative disease risk [3–6]. Given its proximity to nervous system tissue,
CSF may be more informative about protein–disease relationships than serum. These
proteins may also represent targets for the development of therapeutics that prevent or
treat disease [7].
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Prior studies have mostly focused on the association of CSF protein levels with the
risk of dementia [5,6], while investigations into the relationship between CSF proteins
and cognition more broadly have been limited [8]. For example, prior epidemiologic
studies investigated the association between CSF biomarkers and cognitive function. The
proteins investigated in these studies were curated based on known relationships with AD
(e.g., amyloid beta, tau, and neurofilament light chain) [9–11]. Thus, the relationship of the
proteome with cognition remains a largely unexplored frontier.

While epidemiologic studies contribute important information to the understand-
ing of the association between biomarkers and disease, associations from conventional
epidemiologic analyses can be biased by residual confounding or reverse causality and
may therefore not represent causal relationships. Mendelian randomization (MR) is an
alternative analytic paradigm that uses human genetic data to estimate less biased causal
effects. MR leverages randomly allocated genetic variants as proxies for exposures to
estimate the causal effect of an exposure (e.g., levels of a protein in the CSF) on an outcome
(e.g., cognitive function) [12,13]. Due to the random and fixed allocation of genetic variants
at conception, this approach is less susceptible to potential bias due to confounding from
environmental factors or reverse causation. The recent discovery of genetic variants associ-
ated with CSF protein levels and the availability of large-scale genetic association studies
of cognition-related phenotypes permits the application of MR to examine the relationship
between the CSF proteome and cognitive performance [14]. In this work, we applied MR
to systematically query the human CSF proteome for proteins with evidence for a causal
effect on cognitive performance.

2. Materials and Methods
2.1. Study Design

The overall study design is provided in Figure 1. We conducted cis-Mendelian random-
ization (cis-MR) analyses to explore the associations of genetically predicted CSF protein
concentration with cognitive performance. To ensure that MR findings were not biased
by linkage disequilibrium (LD) with a nearby genetic association signal, further statistical
validation was performed using genetic colocalization analyses [15]. For proteins with
evidence from colocalization analyses, we conducted complementary MR analyses to assess
the association of genetically predicted protein levels with 13 curated cognition-related
phenotypes. This study is reported using the Strengthening the Reporting of Observa-
tional Studies in Epidemiology using Mendelian Randomization (STROBE-MR) guidelines
(Supplementary Table S1).

2.2. Genetic Associations with Protein Levels in CSF and Other Tissues

Yang et al. conducted a genome-wide association study (GWAS) of 713 cerebrospinal
fluid (CSF) proteins in 971 individuals recruited from the Washington University School of
Medicine in St. Louis, including 249 patients with Alzheimer’s disease (AD), 717 cognitively
normal controls, and 5 with unknown cognitive function status [14]. The average age of
the study participants was 69 years (standard deviation [SD] 9.3 years), 53% were women,
and 39% had at least one copy of the APOE ε4 allele. Study participants were unrelated
and of European ancestry (detailed information available in the GWAS manuscript). After
quality control by Yang et al., the total sample size was 835 patients. Of note, the authors
demonstrated that genetic associations with protein levels were nearly identical between
patients with and without AD and thus the inclusion of AD cases does not bias the genetic
associations with protein levels (r > 0.98 for genetic associations with proteins in partici-
pants with and without AD). CSF was collected via lumbar puncture after an overnight
fast. A multiplexed aptamer-based platform developed by SomaLogic Inc. (Boulder, CO,
USA) was used to measure the relative concentrations of proteins in the CSF [16]. The
protein levels were quantified as relative fluorescence units (RFU). Genetic association
estimates with CSF protein levels were adjusted for sex, age, the first two genetic principal
components, and the genotyping platform. In additional sensitivity analyses, we used
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genetic association data for plasma (n = 529) and brain (n = 380; measured using parietal
cortex tissue) proteins from the same study.
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Figure 1. Analysis pipeline. Mendelian randomization (MR) analyses were performed to explore
the association of genetically proxied levels of cerebrospinal fluid (CSF) proteins on cognitive perfor-
mance. After a 5% false discovery rate (FDR) correction, 14 proteins that were significantly associated
with cognitive performance were taken forward for genetic colocalization analysis. Two CSF proteins
had evidence of genetic colocalization with cognitive performance and were included in an addi-
tional MR aimed at assessing their association with 13 complementary cognition-related phenotypes.
Because of the literature-based support for the associations we observed with the CSF C1-esterase
inhibitor, we conducted additional sensitivity and exploratory analyses including a phenome-wide
association study for the lead CSF C1-esterase inhibitor cis-protein quantitative trait locus (pQTL)
and gene expression association analysis.

2.3. Genetic Associations with the Outcomes

The primary outcome of this MR analysis was cognitive performance. We obtained
genetic association estimates for cognitive performance from a Social Science Genetic
Association Consortium (SSGAC) meta-analysis conducted by Lee et al. [17], including
257,841 European-ancestry UK Biobank [18] and Cognitive Genomics Consortium (CO-
GENT) participants [19]. In the UK Biobank, cognitive performance was measured in
222,543 participants using a standardized score of a test of verbal–numerical reasoning.
The test contained thirteen logic and reasoning questions with a two-minute time limit and
was designed as a measure of fluid intelligence. Each respondent took the test up to four
times, and the mean of the standardized scores was used, which was then standardized. In
COGENT, cognitive performance was quantified as the first unrotated principal component
of performance on at least three neuropsychological tests or two intelligence quotient (IQ)
test subscales, measuring the overall accuracy or total number of correct responses in
35,298 individuals. In general, the test variable used either the overall accuracy or total
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number of correct responses. Adjustments for age, sex, and population stratification were
included in the genotype–phenotype association analysis for each cohort.

In secondary analyses, we considered 13 cognition-related phenotypes as outcomes, to
explore how proteins might impact different dimensions of cognitive function. Summary
statistics were obtained for volumetric brain magnetic resonance imaging (MRI)-derived
phenotypes (T1; left and right hippocampal volume, cortical gray matter volume, and total
brain volume) in 33,224 UK Biobank participants [20]. Genetic associations with phenotypes
related to reading and language skills (word reading, nonword reading, spelling, phoneme
awareness, and nonword repetition) in up to 27,180 European-ancestry participants from
a published GWAS meta-analysis [21]. Nonword reading and repetition are language
assessment tasks where individuals are asked to read and repeat words that do not exist in
the language lexicon, which are standard tests that can be used to identify individuals with
language difficulties. Genetic association data were also obtained for a binary phenotype
of ‘extremely high intelligence’ in 9410 individuals of European ancestry (1238 cases with
a mean IQ > 170 and 8172 controls) [22]. For general cognitive function phenotypes, we
included reaction time (N = 330,069) and verbal numeric reasoning (N = 168,033) from
a GWAS meta-analysis by Davies et al. [23]. Finally, for educational attainment we made
use of the meta-analysis by Lee et al. (N = 766,345) [17]. All secondary phenotypes are in
standard deviation units apart from the MRI traits, which have mm3 units. There was no
sample overlap between the exposure (CSF protein) and any of the outcome GWAS datasets.

2.4. Selection of Genetic Proxies for CSF Protein Levels

For MR analysis, we used cis protein quantitative trait loci (pQTLs) as genetic instru-
ments for each CSF protein. Genetic variants were considered cis to the gene when they
were located within 1 Mb of the gene start or end position. This decision to use cis variants
was motivated by the notion that such variants are less likely to be biased when used to
proxy protein levels compared to variants from throughout the genome (also referred to
as trans variants; 7). Gene coordinates were determined based on the Genome Reference
Consortium Human version 37 (GRCh37) released by the Ensembl genome browser. We se-
lected genome-wide significant pQTLs (p < 5 × 10−8) that were also present in the outcome
datasets. To obtain independent genetic instruments for each CSF protein, the variants
were clumped using a pair-wise LD r2 < 0.01 (7) from the 1000 genomes project phase 3
European LD reference panel [24]. A distance-based threshold of 1 Mb was used as the
clumping window.

2.5. Statistical Analysis
2.5.1. Mendelian Randomization Analysis

We conducted two-sample MR analyses to explore the effect of CSF protein levels on
the primary and secondary outcome phenotypes. Genetic associations with the exposures
and outcomes were harmonized by aligning effect alleles, using the ‘TwoSampleMR’ v.0.6.0
R package [25]. MR effects were estimated either using the Wald ratio for single variant
instruments [25], or the random-effects inverse-variance weighted method for instruments
comprising multiple genetic variants [13]. MR effect estimates were considered statistically
significant below a false discovery rate (FDR) of 5% to account for the multiple testing
of correlated phenotypes. MR effect estimates are reported as the SD change in cognitive
performance per 1-log RFU increase in the genetically predicted CSF protein level.

Where more than two genetic instruments were available for a given protein, we
performed sensitivity analyses to assess the robustness of MR estimates to bias due to hori-
zontal pleiotropy. Horizontal pleiotropy refers to the association of the genetic instrument
with the outcome through pathways independent of the exposure and leads to potential
bias in the MR estimate [26]. We first calculated the I2 statistic for heterogeneity, which is
a global indicator of either heterogeneity or pleiotropy [27]. We then used the weighted
median method which orders the MR estimates obtained by each genetic instrument by
their magnitude, weighted for their precision, and calculates an overall MR estimate based



Genes 2024, 15, 71 5 of 12

on the median value [28]. Proteins with consistent MR estimates using the weighted median
method were carried forward for colocalization analysis.

2.5.2. Genetic Colocalization Analysis

Due to linkage disequilibrium, genetic variants in close proximity tend to be inherited
together and are often correlated. If distinct, correlated causal variants are associated with
the exposure and the outcome, this may introduce bias in the cis-MR effect estimates as it
allows an association between a genetic variant and the outcome via an alternative pathway
that does not pass through the exposure (violation of the exchangeability assumption).
Genetic colocalization analysis is a Bayesian method that can be used as a sensitivity
analysis to identify this type of genetic confounding [15]. This analysis determines whether
the genetic associations for any given traits share the same causal variant. We implemented
the ‘coloc’ method [29], which works under the assumption that there is no more than
one causal variant per trait and compares evidence for different hypotheses in a Bayesian
framework. The coloc algorithm returns posterior probabilities for five hypotheses, with
the posterior probability H4 corresponding to the hypothesis of a shared causal variant in
the genomic region (evidence of colocalization). The posterior probabilities were calculated
from the prior probabilities (we used the ‘coloc’ R package (v.5.1.0.1) [30] default settings:
p1 = 10−4, p2 = 10−4, p12 = 10−5). We applied an H4 posterior probability cut-off of 0.70 [31]
but considered associations with lower posterior probabilities in exploratory analyses.

2.5.3. Complementary Analysis for C1-Esterase Inhibitor

We performed follow-up analyses to better understand the effect of the C1-esterase
inhibitor, which was the protein with the strongest supporting evidence of an associa-
tion with cognitive performance from our analyses. To assess tissue specificity of the
(CSF) pQTL, we assessed the association of genetically proxied levels of the C1-esterase
inhibitor in plasma and brain tissue on cognitive performance. Second, given preclinical
data suggesting neuroprotective effects of the C1-esterase inhibitor, we explored the associ-
ations of genetically predicted C1-esterase inhibitor levels in CSF with Alzheimer’s disease
(35,274 AD cases, and 59,163 non-AD controls) [32], and with functional outcomes 3 months
after ischemic stroke (N = 6021, modified Rankin scale) [33]. Third, to identify additional
disease associations across a wide range of clinical diagnoses, we performed a phenome-
wide association study (PheWAS), using the lead cis-pQTL of CSF C1-esterase inhibitor,
rs11603020, in the UK Biobank. We used the International Classification of Diseases (ICD)
versions 9 and 10 [34] to identify cases for the clinical health outcomes from the Hospital
Episode Statistics (HES), cancer, and death registries. Clinical diagnoses were mapped to
the phecode grouping system, using the ‘PheWAS’ R package v0.99.5.5 [35]. In PheWAS,
we performed a series of logistic regressions using the effect allele (C allele) of rs11603020
as the exposure and each clinical diagnosis as an outcome in up to 439,738 UK Biobank
participants of European ancestry. Age, sex, and the first 10 genetic principal components
were included as covariates. To maintain statistically meaningful calculations, the analysis
was limited to health outcomes for which we had sufficient power (N ≥ 200 cases) [36].
A 5% FDR threshold was used to define statistically significant associations. Finally, we
explored the association of rs11603020 with gene expression in 54 healthy tissue sites across
nearly 1000 samples from the Genotype-Tissue Expression project (GTEx) version 9 [37].

3. Results

A total of 172 genome-wide significant cis-pQTLs were used to instrument 154 CSF
proteins in MR analysis, of which, 139 proteins had one instrument, 12 proteins had
two, and three proteins had three instruments (Supplementary Table S2). Genetically
predicted levels of 14 CSF proteins were significantly associated with cognitive perfor-
mance (Supplementary Table S3), after using a 5% FDR statistical significance threshold
(p < 6 × 10−3; Figure 2). We performed colocalization analyses to assess whether these asso-
ciations are due to a shared causal genetic variant rather than genetic confounding through
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a neighboring variant in LD (Supplementary Table S4; Figure 3). Genetic determinants of
two CSF proteins (C1-esterase inhibitor and sTie-1) colocalized with variants that determine
cognitive performance, with a posterior probability for colocalization > 0.7. For sTie-1,
rs839768 was identified to be the shared causal variant with cognitive performance with
PPH4 = 0.94, whereas, for the C1-esterase inhibitor, rs4926 (p.Val480Met, a missense variant
in SERPING1) was identified as the most probable shared causal variant with cognitive
performance (PPH4 = 0.82). Although not meeting our prespecified threshold, variants
related to LRP8 had suggestive evidence for colocalization with cognitive performance
(PPH4 = 0.46) with an inverse association with cognitive performance in MR analyses
(Supplementary Table S3). The lead variant used for analysis (rs12031155) was highly
correlated (r2 0.98) with rs5174, a missense variant in LRP8.
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Figure 2. Mendelian randomization findings for the associations of genetically proxied cerebrospinal
fluid (CSF) protein levels with cognitive performance. Only significant associations (p FDR < 0.05)
are shown. MR estimates are reported as the standard deviation change in cognitive performance
per 1 log-relative fluorescence unit (RFU) higher genetically predicted CSF protein level. The type of
protein quantitative trait loci used as instruments in the analysis is provided in the fourth column.
CI: confidence interval, pQTL: protein quantitative trait locus, ncRNA intronic: intronic non-coding
RNA variants, CBPE: carboxypeptidase E, IL-18 Ra: interleukin-18 receptor 1, LRP8: low-density
lipoprotein receptor-related protein 8, MSP: hepatocyte growth factor-like protein, PSMA: glutamate
carboxypeptidase 2, sICAM-1: intercellular adhesion molecule 1, sTie-1: tyrosine-protein kinase
receptor Tie-1, TSG-6: tumor necrosis factor-inducible gene 6 protein.

We conducted two-sample MR to explore the associations of genetically proxied CSF
levels of sTie-1 and the C1-esterase inhibitor with phenotypes related to cognitive perfor-
mance (Figure 4; Supplementary Table S5). Higher genetically predicted CSF C1-esterase
inhibitor levels were associated with increased educational attainment, and nominally
with a greater peripheral grey volume, faster reaction time, and improved verbal numeric
reasoning. Higher genetically predicted levels of CSF sTie-1 were associated with a lower
brain volume, lower educational attainment, and worse verbal numeric reasoning, and
nominally with the lower left hippocampal volume.
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Figure 3. Regional association plots demonstrating colocalization between genetic association signals
for cerebrospinal fluid (CSF) protein levels and cognitive performance. (I) Genetic associations with
CSF C1-esterase inhibitor concentrations and cognitive performance (−log10(P)) plotted against
chromosome position (megabases) for variants cis to SERPING1. (II) Genetic associations (−log10(P))
plotted against chromosome position (megabases) for variants within the TIE1 gene or +/−100 kb
of the gene start and end position for cerebrospinal fluid sTie-1 levels and cognitive performance.
H4 pp: Posterior probability of colocalization.

In follow-up analyses, we found that 1 log-RFU higher genetically predicted plasma C1-
esterase was associated with a 0.16 SD higher cognitive performance (beta: 0.16, 95% CI: 0.08
to 0.23, p = 4.73 × 10−5) (Supplementary Table S6). There was no evidence for an association
of genetically proxied CSF C1-esterase inhibitor with the risk of AD or with functional
outcomes three months after ischemic stroke (Supplementary Table S7). There were no
PheWAS associations that met our statistical significance threshold. We identified a nominal
association between the instrumented levels of CSF C1-esterase inhibitor and the odds of
having a ‘rash and other nonspecific skin eruption’ (odds ratio [OR]: 1.13, 95% CI: 1.05
to 1.22, p = 8.49 × 10−4) in keeping with the known clinical syndrome of C1-esterase
inhibitor deficiency (Supplementary Table S8). Finally, using gene-expression data, we
found that rs10603020 influences the gene expression of SERPING1 (the gene coding for
the C1-esterase inhibitor) in whole blood (p = 5.3 × 10−8) (Supplementary Table S9).
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were no PheWAS associations that met our statistical significance threshold. We identified 

a nominal association between the instrumented levels of CSF C1-esterase inhibitor and 

the odds of having a ‘rash and other nonspecific skin eruption’ (odds ratio [OR]: 1.13, 95% 

CI: 1.05 to 1.22, p = 8.49 × 10−4) in keeping with the known clinical syndrome of C1-esterase 

inhibitor deficiency (Supplementary Table S8). Finally, using gene-expression data, we 

found that rs10603020 influences the gene expression of SERPING1 (the gene coding for 

the C1-esterase inhibitor) in whole blood (p = 5.3 × 10−8) (Supplementary Table S9). 

Figure 4. Secondary Mendelian randomization analyses investigating the association of genetically
proxied cerebrospinal fluid (CSF) C1-esterase inhibitor and sTie-1 with phenotypes related to cogni-
tive performance. Two-sample Mendelian randomization (MR) findings exploring the association of
genetically proxied cerebrospinal fluid C1-esterase inhibitor and sTie-1 levels with cognitive perfor-
mance and 13 cognitive performance-related phenotypes. MR estimates on outcomes are reported as
the standard deviation change per 1 log-RFU higher genetically predicted CSF protein level, except
for T1 MRI phenotypes (brain volume, left and right hippocampus volume, peripheral gray matter
volume), where MR estimates are reported as mm3 change per 1 log-RFU higher genetically predicted
CSF protein level, and for extremely high intelligence, where MR estimates are reported as log-odds
change per 1 log-RFU higher genetically predicted CSF protein level. CI: confidence interval.

4. Discussion

We queried the effects of 154 genetically predicted CSF protein levels on cognitive
performance using the MR paradigm and found multiple lines of evidence to support the
C1-esterase inhibitor and sTie-1 as proteins with relevance to cognitive performance. First,
genetically predicted levels of these proteins were associated with cognitive performance
in MR analyses. Second, these associations were further supported by colocalization
analyses supporting a shared causal variant underlying the association signal between
the CSF protein level and cognitive performance. In the case of the C1-esterase inhibitor,
the prioritized shared variant was a coding variant in SERPING1, and such variants
are generally considered to provide stronger evidence for support of gene–phenotype
relationships (7). Third, these associations were supported by concordant associations with
related cognition and neuroimaging phenotypes.

The C1-esterase inhibitor functions as a serine protease inhibitor involved in regulating
the complement system activation to prevent an excessive immune response [38]. The
C1-esterase inhibitor also participates in the regulation of the kallikrein–kinin system,
which is involved in vascular tone and permeability, as well as the coagulation cascade [39].
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These functions underlie its relevance in hereditary angioedema. In terms of brain health,
the C1-esterase inhibitor has been investigated using animal models. These predominantly
mouse studies have demonstrated that knockdown or inhibition of the C1-esterase inhibitor
worsens cognition and neurovascular impairment [39], and the infusion of a recombinant
C1-esterase inhibitor mitigates ischemic brain injury [40] and inflammation after traumatic
brain injury [41]. Taken together with results from our genetic analyses, these preclinical
data further support the hypothesis that the C1-esterase inhibitor may have neuroprotective
properties in humans.

In contrast to the C1-esterase inhibitor, sTie-1 is poorly characterised in the literature.
This protein has been implicated in various vascular processes such as angiogenesis and
vessel wall integrity [42]. These processes have relevance to neural development and cere-
brovascular disease and may mediate the association of sTie-1 with cognitive performance.
Moreover, the sTie-1 lead cis-variant rs3768046 has been reported to be associated with the
risk of attention deficit hyperactivity disorder (ADHD) via the dysregulated expression of
TIE1 [43].

Although the colocalization evidence for LRP8 did not meet our predetermined sta-
tistical threshold, it is worth discussing this protein in the context of its known relevance
to human brain health. Low-density lipoprotein receptor-related protein 8 (LRP8) is also
known as apolipoprotein E receptor 2. The interaction of this receptor with the reelin ligand
has been extensively studied for its role in neuronal migration and positioning during
cortical development in mice [44]. The rs5174 variant in LRP8, which is highly correlated
with the pQTL instrument used in the present analysis, has been robustly associated with
the GWAS of brain cortical thickness and sulcal depth [45]. Thus, it is likely that this protein
is influencing cognition through pathways that are active during neurodevelopment. More-
over, other proteins with significant MR associations but a lack of colocalization evidence
are worth exploring further in future studies, such as carbonic anhydrase IV, cathepsin B,
or growth hormone.

There are several strengths to highlight from this study. First, we employed the
MR paradigm, which is robust against potential biases resulting from confounding and
reverse causation. Second, genetic colocalization analyses confirmed that our results were
not explained by genetic confounding. Third, multiple sensitivity and complementary
analyses yielded supporting evidence for our main conclusion. Fourth, the investigation of
protein-cognition associations is relatively unexplored and has potentially wide-reaching
implications for the general population. Finally, the genetic association of LRP8 with
cognition demonstrates that this approach can recapitulate known biology.

There are also limitations to consider. First, our results may be biased by pleiotropic
effects of the genetic variants on biological pathways that are independent of protein
levels. The second key limitation is that the present analysis does not inform us on
whether interventions on the levels of these proteins may influence cognitive performance.
For instance, the protein levels may only be relevant during certain time windows of
neurodevelopment, such as in the case of LRP8 which is known to influence neuronal
development. In such a case, modifying protein levels in adulthood would not be expected
to influence cognitive performance. Third, our findings warrant replication by leveraging
gold-standard measures or different assays, since in this study a single SomaLogic aptamer
assay was used to quantify relative protein abundance. In one possible source of bias in
aptamer assays, missense variants that modify the amino acid sequence may consequently
affect aptamer–protein binding without affecting the levels of the protein in the sample.
Furthermore, aptamer-based protein quantification does not provide absolute protein
quantities that are directly translatable to clinical settings. Our results should, therefore,
be interpreted merely by their direction of the effect, rather than their effect size. Fourth,
our analysis was restricted to individuals of European ancestry, so these findings may not
accurately reflect the relationship between the CSF protein levels and cognitive function
in diverse populations. Fifth, we did not identify effects of these proteins on the outcome
of AD. This suggests that the direct effects of these proteins on AD are minimal, and
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any possible benefit on dementia risk would be mediated through mediated effects of
improved cognitive reserve. Finally, the similarity of results across various tissue types
precludes us from concluding that the CSF is the compartment in which these proteins
influence cognition. In the setting of a similar genetic effect on protein abundance in
different compartments, we are unable to resolve which of these biological compartments
is more relevant to the mechanistic relationship between these proteins and cognition.
Additional work is needed to identify the tissue type that is most relevant for these proteins
to influence the respective phenotypes.

In conclusion, this MR analysis prioritizes the C1-esterase inhibitor and sTie-1 as pro-
teins with potentially causal effects on cognitive performance. The biological mechanisms
relating these proteins to cognition should be further investigated to determine which
could be targeted to improve cognition.
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