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Abstract: The care and rehabilitation of acute and chronic wounds have a significant social and
economic impact on patients and global health. This burden is primarily due to the adverse effects
of infections, prolonged recovery, and the associated treatment costs. Chronic wounds can be
treated with a variety of approaches, which include surgery, negative pressure wound therapy,
wound dressings, and hyperbaric oxygen therapy. However, each of these strategies has an array
of limitations. The existing dry wound dressings lack functionality in promoting wound healing
and exacerbating pain by adhering to the wound. Hydrogels, which are commonly polymer-based
and swell in water, have been proposed as potential remedies due to their ability to provide a moist
environment that facilitates wound healing. Their unique composition enables them to absorb wound
exudates, exhibit shape adaptability, and be modified to incorporate active compounds such as
growth factors and antibacterial compounds. This review provides an updated discussion of the
leading natural and synthetic hydrogels utilized in wound healing, details the latest advancements in
hydrogel technology, and explores alternate approaches in this field. Search engines Scopus, PubMed,
Science Direct, and Web of Science were utilized to review the advances in hydrogel applications
over the last fifteen years.
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1. Introduction

Wounds have plagued patients for millennia, imposing a substantial burden on their
carers, thus earning its designation as the ‘silent epidemic’ [1]. Approximately 4 million
cutaneous wounds have been documented to occur annually in affluent countries, with the
number in developing nations in ascendance [2]. Skin injury compromises the integrity
of the skin’s framework, leading to a wound healing process that is characterized by a
well-coordinated series of cellular and molecular reactions that aim to recuperate or replace
the injured tissue [3]. Wounds distinguished by synergistic and ordered processes, which
lead to uninterrupted wound regeneration, are commonly referred to as ‘acute wounds’. Al-
though minor cutaneous injuries can recuperate, several variables frequently impact wound
rehabilitation. These include severe oxidative stress, infection, and underlying medical
conditions that result in the development of “chronic or inert wounds” [4]. Chronic wounds
exhibit distinctive attributes, which include recurrent infections, a heightened inflammatory
phase, and impaired responsiveness of epidermal cells to reparative signals [5].

In addition to the impact on psychological, social, and physical health, diminished
productivity and high treatment costs impose a financial strain on the healthcare sector, em-
phasizing the need for efficient wound treatment. The current industry-standard therapies
include skin grafts and flaps, dermal substitutes, and skin growth procedures. However,
these procedures encounter significant challenges, such as a scarcity of sites for donors
and the development of hypertrophied scars, resulting in physiological complications [6].
Hence, there is a dire need for an efficient alternative to overcome the present limitations.

Hydrogels can be described as intricate three-dimensional structures composed of
hydrophilic polymer chains and exhibit a quick swelling response upon contact with water,
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forming a partially solid material [7]. More than 90% of the hydrogel framework is com-
posed of water, thereby rendering it possible to sustain a moist environment adjacent to
the wound’s surface, facilitating tissue repair [4]. Hydrogels possess numerous properties
that make them ideal for use as wound dressings. These include firm adhesion, shape
adaptability, and mechanical protection, which enable sufficient coverage and safeguard-
ing of the wound [8]. Hydrogel-based dressings possess the advantage of being readily
tuneable, allowing for the incorporation of antibacterial and antimicrobial agents, cells,
biomolecules, and growth factors [9]. This augmentation aims to expedite the processes
of wound contraction and healing. A hydrogel can be constructed using any hydrophilic
polymer through a tailored cross-linking technique. These water-soluble polymers can
be natural or synthetic. Synthetic materials provide unique features pertaining to their
highly modifiable physical attributes and adhesive characteristics. Natural polymers ex-
hibit enhanced biocompatibility and biodegradability compared to synthetic polymers [10].
There has been notable progress in combining natural and synthetic polymers to formulate
blended hydrogels. Additionally, integrating nanomaterials in situ has led to the formation
of “smart” nanogels that possess a customized functionality, facilitating the application of
hydrogels in treating deep or irregular wounds due to in situ induction [11].

Hydrogels represent a subset of therapeutic interventions that have significant promise
in enhancing the quality of life for numerous patients affected by wounds and their associ-
ated ramifications. This review initially looks at wounds in general, treatment strategies
employed, their impact on health and the economy, and the need for suitable therapies.
We further present an overview of the advancements made in using hydrogels for wound
healing and offer valuable insights into the production of some hydrogel-based wound
dressings. Integrating research, cutting-edge technology, and innovative strategies for
patient support can provide the impetus needed for the advancement of wound treatments.

2. The Skin

The skin is the most remarkable multifunctional organ in the human body. It plays
a crucial role in protecting against a wide range of exterior hazards while preserving the
internal environment. In virtue of its physical and sensory functions, this multilayered,
complex organ is essential for the body’s defense. Human skin comprises three distinct
layers: the epidermis, dermis, and hypodermis (Figure 1). The epidermis, mainly consist-
ing of keratinocytes, is an integral contributor to the skin’s cutaneous protective barrier
function [12]. The second layer is the dermis, which is the most substantial stratum of
the integumentary system, measuring between 1.5 and 4 mm in thickness. Fibroblasts
are the predominant cellular component within the dermis, responsible for the synthesis
of collagen and elastin, which contribute to the rigidity and flexibility of the skin. The
hypodermis, located beneath the dermis, consists predominantly of adipose and connective
tissue, which assists in the provision of strength [13]. Due to the skin’s slight acidity, it
is protected against pathogens. In addition, Langerhans cells, which reside within the
epidermis, protect against harmful infections [14]. Despite these protective properties, the
skin is susceptible to breakage. A wound is characterized by the impairment or disturbance
of the body tissue’s anatomical and physiological integrity [15]. Once the disruption has
occurred, the skin undergoes a complex and synchronized regeneration process to restore
its physical integrity.



Gels 2024, 10, 43 3 of 21
Gels 2024, 10, x FOR PEER REVIEW  3  of  21 
 

 

 

Figure 1. The structure of the skin illustrating the three layers: epidermis, dermis, and hypodermis. 

3. Wound Healing Phases 

The natural wound repair process  is a  fundamental physiological mechanism that 

entails the coordinated interaction of several cellular strains with their respective products 

[3]. It is essential to maintain the skin’s integrity. To effectively navigate the wound to-

ward complete healing succession, an intricate biological healing process of hemostasis, 

inflammation, proliferation, and remodeling must be accomplished (Figure 2).   

 

Figure 2. The 4 phases of wound healing and  their approximate duration  for acute and chronic 

wounds. 

It is imperative that all four physiological phases, which are closely interconnected, 

interdependent,  and  sometimes  overlapping,  occur  in  the  appropriate  sequence  and 

within an acceptable duration [16]. Hemostasis initiates the wound healing process, which 

occurs when ruptured tissue enables the influx of blood to enter the open lesion. Upon 

sustaining an injury, the initial physiological response is the restriction of blood vessels, 

known as vasoconstriction, which impedes the bleeding process [17]. Platelets aggregate 

upon exposure  to collagen and are subsequently released  in conjunction with fibrin  to 
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Figure 1. The structure of the skin illustrating the three layers: epidermis, dermis, and hypodermis.

3. Wound Healing Phases

The natural wound repair process is a fundamental physiological mechanism that
entails the coordinated interaction of several cellular strains with their respective prod-
ucts [3]. It is essential to maintain the skin’s integrity. To effectively navigate the wound
toward complete healing succession, an intricate biological healing process of hemostasis,
inflammation, proliferation, and remodeling must be accomplished (Figure 2).
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Figure 2. The 4 phases of wound healing and their approximate duration for acute and chronic
wounds.

It is imperative that all four physiological phases, which are closely interconnected,
interdependent, and sometimes overlapping, occur in the appropriate sequence and within
an acceptable duration [16]. Hemostasis initiates the wound healing process, which occurs
when ruptured tissue enables the influx of blood to enter the open lesion. Upon sustaining
an injury, the initial physiological response is the restriction of blood vessels, known as vaso-
constriction, which impedes the bleeding process [17]. Platelets aggregate upon exposure
to collagen and are subsequently released in conjunction with fibrin to form a thrombus,
which serves to occlude the punctured blood vessels, preventing bleeding. Additionally,
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this process provides a provisional structure for the infiltration of cells necessary to repair
the lesion [18].

Inflammation follows hemostasis, which commences within the initial 72 h post-
cellular injury. The cellular response during the period of inflammation is distinguished
by the migration of leukocytes into the vicinity of the lesion. A complex cascade of
signaling molecules facilitates the influx of neutrophils and macrophages into the region of
injury. Neutrophils are mobilized and directed to the wound within the initial 24 h period,
where they remain for a duration ranging from 2 to 5 days [19]. These phagocytic cells
are responsible for releasing reactive oxygen species (ROS) and lysozymes to eliminate
surrounding microorganisms and remove necrotic tissues. Macrophages often migrate to
the site of injury within approximately 3 days. They are responsible for the secretion of
many growth factors, cytokines facilitating cellular growth, and the formation of molecules
within the extracellular matrix (ECM) [17].

The transition from the period of inflammation to the proliferative state is vital in
wound healing. The objective of proliferation is to reduce the area of damaged tissue
through angiogenesis and fibroplasia, thus producing an effective epithelial screen that can
stimulate the activation of keratinocytes for wound closure. These processes commence
within an initial 48 h period and may continue until the 14th day following the emergence
of injury [3]. The last stage of the healing process involves remodeling, which commences
around 2 to 3 weeks following the initiation of the wound and may persist for one year [20].
The primary objective of the remodeling phase is to optimize elasticity and restore the
typical tissue structure through reorganization, disintegration, and reconstruction of the
matrix surrounding the cells. The granulation tissue undergoes a slow remodeling process,
forming scar tissue [21]. Although the process of wound healing is highly efficient, various
factors, such as infection and disease, can cause impairment, resulting in an increase in
healing time and recurrent wounds.

4. Acute and Chronic Wounds

Acute and chronic wounds are determined based on the healing period after the
initial injury and, more significantly, by the presence of physiological damage. Acute
wounds are breaches in the epidermis integrity that repair completely, with minor scarring
(Figure 3), while progressing through a structured process of recovery that takes about 8
to 12 weeks [6]. The etiology of these injuries primarily stems from mechanical trauma,
such as abrasive interaction and incisions performed during surgical procedures, thermal
traumas, chemical burns, and electrical accidents [22].
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A wound that fails to advance through the standard phases of inflammation and
regeneration is classified as a chronic wound. This classification is frequently assigned
once the wound exhibits minimal indications of improvement beyond three months [23].
Around 15% of wounds fail to heal within one year following their initial manifestation due
to asynchronous wound healing phases [1]. The principal risk factors associated with the
development of chronic wounds include age, immunological status, malnutrition, infection,
low oxygen levels or perfusion, tobacco use, underlying disorders, drugs, exposure to
radiation, and chemotherapy [24]. The primary idea of significance pertains to prolonged
hyper-inflammation, a common pathophysiological feature that perpetuates a destabilized
environment within a wound, rendering it resistant to the healing process. The dysfunction
of macrophages also plays a crucial role in deviating from the normal healing process [25].

Bacterial infection is a significant factor in the development of chronic wounds.
Chronic wounds are frequently infested by bacteria that create complex communities
known as polymicrobial biofilms. Biofilms, when present on a wound, induce a surplus of
neutrophils that are unable to engulf the bacteria bound to the biofilm. However, these neu-
trophils continue to release enzymes (cytokines and proteases) and reactive oxygen species
(ROS), which disrupt the migration of cells, hinder wound healing, and compromise the
nearby tissue [26]. In cases of long-lasting infections, there is a harmful cycle of continual
inflammation induced by ongoing biofilms, resulting in excessive and continuous NETosis,
which leads to tissue damage and an increase in biofilm production. The formation and
accumulation of dead tissue and exudate serve as a constant source of essential nutrients
for the biofilm, allowing it to thrive over the host [27]. The rise in bacterial infections
is somewhat attributed to the rise in nosocomial infections post-surgery. Surgical site
infections account for 2 million nosocomial infections in the United States, and this is a
result of both endogenous flora present in mucous membranes as well as exogenous flora
in theatre. The rise in infections ultimately increases the likelihood of chronic wounds [28].
Chronic wounds are commonly classified as vascular ulcers, including venous or arterial
ulcers, diabetic ulcers, and pressure ulcers [5].

5. Socio-Economic Impact of Chronic Wounds

A large proportion of individuals who endure chronic wounds typically present with
concomitant medical disorders, particularly obesity and diabetes. Globally, approximately
463 million individuals have diabetes, with projections indicating a surge to 783 million
individuals by 2045 [25]. The prevalence of obesity is relatively proportional, as it is
projected that by 2030, obesity will impact over 1 billion adults, constituting approximately
one-sixth of the global population [29]. In contrast, the wound healing process is impaired
among the senior demographic. Ageing results in a reduction in collagen production,
causing the epidermis to regenerate at a decreased rate. By 2050, the global population of
individuals aged 60 or above is anticipated to surpass the population of youth aged 10–24,
with an estimated count of 2.1 billion compared to 2.0 billion, respectively [30]. The notable
rise in diseases and the aging population pose significant concerns regarding the future
occurrence of chronic wounds in patients.

According to research, 70% to 80% of people with wounds receive treatment primarily
from community nurses [1]. Health systems must develop more effective ways to cope
with the additional workload, which fosters immense and perhaps unsustainable pressure
on the already overworked nursing personnel. From an economic perspective, it has
been projected that the management of wounds constitutes approximately 3% of the total
medical expenditure. In the United States of America, it has been projected that venous
ulcers result in the forfeiture of roughly two million working days each year and a projected
expenditure of USD 2.5 to 3.5 billion a year for the healthcare system. According to the
evaluation, the worldwide wound management industry is anticipated to attain a value of
USD 18.7 billion by 2027 [25]. Hence, there is a dire need for more efficient treatments to
reduce the social and economic strain placed on individuals and health.
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6. Current Treatment Methods
6.1. Dressings

Various forms of dressings for wounds have been reported (Table 1). However, their
suitability differs based on the characteristics of the lesion. The selection of dressing is
determined by several variables, including depth, location, size, exudate volume, inflam-
mation, and adhesion to the wound [31]. In comparison to dry dressings, moist dressings
possess the capacity to enhance the process of wound repair. Moisture-retentive dressings
can protect wounds, reduce the risk of infection, and promote granulation tissue formation.
These substances are categorised as gauzes, films, or gels based on their physical charac-
teristics. Dry dressings can cause additional pain and tissue damage as they may adhere
to wounds.

Table 1. Common wound dressings.

Type of
Wound Treatment Function Advantages Disadvantages References

Infected Gauze Dries the
wound

Removes necrotic
tissue; used with
topical products;
can pack wounds

Adherence hinders healing.
Frequent change in
dressing needed.
Secondary dressing necessary

[32–34]

High
exudate Foam

Absorbs high
levels of
exudates

Provides a moist
environment.
Easy to apply.
Non-adherent

Adherence hinders healing.
Unsuitable for
eschar/non-draining wounds

[32,33,35]

Superficial skin
disruption Film

Allows for
exchange of
gases.

Stabilizes the
wound site.
Easy to visualize.
Autolytic debridement

Damages new tissue.
Poor moisture absorbance.
Periwound maceration.

[32,33,36]

Eschar Hydro-
colloid

Absorbs high
levels of
exudates

Provides a moist
environment.
Insulation.
Autolytic debridement.
Is waterproof

Promotes granulated tissue.
Unsuitable for infected wounds. [25,32,33]

6.2. Negative Pressure Therapy

Negative pressure wound therapy (NWPT) is a non-invasive therapy that employs
regulated negative pressure to generate a vacuum. This vacuum system facilitates the
removal of debris and fluid from the site of injury by implementing a closed or foam
covering connected to an extraction vessel. This methodology effectively improves the
degree of oxygen and moisture in the vicinity of the lesion, thereby facilitating wound
repair. NPWT is not recommended in wounds associated with cancer, osteomyelitis, or
necrotic tissue in conjunction with eschar. Additionally, NWPT restricts the patient’s range
of motion [37].

6.3. Surgery

Surgery includes direct wound closure, skin flaps and grafts, and musculocutaneous
flaps. The selection of the surgical intervention is contingent upon various factors, includ-
ing the precise anatomical site, concurrent medical conditions, and the desired outcomes
of the medical procedure [38]. The long-term effects of surgical interventions exhibit
variations determined by bed rest and preoperative risk factors. Implementing this pro-
cedure necessitates the involvement of medical specialists who possess the expertise re-
quired and have access to well-equipped healthcare facilities. In addition, surgery is not a
cost-effective method.
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6.4. Hyperbaric Oxygen Therapy

Patients are administered 100% oxygen within a compression chamber with a main-
tenance pressure exceeding sea level. The improved degree of oxygen delivery to the
wound increases regeneration efficiency, leading to a reduction in the duration required
for the healing process [39]. Hyperbaric oxygen therapy (HBOT) is currently employed as
a treatment modality for managing non-healing wounds. Implementing HBOT necessi-
tates expensive, specialized equipment and is a time-intensive process. Furthermore, its
application is typically restricted to wounds associated with diabetes and pressure-induced
ulcers. Although HBOT yields many advantages, it is crucial to acknowledge the notable
hazards associated with this treatment. These hazards encompass the possible occurrence
of pneumothorax and detrimental effects on the eardrums [37].

7. Ideal Wound Healing System

While numerous conventional wound treatments are available, they exhibit various
drawbacks, necessitating the exploration of an alternate optimal treatment strategy. An op-
timal system should demonstrate antibacterial and antimicrobial characteristics to mitigate
infections. During an infection, bacteria infiltrate the site of injury and secrete compounds
that impede the ability of immune cells to eliminate these bacteria, thereby prolonging the
course of healing [40]. The system must possess biodegradability, biocompatibility, and
non-toxicity while also ensuring the provision and maintenance of a moist environment
(Figure 4). Moist conditions facilitate the healing procedure by supporting angiogenesis
and collagen formation and providing non-adherence, thus reducing pain and scab forma-
tion [41]. In addition, the system needs to possess the capacity to absorb wound exudates
and facilitate the exchange of gases between the wounded tissue and the surrounding
environment. This is crucial, as oxygen is critical in cell growth and angiogenesis [10].
Lastly, the treatment must enhance tissue regeneration mechanisms while demonstrating
cost-effectiveness.
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Figure 4. Properties required for an ideal wound healing system.

8. Hydrogels in Wound Healing

Hydrogels are a category of substances that have extensive applications in the field
of skin regeneration. Hydrogels are polymeric structures that exist in a three-dimensional
structure, formed through physical or chemical cross-linking of hydrophilic polymer
chains [42]. They can be synthesized using several techniques, including radiation, freeze–
thawing, or chemical processes. Hydrogels are referred to as “reversible” or “physical” gels
when the structural integrity is maintained through molecular entanglements or ionic and
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hydrogen bonds. They are referred to as “permanent” or “chemical” gels when composed
of covalent bonds (Figure 5). These networks can potentially undergo water expansion
until reaching a state of equilibrium while maintaining their initial structure. This results
in a notable capacity to absorb exudates from wounds, facilitate oxygen flow and sustain a
heightened moisture content at the injury site. This accelerates the healing process [43].
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These distinctive physical qualities enable the fabrication of hydrogels into diverse
sizes and forms, thereby facilitating the complete covering of irregular-shaped wounds [44].
Hydrogels possess biodegradability and biocompatibility, allowing them to serve as a
temporary template throughout the re-epithelialization and remodeling of chronic wounds.
Additionally, hydrogels demonstrate sufficient bioadhesivity, which is crucial in ensuring
sustained stability. This property enhances hemostasis and maintains optimal moisture
levels in the wound [45]. Furthermore, hydrogels provide a versatile framework for
incorporating various components such as antibacterial and antimicrobial agents, drugs,
and other supplemental biomolecules, enhancing their overall efficacy in promoting wound
healing. Hence, it can be concluded that hydrogel-based materials exhibit the highest
suitability level as dressings for covering skin wounds.

9. Hydrogels as an Extracellular Matrix

Another essential characteristic of hydrogels is their capacity to replicate the extra-
cellular matrix (ECM). The ECM facilitates cellular adhesion, tissue anchorage, cellular
signaling, and cell recruitment. The primary components of the ECM include polysaccha-
rides, proteins, and water [46]. In situations of acute or chronic injury, the ECM can be
harmed. Hydrogels can imitate the rigidity of an ECM due to their primary elements being
water and polymers. Furthermore, hydrogels can imitate the functions of the ECM since
they can incorporate cells and other macromolecules found in the ECM [47]. Theoretically,
once a hydrogel is placed on the wounded area, it acts as a dermal matrix that is used to
replicate the structure and function of unwounded skin, thereby potentially preventing
the ensuing scar by approximating the strength of tensile contraction and elastic retraction
of an intact, unwounded dermis. This is believed to promote the development of cells,
the deposition of the ECM, and the creation of new tissue, thus enhancing wound healing.
Hyaluronic acid, collagen, and alginate hydrogels have proven to be particularly valuable
for creating ECM matrices [48].



Gels 2024, 10, 43 9 of 21

10. Hydrogels for Treatment of Burn Wounds

Within the initial 15 min of a thermal burn, the heat generated is stored in the epi-
dermis and then transmitted to the underlying layers. Applying a cooling agent to the
skin diminishes the severity of the damage and minimizes scarring [49]. Hydrogels serve a
crucial role in burn therapy as primary dressings for first aid. The water in hydrogels pro-
vides an essential function in the cooling process and helps maintain a stable temperature
in the wound. Hydrogels serve the dual purpose of cooling the burn site and alleviating
pain while safeguarding the wound region from infection [50]. Consequently, they are
highly suitable as dressings during transportation in ambulances. In comparison to paraffin
dressings, hydrogels offer quicker recovery and may be a safe first-aid treatment option for
paediatric patients. Many ambulances worldwide are equipped with hydrogel sheets (96%
water) for emergencies [51]. Carbomer 940 is an affordable and effective hydrogel used for
burns. It has the ability to enhance blood flow to tissues and reduce the extent of necrotic
tissue [52].

11. Natural and Synthetic Hydrogels

Hydrogel wound dressings are developed using diverse natural and synthetic poly-
mers (Figure 6). Natural polymers include chitosan, gelatin, hyaluronic acid, and alginate.
Synthetic polymers include polyethylene glycol, polyvinyl pyrrolidone, polyethylene ox-
ide, and polyvinyl alcohol. Hydrogels can be highly elastic, and this reduces mechanical
power; therefore, multipolymeric hydrogels have been introduced for improved mechanical
power and absorption. Combining a naturally occurring polymer with a synthetic polymer
promises to be a viable approach for generating materials with the desired thermal and
mechanical attributes. Advancements in the field have been achieved by harnessing the
inherent features of polymers, leading to the development of novel technologies such as
sprayable hydrogels, “smart hydrogels”, nanogels, aerogels, and cryogels.
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11.1. Natural Hydrogels

Natural hydrogels primarily comprise proteins and ECM constituents, rendering them
intrinsically biocompatible, bioactive, and potentially well suited for various biomedical ap-
plications due to their ability to enhance numerous cellular activities [53]. The makeup and
attributes of these materials resemble the inherent characteristics of tissue layers. Neverthe-
less, they are subject to some restrictions, primarily from the challenges associated with
their manipulation arising from variations observed between different batches. Hydrogel
variants exhibit unique properties that render them more appropriate for their proposed
purpose. We shall briefly discuss the various natural hydrogels.

11.1.1. Chitosan

Chitin is the primary building block of arthropod exoskeletons. It is partially deacety-
lated to make chitosan, a linear polysaccharide of beta (1-4)-linked D-glucosamine and
N-acetyl-D-glucosamine groups. Chitosan exhibits a structural resemblance to glycosamino-
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glycans inside the ECM. The molecular weight and level of deacetylation of chitosan have a
direct relationship with its physical and mechanical characteristics [54]. Chitosan possesses
a cationic charge and exhibits specific antimicrobial activity through electrostatic interac-
tions [55]. Its positive charge has made it a polymer of choice for coating nanoparticles for
enhanced stability [56,57]. The potential advantages of chitosan-based hydrogels in wound
healing applications include the creation of a hydrated wound environment, protection
from infections, promotion of leukocyte activity for wound exudate disposal, regulation
of degradation through a change in the level of deacetylation, and a reduction in scar
tissue [58]. These properties highlight the significant promise of chitosan in wound healing.
The susceptibility of the hydrogel to external factors, such as pH and temperature, can be
attributed to the presence of hydroxyl and amino groups. One of the drawbacks associated
with this material is its suboptimal mechanical strength and challenges in manufacturing
fibrous wound dressings [53]. Nevertheless, this issue can be effectively addressed by
implementing cross-linking techniques. The most prominent cross-linking technique is the
utilization of glutaraldehyde or genipine cross-linkers, which will typically embed them-
selves between chitosan polymer chains by cross-linking with the amino groups of chitosan.
Another method often utilized is the cross-linking of chitosan with tripolyphosphate (TPP).
The phosphates present in TPP ionically bind to the amine groups of the chitosan through
a process known as ionic gelation [59].

An injectable chitosan-based hydrogel for repairing wounds has been reported. This
hydrogel exhibited antimicrobial activity against bacterial strains Pseudomonas aeruginosa
and Staphylococcus aureus, with a terminating efficiency of 96.4% and 95.0%, respectively.
Hydrogel-treated wounds showed 99.8% sealing after two weeks. Evaluation of the hy-
drogel’s hemostatic properties demonstrated prompt attachment to the adjacent tissue of
the bleeding region, thereby establishing a protective covering that mitigated hemorrhag-
ing [60]. Hence, hydrogels derived from chitosan can promote the healing of wounds as
well as the prevention of infection. Recently, an injectable carboxymethyl chitosan (CMCS)
hydrogel to modulate cellular responses and facilitate the complete recovery of diabetic
wounds was developed. CMCS was synthesized by modifying chitosan to improve its
solubility in water. The CMCS hydrogel exhibited a significant swelling rate of 132% at
37 ◦C. This property enabled it to efficiently soak up a substantial quantity of tissue exudate
and regulate the moisture levels at the lesion. The hydrogel was administered intradermally
into the wounds of mice with diabetes. The hydrogel promptly attached to the location
of the wound, effectively halting hemorrhaging and establishing a favorable environment
for the healing process, which took 14 days for 99% wound healing [61]. Hence, it can be
concluded that hydrogels constructed from carboxymethyl chitosan exhibit properties that
closely resemble the conditions of the ECM, demonstrating their efficacy in wound healing.

11.1.2. Gelatin

Gelatin is a renowned, naturally occurring, inexpensive vascular polymer with ben-
eficial features for tissue development, including low immunogenicity and significant
degradability. Gelatin is derived by disrupting the triple helical structure of collagen, re-
sulting in the development of the sequence of amino acids known as RGD (Arg/Gly/Asp).
This sequence can facilitate the adhesion of cells and create a favorable environment for cell
proliferation. This material’s fibroblast adhesion, proliferative features, and low antigenic-
ity render it highly promising for clinical use [62]. Nevertheless, its suboptimal strength and
susceptibility to breakage constrain its utility as a hydrogel treatment. Therefore, this hy-
drophilic protein requires cross-linking [63]. Gelatin has also been employed as an adhesive
for coating to enhance cell adhesion, serving as a method for facilitating the regrowth of
vascular tissues. The absorption of wound exudates and moisture maintenance by porous
gelatin matrices contribute to the facilitation of wound recovery. Despite its potential as a
biopolymer for wound healing applications, gelatin lacks antibacterial properties that could
effectively avoid infections. Therefore, it is typically combined with antibacterial agents or
hybrid polymers [64]. Gelatin is often cross-linked with aldehydes, such as glutaraldehyde
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and formaldehyde, similar to chitosan, due to the presence of amino groups. An alternative
method is to use cross-linkers such as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
hydrochloride (EDC), that are not incorporated into the gelatin matrix. EDC activates the
carboxyl groups present in gelatin, which then undergoes a direct reaction, forming bonds
with the adjacent amino groups [65].

Wang and coworkers (2023) developed a bilayer gelatin hydrogel with photothermal
properties to eradicate biofilms and provide extensive therapy for chronic wounds. To
enhance the attachment and growth of fibroblasts, gelatin methacryloyl (GelMA) with
favorable rigidity was synthesized via optical cross-linking on the outermost layer of the
hydrogel. In the interim, epidermal growth factor (EGF) was introduced into GelMA
to enhance tissue repair and re-establish the wound’s epithelial layer. Scanning electron
microscopy (SEM) revealed a significant reduction in the biofilm layer within the lesion after
photothermal therapy. Following a 12-day treatment period, the Escherichia coli-afflicted
wound exhibited a reduction to a mere 7.9% of its initial area [66].

11.1.3. Hyaluronic Acid

Hyaluronic acid (HA) is a glycosaminoglycan lacking sulfonate groups and is a natu-
rally occurring anionic polysaccharide. It comprises a series of disaccharides, specifically
β-D-glucuronic acid and N-acetyl-D-glucosamine, interlinked by alternate β-1, 3, and β-1,
4-glucosidic linkages. HA is found within the vitreous humor of humans, umbilical cords,
and connective tissues and is synthesized via fermentation by microbes [67]. HA does
not undergo hydrogel formation through conventional physical cross-linking methods.
However, it is worth noting that this polymer can undergo chemical modifications in
its hydroxyl and carboxyl moieties. As a result, it is widely used in the construction of
hydrogels, making it one of the most commonly employed polymers. The hydrophilicity
of hyaluronic acid can be attributed to the presence of these functional groups, and this
characteristic allows it to soak up exudate and enhance cell adhesion efficiently [68]. A
widely used cross-linking method for HA is through the formation of thiol-modified HA
hydrogels. This cross-linking system entails the conjunction of oxidised glutathione with
an HA-based hydrogel through a thiol-disulfide exchange reaction. The thioether–sulfone
bond is highly stable and not susceptible to hydrolysis, making it suitable for hydrogel
formation [69]. Hydrogel wound dressings based on HA exhibit notable features that make
them a good option for addressing all four phases of wound healing. These character-
istics encompass a reduction in inflammation, an amplification of angiogenesis, and the
promotion of endothelial cell growth [70].

Li et al. (2022) developed a hydrogel that used HA as its primary constituent. HA
was cross-linked using benzaldehyde-functionalized PEG co-polyglycerol caprate (PEGSB)
to form a hydrogel with both elasticity and regeneration abilities. The aldehyde group of
PEGSB can undergo a chemical reaction with those found in the wounds, thereby facilitating
adequate adhesion. A three-minute exposure to near-infrared (NIR) irradiation at 808 nm
effectively eradicated Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA).
After a 14-day therapy regimen targeting hip wounds in mice, a near-complete healing of
the lesion was observed. The hydrogel showed promise for practical use in the treatment
of infections in wounds due to its excellent biocompatibility [71].

11.1.4. Alginate

Alginate is a polymer found in brown algae cell walls and certain bacteria capsules.
Its structure is built from blocks of two distinct monomers, D-manuronate (M) and L-
glucuronate (G). Alginate’s substantial G block concentration may produce stiff hydrogels
when bound to divalent cations like Ca2+. This is referred to as the “egg-box model”.
Alginate with an elevated M block concentration demonstrates reduced adhesiveness and
immunostimulatory properties [72]. The calcium ions in an alginate-containing dressing
exchange with sodium ions as they come into contact with the exudate from the wound.
The alginate fibres undergo expansion, partial dissolution, and solidification, forming a
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protective coating that facilitates wound repair [73]. A direct method of cross-linking is
typically utilized, where alginate is directly treated with calcium chloride, calcium sulphate,
or calcium carbonate. Internal gelation occurs upon mixing as the cations penetrate the algi-
nate gel through diffusion. Divalent ionic bonding with zinc oxide has also been a notable
cross-linking method, as it provides antibacterial properties [74]. Alginate can activate
macrophages and promote the production of interleukin-6 (IL-6) and tumor necrosis factor
α (TNF-α) by monocytes, thereby accelerating chronic wound healing. Dry alginate dress-
ings can soak up wound fluids, resulting in the formation of gels. These gels subsequently
release water, which can benefit the hydration of dry wounds. The gelation property of
alginate facilitates the painless and safe removal of dressings [75]. Multiple commercial
hydrogels have alginate as the primary component (Table 2).

Table 2. Some commercially available hydrogels for wound healing [5].

Product Company Constituent Use

DermaSyn® DermaRite
Industries (NJ, USA)

Primary wound dressing with
vitamin E

Partial and full-thickness
chronic wounds

Neoheal®

Hydrogel
Kikgel

Polyethylene glycol,
polyvinylpyrrolidone, Agar,
and 90% water

Low-exuding scabs, a
abrasions, dry scabs, first, second-and
third-degree burns, and ulcers

Restore
Hydrogel

Hollister Inc.
(IL, USA)

Gauze pad, Hyaluronic acid Partial and full-thickness
chronic wounds

ActivHeal®
Advanced Medical
Solutions Ltd.
(Oxon, UK)

Primary wound dressing
with 85% water

Cavity wounds, pressure ulcers,
diabetic foot ulcers, and leg
ulcers

NU-GEL™ Systagenix Sodium alginate primary
wound dressing

Diabetic foot ulcers, leg ulcers,
venous ulcers

Purilon® Coloplast
Calcium alginate, sodium
carboxymethyl cellulose

Pressure ulcers, first and second
degree burns, non-infected
diabetic foot ulcers, leg ulcers

Simpurity™
Hydrogel Safe n’ Simple

Acrylate, polyvinyl alcohol,
polyethylene oxide,
polyurethane

First and second-degree partial-
thickness burns, low-exuding
chronic wounds

To improve the repair of wounds, a dual-network hydrogel using platelet-rich plasma
(PRP) and sodium alginate (SA) was synthesized using a thrombin activation method. The
presence of epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF)
was observed in a hydrogel maintained in phosphate-buffered saline (PBS), suggesting
the potential for cellular growth and the redevelopment of blood vessels. The hydrogel
showed efficacy in promoting wound closure when administered directly to the cutaneous
wounds of rats [76]. Using alginate hydrogels presents a viable strategy for addressing the
limitations associated with traditional wound dressings.

11.2. Synthetic Hydrogels

Synthetic polymers have demonstrated considerable efficacy in biomedical applica-
tions due to their mechanical properties, capacity for facile shaping into various configu-
rations, and manufacturing cost-effectiveness [77]. These polymers exhibit stability and
ease of use but are inhibited by limited biocompatibility. In contrast to their naturally
occurring equivalents, synthetic polymers possess the advantage of being conveniently
manufacturable on an industrial level. Furthermore, their inherent adaptability enables
them to be employed in various forms that promote the ideal development of tissues. The
ability to precisely manipulate both the hydrophilic and hydrophobic regions of synthetic
polymers additionally permits the fabrication of more homogenous frameworks and an
improved capacity for the retention of water [78]. Hybrid polymers (blended), which



Gels 2024, 10, 43 13 of 21

exhibit favorable physicochemical characteristics, can be achieved through their combi-
nation with biopolymers. The positive attributes of blended hydrogels fabricated from
synthetic polymers are further improved using bioactive substances derived from naturally
occurring substances. Blended hydrogels serve as a solution for future wound treatment
by combining their favorable characteristics. Some synthetic polymers include polyvinyl
alcohol, polyethylene glycol, and polyvinylpyrrolidone.

11.2.1. Polyethylene Glycol (PEG)

Polyethylene glycol (PEG) is a polymer that possesses hydrophilic properties, resulting
in it being capable of interacting favorably with water. PEG is characterized by its flexibility
and is composed of ether-based units.

The use of PEG-based hydrogels in constructing biological systems has been motivated
by their remarkable biocompatibility and ability to thwart protein attachment. The addition
of functional groups may generate PEG derivatives like PEG dimethacrylate (PEGDM)
and PEG diacrylate (PEGDA), which can then be chemically cross-linked to create long-
lasting matrices that permit the connecting or integrating of biomolecules to support tissue
repair [78]. Polymethacrylic acid (PMA) and polyacrylic acid (PAA) can combine with
PEG to create complexes by hydrogen bonding between the carboxyl groups of PMA and
the oxygen of PEG. This facilitates the absorption of liquids by the complex, causing it to
expand at low pH, forming a gel. PEG may also be used as a cross-linker due to its rigidity,
water solubility, and low immunogenicity [79]. Growth factors, such as epidermal growth
factor (EGF) and PEG macromers, have a favorable attraction and can form chemical bonds
with each other. These can be specifically directed to the site of injury. PEG’s mechanical,
thermal, and crystallinity attributes can be enhanced by including chitosan in the polymer
blends [80]. PEG-based hydrogels have been used for the treatment of lesions in individuals
with diabetes. These hydrogels facilitate wound repair by stimulating the multiplication
and development of skin cells. The application of such dressings has been observed to
decrease scar development.

A wound closure study using PEG-based hydrogels on 1.5 cm long incisions in Sprague
Dawley rats was conducted by Chen et al. (2018). Applying the PEG-based hydrogels
stopped the hemorrhaging from the cuts and the incision apertures closure of the incision
within minutes [81]. Hence, the use of PEG-based hydrogels can exhibit a positive impact
on the wound healing process.

11.2.2. Polyvinyl Alcohol (PVA)

Polyvinyl alcohol (PVA) is a hydrophilic polymer featuring properties that have gar-
nered considerable attention from the biomedical industry. It is biocompatible, biodegrad-
able, and semi-crystalline.

PVA can undergo physical cross-linking using several freeze–thaw cycles, called cryo-
gelation. Additionally, PVA can be chemically cross-linked by employing glutaraldehyde or
epichlorohydrin. Both methods of production produce PVA hydrogels that are remarkably
hydrophilic and chemically stable [82]. PVA can be altered with glycidyl methacrylate or
acryloyl chloride to produce reactive acrylate groups via the pendant hydroxyl groups.
These can then be cross-linked and polymerized to create hydrogels [79]. PVA hydrogels
serve as effective wound dressings by protecting them from external environmental stimuli
and mechanical forces, reducing the risk of secondary injuries. Furthermore, PVA hydrogels
exhibit favorable characteristics such as excellent water and oxygen permeability and an
elevated moisture level [83]. These attributes are particularly advantageous in wound
healing, as they facilitate maintaining a moist environment, promoting the formation of
new tissue, and improving the overall wound healing process. However, PVA hydrogels
lack inherent antibacterial activity, necessitating the augmentation of their antibacterial
efficacy when employed as a therapeutic [84].

Through the coupling of chitosan/Fe3+ and carboxylated polyvinyl alcohol, a double-
cross-linked hydrogel was synthesized that exhibited exceptional features, including en-
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hanced rigidity (78 kPa) and adherence traits, as well as a reduced duration for self-healing
(5 min). These changes were observed to align with the dynamic nature of lesions. The
hydrogel demonstrated antibacterial efficacy and enhanced hemostatic ability throughout
the wound recovery phase. Furthermore, it was proposed that the hydrogel could reduce
skin repair duration to 14 days [85].

11.2.3. Polyvinylpyrrolidone (PVP)

Polyvinylpyrrolidone (PVP) is a crystalline polymer soluble in water and polar so-
lutions. PVP is a highly appealing polymer for the manufacture of hydrogels due to its
diversified qualities, including its non-toxic nature, ability to form films, and adequate
adhesion. A promising technique for the cross-linking of PVP is the use of radiation. PVP
is often mixed with PEG and agar to form a reaction mixture that undergoes cross-linking
through irradiation under a linear electron accelerator. Radiation cross-linking removes
the need for an initiator and cross-linking agent and allows for easy manipulation of the
hydrogel properties [86]. PVP can absorb water up to a magnitude of one hundred times
its mass, which facilitates the preservation of moisture [87]. The semi-permeable nature of
PVP enables the selective permeation of oxygen while effectively impeding the ingress of
bacteria and other contaminants. The utilization of PVP is beneficial in the debridement
process, as it effectively absorbs exudate and necrotic tissue. PVP can potentially protect
wounds from further injury or the onset of infection [88].

Hydrogel fibre mats using PVP with ferulic and p-coumaric acid have been synthe-
sized. The biocompatibility studies conducted on erythrocytes from humans, A549 cells,
and HaCaT cells demonstrated the absence of any adverse impacts. The ex vivo experiments
on human skin revealed evidence of skin regrowth and effective regulation of inflammation,
as seen by the presence of minimal quantities of pro-inflammatory cytokines, specifically
IL-6 and IL-8. Hence, the results obtained from the study suggest that PVP-based fibre
hydrogels have the potential for application in wound treatment [89].

12. Advanced Hydrogels
12.1. Sprayable Hydrogels

Attempts have been made to address the shortcomings of traditional dressings used in
healthcare by employing “in situ” forming wound dressings such as sprayable hydrogels.
These hydrogels provide many benefits, including ease of use without needing specialized
assistance, patient approval, and manufacturing cost-effectiveness [6]. Furthermore, apply-
ing a spray can enhance the permeation of the hydrogel into the injured region, improving
the administration of medicinal formulations or active substances. An ideal viscosity is
thus needed to allow the sprayability of these hydrogels [90].

A methacrylate gelatin (GelMA) hydrogel is an example of a sprayable hydrogel.
Cheng and coworkers (2021) functionalized the GelMA hydrogels with DOPA, resulting
in an increased affinity for attachment to wound surfaces. The GelMA-DOPA hydrogel
was also loaded with cerium oxide nanoparticles (CeONs) and an antimicrobial peptide
(AMP HHC-36) to grant the hydrogel antibacterial and ROS-scavenging properties. This
hydrogel exhibited several advantageous properties, including sprayability, adequate
adhesion, antibacterial activity, ROS-scavenging, and wound repair capabilities. These
attributes have the potential to effectively alleviate the medical and financial obstacles
related to the care and handling of chronic wounds [91]. A few constraints associated with
sprayable hydrogels include the control of drug dispersity and uniform spraying, balancing
rheological properties while maintaining physical and mechanical characteristics, and the
inhibition of precursors during gel formation by bioactive molecules [92].

12.2. “Smart” Hydrogels

Conventional wound therapies cannot offer insights into the overall progress of heal-
ing. This served as a catalyst for advancing sensor-based hydrogels, commonly called
“smart” hydrogels. These hydrogels can present significant insights into the state of a
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wound, encompassing factors such as the concentration of bacteria, oxygen levels, inflam-
matory intensity, pH, and temperature (Figure 7). Many sensors have been created to
quantify the pH level, moisture, temperature, oxygen supply, and mechanical and enzy-
matic activity [6]. Crucially, each sensor must be non-toxic, biocompatible, and flexible
enough to conform to the hydrogel. Temperature has been identified as a handy parameter
for the early identification of infection within the wound, as aberrant fluctuations in wound
temperature can serve as an initial indicator of an infection before the manifestation of
any other symptoms [93]. However, there are concerns associated with thermosensitive
hydrogels, such as weak mechanical properties, poor biocompatibility, and a delayed
temperature response [94].
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A “smart” hydrogel consisting of a polycation and alginate was formulated and
demonstrated remarkable antibacterial properties against Staphylococcus aureus and Es-
cherichia coli. Treatment with this hydrogel promoted the healing of infected wounds in
rats, with a recovery rate of 96.49%. The hydrogel also reacted to stress, temperature, and
pressure, demonstrating its potential for reliable wound monitoring [95].

13. Alternative Gels for Wound Healing
13.1. Nanogels

Nanogels are hydrogels composed of cross-linked polymer networks in three-
dimensional configurations at the nanoscale. The nanogels primarily exhibit a spheri-
cal shape and can be constructed to possess a core–shell or core–shell–corona structure
(Figure 8).

Nanogels have garnered significant interest due to their ability to integrate the char-
acteristics of hydrogels, such as substantial water retention and adaptable physical char-
acteristics, with the customizable size and expansive surface area of nanoparticles for the
conjugation of active compounds [96]. Nanogels that demonstrate a response to stimuli
enable the controlled release of therapeutic agents (antibacterial agents, cytokines, and
growth factors) in response to illness-induced fluctuations in pH and temperature, which
are commonly associated with infection. Additionally, nanogels have the potential to signif-
icantly contribute to the precise adjustment of the texture of the scaffold and its mechanical
features, which is crucial for cell regulation [97].

Metal nanocomposite gels have recently gained attention as promising nanogels for
enhancing wound healing while serving as a shield against bacterial infections. The
nanomaterial’s moist state can effectively inhibit wound dehydration, which impedes
the wound recovery process. Simultaneously, the nanoparticles incorporated inside the
hydrogels can function as antibacterial or antifungal agents by hindering the development
and proliferation of bacteria or fungi [98]. Haseeb and colleagues synthesised linseed
hydrogels (LSH) containing silver nanoparticles (AgNPs). The study revealed that the
LSH-AgNPs effectively suppressed the proliferation of bacteria and fungi. Furthermore,
100% wound closure in rabbits was exhibited on day 15, demonstrating its therapeutic
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efficacy [99]. Some issues halting the progression of nanogels include degradation and
batch-to-batch reproducibility [96].
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Nanogels have garnered significant interest due to their ability to integrate the char-
acteristics of hydrogels, such as substantial water retention and adaptable physical char-
acteristics, with the customizable size and expansive surface area of nanoparticles for the
conjugation of active compounds [96]. Nanogels that demonstrate a response to stimuli
enable the controlled release of therapeutic agents (antibacterial agents, cytokines, and
growth factors) in response to illness-induced fluctuations in pH and temperature, which
are commonly associated with infection. Additionally, nanogels have the potential to signif-
icantly contribute to the precise adjustment of the texture of the scaffold and its mechanical
features, which is crucial for cell regulation [97].

Metal nanocomposite gels have recently gained attention as promising nanogels for
enhancing wound healing while serving as a shield against bacterial infections. The
nanomaterial’s moist state can effectively inhibit wound dehydration, which impedes
the wound recovery process. Simultaneously, the nanoparticles incorporated inside the
hydrogels can function as antibacterial or antifungal agents by hindering the development
and proliferation of bacteria or fungi [98]. Haseeb and colleagues synthesised linseed
hydrogels (LSH) containing silver nanoparticles (AgNPs). The study revealed that the
LSH-AgNPs effectively suppressed the proliferation of bacteria and fungi. Furthermore,
100% wound closure in rabbits was exhibited on day 15, demonstrating its therapeutic
efficacy [99]. Some issues halting the progression of nanogels include degradation and
batch-to-batch reproducibility [96].

13.2. Aerogels

Aerogels are characterized as substances consisting of over 99% air. They can be
synthesized from various precursors (inorganic and organic) and are frequently fabricated
in diverse configurations to fulfill specific requirements. Aerogels exhibit a lightweight
composition with a linked pore network [100]. This structure is achieved by replacing the
liquid within the gel with a gaseous substance. These dressings present notable benefits,
such as low density, high porosity, and a large surface area. Due to these inherent char-
acteristics, aerogels facilitate the rapid intake of a substantial volume of exudate, sustain
a hydrated environment, enable gas diffusion, and concomitantly provide commendable
thermal insulation for maintaining physiological temperature [2]. Although aerogels show
promise for utilization in wound treatment, challenges such as characterization of optical
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and thermal characteristics of a single aerogel fibre, manufacturing single fibre devices,
and scalability need to be overcome [101].

13.3. Cryogels

Cryogels are macroporous hydrogels that can possess shape memory function and
have the potential for use in wound healing and hemostasis [102,103]. Due to their structure,
cryogels can promote the adherence of platelets, which further improves hemostasis [104].
In a recent study, a cryogel was formulated by cross-linking chitosan with citric acid at very
low temperatures. Silver nanoparticles produced by tannic acid reduction were incorpo-
rated into the cryogel for added antibacterial properties. The produced cryogel possessed
an interconnected macroporous network, good mechanical features, hemostasis, shape
memory, biocompatibility, antibacterial activity, and promoted wound healing in rats [105].
Hence, cryogels may be a potential strategy for obtaining an innovative wound treat-
ment method. Some practical constraints include scalability, mass transfer, and structural
integrity [106].

14. Conclusions and Future Perspectives

The predicament of chronic and acute wounds has impeded the social and economic
climate, and much-needed change in healthcare is required to rectify these detrimental
effects. The current strategies in wound healing have multiple shortcomings in reducing
recovery duration. Hence, a new and improved system is needed to overcome these incom-
petencies. Hydrogels have been presented as adequate wound dressings for chronic and
acute wounds through their ideal properties, such as maintaining a moist environment,
absorption of exudates and necrotic tissue, and flexibility in shape to cover wounds with
different morphologies. Hydrogels consist of natural or synthetic polymers, with a combi-
nation of the two being ideal for forming blended hydrogels that possess favorable traits
for wound healing. The next generation of wound dressings entails sprayable hydrogels,
allowing efficient covering of wounds in any shape or form. “Smart” hydrogels have
gained prominence due to their ability to monitor the state of the wound using sensors.
The development of innovative hydrogels can be a solution for reducing the wound healing
period, improving overall patient health and satisfaction, and reducing the load borne by
the current healthcare system. The advent of “smarter” hydrogels is a possibility.
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30. Rudnicka, E.; Napierała, P.; Podfigurna, A.; Męczekalski, B.; Smolarczyk, R.; Grymowicz, M. The World Health Organization

(WHO) approach to healthy ageing. Maturitas 2020, 139, 6–11. [CrossRef]
31. Rezvani Ghomi, E.; Khalili, S.; Nouri Khorasani, S.; Esmaeely Neisiany, R.; Ramakrishna, S. Wound dressings: Current advances

and future directions. J. Appl. Polym. Sci. 2019, 136, 47738. [CrossRef]
32. Dabiri, G.; Damstetter, E.; Phillips, T. Choosing a Wound Dressing Based on Common Wound Characteristics. Adv. Wound Care

2016, 5, 32–41. [CrossRef]
33. Baranoski, S. Choosing a wound dressing, part 1. Nursing 2008, 38, 60–61. [CrossRef] [PubMed]
34. Boateng, J.S.; Matthews, K.H.; Stevens, H.N.; Eccleston, G.M. Wound healing dressings and drug delivery systems: A review.

J. Pharm. Sci. 2008, 97, 2892–2923. [CrossRef] [PubMed]
35. Dhivya, S.; Padma, V.V.; Santhini, E. Wound dressings—A review. Biomedicine 2015, 5, 22. [CrossRef]
36. Sood, A.; Granick, M.S.; Tomaselli, N.L. Wound Dressings and Comparative Effectiveness Data. Adv. Wound Care 2014, 3, 511–529.

[CrossRef] [PubMed]
37. Kantak, N.A.; Mistry, R.; Varon, D.E.; Halvorson, E.G. Negative Pressure Wound Therapy for Burns. Clin. Plast. Surg.

2017, 44, 671–677. [CrossRef] [PubMed]

https://doi.org/10.3390/gels8020127
https://www.ncbi.nlm.nih.gov/pubmed/35200508
https://doi.org/10.3390/biom10081169
https://doi.org/10.1016/j.jare.2013.07.006
https://doi.org/10.3389/fbioe.2021.718377
https://doi.org/10.1016/j.heliyon.2020.e03719
https://doi.org/10.1002/pol.20220734
https://doi.org/10.1039/C7TB00848A
https://www.ncbi.nlm.nih.gov/pubmed/32264011
https://doi.org/10.1016/j.wndm.2020.100179
https://doi.org/10.1007/s12079-016-0330-1
https://www.ncbi.nlm.nih.gov/pubmed/27170326
https://doi.org/10.3389/fimmu.2017.01676
https://www.ncbi.nlm.nih.gov/pubmed/29238347
https://doi.org/10.1186/s43094-021-00202-w
https://doi.org/10.1177/147323000903700531
https://doi.org/10.1016/j.blre.2022.101029
https://doi.org/10.1152/physrev.00067.2017
https://doi.org/10.1016/j.mpsur.2017.06.004
https://doi.org/10.1007/s00018-016-2268-0
https://doi.org/10.1007/s13671-018-0234-9
https://www.ncbi.nlm.nih.gov/pubmed/30524911
https://doi.org/10.1383/surg.20.5.114.14626
https://doi.org/10.1016/j.fsc.2011.06.009
https://www.ncbi.nlm.nih.gov/pubmed/21856533
https://doi.org/10.1089/wound.2021.0026
https://doi.org/10.3390/ijms17122085
https://doi.org/10.12968/jowc.2022.31.5.436
https://doi.org/10.4103/singaporemedj.SMJ-2023-018
https://doi.org/10.1016/j.maturitas.2020.05.018
https://doi.org/10.1002/app.47738
https://doi.org/10.1089/wound.2014.0586
https://doi.org/10.1097/01.NURSE.0000305919.47233.61
https://www.ncbi.nlm.nih.gov/pubmed/18160901
https://doi.org/10.1002/jps.21210
https://www.ncbi.nlm.nih.gov/pubmed/17963217
https://doi.org/10.7603/s40681-015-0022-9
https://doi.org/10.1089/wound.2012.0401
https://www.ncbi.nlm.nih.gov/pubmed/25126472
https://doi.org/10.1016/j.cps.2017.02.023
https://www.ncbi.nlm.nih.gov/pubmed/28576256


Gels 2024, 10, 43 19 of 21

38. Ho, C.; Cheung, A.; Bogie, K. Pressure Ulcers. In Essentials of Physical Medicine and Rehabilitation, 4th ed.; Frontera, W.R., Silver,
J.K., Rizzo, T.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 849–859. [CrossRef]

39. Wenhui, L.; Changgeng, F.; Lei, X.; Baozhong, Y.; Guobin, L.; Weijing, F. Hyperbaric oxygen therapy for chronic diabetic foot
ulcers: An overview of systematic reviews. Diabetes Res. Clin. Pract. 2021, 176, 108862. [CrossRef] [PubMed]

40. Holloway, S.; Harding, K.G. Wound dressings. Surgery 2022, 40, 25–32. [CrossRef]
41. Varaprasad, K.; Jayaramudu, T.; Kanikireddy, V.; Toro, C.; Sadiku, E.R. Alginate-based composite materials for wound dressing

application:A mini review. Carbohydr. Polym. 2020, 236, 116025. [CrossRef]
42. Koehler, J.; Brandl, F.P.; Goepferich, A.M. Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur.

Polym. J. 2018, 100, 1–11. [CrossRef]
43. Van Vlierberghe, S.; Dubruel, P.; Schacht, E. Biopolymer-Based Hydrogels as Scaffolds for Tissue Engineering Applications:

A Review. Biomacromolecules 2011, 12, 1387–1408. [CrossRef]
44. Bilici, C.; Can, V.; Nöchel, U.; Behl, M.; Lendlein, A.; Okay, O. Melt-Processable Shape-Memory Hydrogels with Self-Healing

Ability of High Mechanical Strength. Macromolecules 2016, 49, 7442–7449. [CrossRef]
45. Maaz Arif, M.; Khan, S.M.; Gull, N.; Tabish, T.A.; Zia, S.; Ullah Khan, R.; Awais, S.M.; Arif Butt, M. Polymer-based biomaterials

for chronic wound management: Promises and challenges. Int. J. Pharm. 2021, 598, 120270. [CrossRef] [PubMed]
46. Potekaev, N.N.; Borzykh, O.B.; Medvedev, G.V.; Pushkin, D.V.; Petrova, M.M.; Petrov, A.V.; Dmitrenko, D.V.; Karpova, E.I.;

Demina, O.M.; Shnayder, N.A. The Role of Extracellular Matrix in Skin Wound Healing. J. Clin. Med. 2021, 10, 5947. [CrossRef]
[PubMed]

47. Sivaraj, D.; Chen, K.; Chattopadhyay, A.; Henn, D.; Wu, W.; Noishiki, C.; Magbual, N.J.; Mittal, S.; Mermin-Bunnell, A.M.;
Bonham, C.A.; et al. Hydrogel Scaffolds to Deliver Cell Therapies for Wound Healing. Front. Bioeng. Biotechnol. 2021, 9, 660145.
[CrossRef] [PubMed]

48. Ho, T.C.; Chang, C.C.; Chan, H.P.; Chung, T.W.; Shu, C.W.; Chuang, K.P.; Duh, T.H.; Yang, M.H.; Tyan, Y.C. Hydrogels: Properties
and Applications in Biomedicine. Molecules 2022, 27, 2902. [CrossRef] [PubMed]

49. Wright, E.; Tyler, M.; Vojnovic, B.; Pleat, J.; Harris, A.; Furniss, D. Human model of burn injury that quantifies the benefit of
cooling as a first aid measure. J. Br. Surg. 2019, 106, 1472–1479. [CrossRef] [PubMed]

50. Shu, W.; Wang, Y.; Zhang, X.; Li, C.; Le, H.; Chang, F. Functional Hydrogel Dressings for Treatment of Burn Wounds. Front. Bioeng.
Biotechnol. 2021, 9, 788461. [CrossRef]
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