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Abstract: Abiotic stress is an adverse environmental factor that severely affects plant growth and
development, and plants have developed complex regulatory mechanisms to adapt to these un-
favourable conditions through long-term evolution. In recent years, many transcription factor
families of genes have been identified to regulate the ability of plants to respond to abiotic stresses.
Among them, the AP2/ERF (APETALA2/ethylene responsive factor) family is a large class of plant-
specific proteins that regulate plant response to abiotic stresses and can also play a role in regulating
plant growth and development. This paper reviews the structural features and classification of
AP2/ERF transcription factors that are involved in transcriptional regulation, reciprocal proteins,
downstream genes, and hormone-dependent signalling and hormone-independent signalling path-
ways in response to abiotic stress. The AP2/ERF transcription factors can synergise with hormone
signalling to form cross-regulatory networks in response to and tolerance of abiotic stresses. Many of
the AP2/ERF transcription factors activate the expression of abiotic stress-responsive genes that are
dependent or independent of abscisic acid and ethylene in response to abscisic acid and ethylene.
In addition, the AP2/ERF transcription factors are involved in gibberellin, auxin, brassinosteroid,
and cytokinin-mediated abiotic stress responses. The study of AP2/ERF transcription factors and
interacting proteins, as well as the identification of their downstream target genes, can provide us
with a more comprehensive understanding of the mechanism of plant action in response to abiotic
stress, which can improve plants’ ability to tolerate abiotic stress and provide a more theoretical basis
for increasing plant yield under abiotic stress.

Keywords: AP2/ERF transcription factor; abiotic stress; target gene; hormone signalling

1. Introduction

Plants are often affected by biotic or abiotic stresses during growth and development.
Biotic stress is the stress of various biological factors unfavourable to the survival and
development of plants, mainly due to infection and competition, such as diseases, insect
pests, and weed damage. Abiotic stresses are environmental conditions unfavourable
to plant survival and development and even lead to injury, damage, and death. Abiotic
stresses include drought, high salt, low temperature, high temperature, nutrient stress, and
heavy metals [1–3]. With global climate change, the impact of these stresses on plants is
increasing. It has caused the reduction of global production of major crops and ultimately
has a serious impact on global food security [4,5]. This paper reviews the structural features
and classification of AP2/ERF transcription factors that are involved in transcriptional
regulation, reciprocal proteins, downstream genes, and hormone-dependent signalling and
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hormone-independent signalling pathways in response to abiotic stress. In the future, we
can focus on studying AP2/ERF transcription factors as a signal regulatory gene network
in response to abiotic stress to improve plant tolerance to abiotic stress from a signalling
perspective and increase crop yields.

Abiotic stress negatively impacts plant growth and development, directly threatening
plant survival and yield [6,7]. Plants have evolved a series of complex response mechanisms
for normal growth in unfavourable environments, such as through the perception of abiotic
stress signals, hormone-dependent signalling and hormone-independent signalling channel
signal transduction, induction of abiotic stress gene expression, and further activation of
physiological and metabolic responses [7–9]. The gene products of plants in response to
abiotic stresses are divided into two categories: The first type is regulatory proteins, which
consist of protein factors that regulate downstream signal transduction and the expression
of abiotic stress-responsive genes. The second type is functional proteins, which directly
affect plant adaptation to abiotic stresses [10]. Regulatory proteins include protein kinases,
phosphokinases, and transcription factors (AP2, NAC, MYB, WRKY, and bZIP transcription
factors) [11–13]. Functional proteins include proline, soluble sugars, late embryogenesis
abundant protein (LEA), dehydrins, superoxide dismutase (SOD), peroxidase (POD) and
catalase (CAT), water channel proteins, etc. These proteins can mitigate damage to plant
cells from various abiotic stresses by maintaining plant cell expansion pressure, scavenging
reactive oxygen species, and protecting the structure of intracellular biomolecules [14,15].

Transcription factors are proteins that regulate downstream gene expression by bind-
ing to specific sequences in DNA or other protein complexes. Transcriptional regulation
refers to the combination of transcription factors with cis-acting elements upstream of
stress-responsive genes to activate or repress gene expression during the process of gene
expression [16,17]. Abiotic stresses such as drought, low temperature, and high salt lead
to an increase in abscisic acid (ABA) biosynthesis, which activates the binding of tran-
scription factors to cis-acting elements in specific sequences in the promoter regions of
the corresponding downstream stress-responsive genes, regulating gene expression and,
thus, modulating plant tolerance in response to abiotic stresses [18,19]. As one of the plant-
specific transcription factor families, the AP2/ERF family of transcription factors is of great
significance for plant survival and development. Nowadays, with the release of the whole
genome sequences of many plants, their functional regulatory networks in crops such as
rice (Oryza sativa L.), maise (Zea mays L.), and soybean (Glycine max L.) will be gradually
revealed. This article discusses the structural features of AP2/ERF transcription factors,
including their binding elements, regulation of transcription, and interaction with other
proteins. It also discusses the progress of research on the role of AP2/ERF in regulating
the response to abiotic stresses and provides references for future research on AP2/ERF
transcription factors to improve plants’ ability to cope with abiotic stresses [20–22].

1.1. Classification and Structural Classification of AP2/ERF Transcription Factors

The AP2/ERF transcription factor family is a large group of plant-specific transcrip-
tion factors that regulate plant growth, development, and abiotic stress response. Many
AP2/ERF family genes were identified in the plant genome. They can be divided into
five main groups based on the number of AP2/ERF structural domains, namely AP2
(APETALA2), ERF (ethylene-responsive factor), DREB (dehydration-responsive element
binding protein), Soloist, and RAV (related to ABI3/VP1) (Supplementary Table S1). For
example, AP2/ERF transcription factor genes, namely Dehydration responsive factor 2B (Os-
DREB2B), Reduced plant height 1 (OsRPH1), Ethylene response AP2/ERF factor (OsEATB), and
APETALA-2-Like transcription factor gene 39 (OsAP2-39), are able to affect rice growth and
development, and consequently plant height, by regulating the expression of Gibberellin
(GA) metabolic genes [23–26]. Present-day studies are more extensive and in-depth for
the AP2, DREB, and ERF subfamilies, whereas very few studies have been reported on
the Soloist subfamily, whose nucleotide sequences are known to be highly conserved in
most plants [27] (Figure 1). The structure of AP2/ERF transcription factors is characterised
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by four major functional regions, namely the DNA-binding domain, the transcription
regulation domain, the oligomerisation site, and the nuclear localisation signal (NLS), and
the AP2/ERF binding domain is highly conserved [28]. The AP2/ERF transcription factor
structural domain contains 60–70 amino acid residues, forming a typical three-dimensional
structure according to three β-folds and one α-helix. The YRG and RAYD elements in
the AP2 domain play an important role in DNA binding activity. The YRG element at
the N-terminal end of the domain consists of approximately 19–22 hydrophilic amino
acid residues and promotes DNA binding through bases and hydrophilic groups. The
RAYD element at the C-terminal end of the domain consists of about 42–43 residues and
mediates protein–protein interactions through the α-helices or interacts with DNA through
the hydrophobic surface of the α-helices [29]. Many studies have shown that AP2/ERF
transcription factors are highly structurally similar, which may lead to a large amount of
gene redundancy in the AP2/ERF family of transcription factors [23,24].
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Figure 1. AP2/ERF transcription factor family classification and structural features. They can be
divided into five main groups based on the number of AP2/ERF structural domains, namely AP2
(APETALA2), DREB (dehydration-responsive element binding protein), ERF (ethylene-responsive
factor), RAV (related to ABI3/VP1), and Soloist. The AP2 domain contains two AP2 structural
domains; the DREB and ERF domains contain an AP2 structural domain; the RAV domain contains
an AP2 structural domain and a B3 structural domain; and the Soloist domain contains an AP2-like
structural domain. The ERF subfamily of transcription factor members can participate in the regula-
tion of abiotic stress by binding to the ethylene response element (ERE) (GCC-box, core sequence
AGCCGCC). Members of the DREB subfamily of transcription factors specifically recognise and bind
to a DRE/CRT element (dehydration responsive element/C-repeat, core sequence A/GCCGAC) in
the promoter region of another gene. The yellow background represents the AP2 domain, the green
background represents the B3 domain, and the blue background represents the AP2 like domain.

1.2. Cis-Acting Elements Recognized by AP2/ERF Transcription Factors

In previous promoter region analyses of AP2/ERF transcription factor-regulated genes,
scientists have identified many AP2/ERF transcription factors capable of specifically bind-
ing to stress-responsive gene initiator cis-elements in the promoter region [30–32]. The
ERF subfamily of transcription factor members can participate in the regulation of abiotic
stress by binding to the ethylene-response element (ERE) (GCC-box, core sequence AGC-
CGCC). Members of the DREB subfamily of transcription factors specifically recognise and
bind to a DRE/CRT element (dehydration-responsive element/C-repeat, core sequence
A/GCCGAC) in the promoter region of another gene, regulating the expression of re-
sponse genes related to drought, low temperature, and salt stress [33–36]. The AP2/ERF
transcription factors bind not only to both DRE/CRT and ERE elements but also to other
cis-elements, such as coupling element 1 (CE1, TGCCACCG), coupling element 3 (CE3,
CGCG) and hypoxia-responsive promoter element (HRPE). The AP2/ERF transcription
factors also bind to these cis-elements, for example, CAACA, ATCTA, CATGCA, CGNCCA,
and ATCGAG [37–40].
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2. AP2/ERF Transcriptional Regulation and Interacting Protein under Abiotic Stresses
2.1. AP2/ERF Transcriptional Regulation under Abiotic Stresses

Under abiotic stresses, some genes related to adversity in plants can bind to cis-
acting elements conserved in AP2/ERF transcription factors to regulate the expression
of their transcription factor gene, which include low-temperature responsive elements,
heat shock-responsive elements, and ABA-responsive elements. It has been shown that
heat shock factor 1 (HSF1) and ABA-responsive element binding protein (ABRE) can
bind to the heat shock response element in the dehydration responsive factor 2A (DREB2A)
promoter and regulate the expression of their respective transcription factor gene, thereby
altering the plant’s ability to tolerate abiotic stresses [41–44]. Song et al. [45] showed that
the interaction of the APETALA2/EREBP-type transcription factor 7 (AtERF7) with the
protein kinase S3 (PKS3) is involved in the regulation of the plant ABA response. AtERF7
binds to the GCC box and is able to inhibit gene transcription. AtERF7 interacts with the
transcriptional corepressor AtSin3, which in turn may interact with the histone deacetylase
19 (HDA19). HDA19 and SIN3-like 3 (AtSin3) enhance the transcriptional repression
activity of AtERF7. Thus, AP2/ERF transcription can be regulated by histone modifications
such as phosphorylation, ubiquitination, methylation, and acetylation by modulating the
spatial state of chromatin [46–49]. Kavas et al. [50] identified 180 AP2/ERF superfamily
genes in Phaseolus vulgaris. MicroRNA target transcript analyses identified in computer
simulations identified almost all PvAP2-ERF genes as MicroRNA targets in 44 different
plant species; the most abundant target gene was the AP2-ERF transcription factor gene
(PvERF20, PvERF25, PvERF62, PvERF78, PvERF113, and PvERF173).

2.2. AP2/ERF Transcription Factors Interacting Protein under Abiotic Stresses

Transcription factor (TF), also known as trans-acting factor, is a DNA-binding protein
that specifically interacts with cis-acting elements of eukaryotic genes and activates or
inhibits gene transcription. Many studies have shown that AP2/ERF transcription fac-
tors interact with other transcription factors to form protein complexes or can directly
bind to the promoters of their downstream target genes to repress or promote gene ex-
pression [51,52]. AP2/ERF family transcription factor OsDREB2B was able to regulate
the expression of OsAP2-39 by binding to its promoter, and OsDREB2B interacted with
OsWRKY21 to regulate the expression of GA metabolism genes and inhibit GA synthesis,
leading to a decrease in GA content and, thus, exerting a negative effect on rice growth and
development [23]. The AP2/ERF transcription factor OsRPH1 overexpression resulted in
reduced plant height, and OsRPH1 interacted with the blue light receptor Cryptochrome 1
(OsCRY1b) [24]. Tiwari et al. [53] identified a short “EDLL” motif that is present in ethy-
lene response factor 98 (AtERF98)/TDR1 and other branch members from the same AP2
subfamily. This motif has a unique arrangement of acidic amino acids and hydrophobic
leucines and functions as a strong activation domain that partially overcomes the repression
conferred by the homeobox protein 2 (AtHB2) transcription factor, which contains an ERF-
associated amphiphilic repressor (EAR) motif. Overexpression of ethylene response factor 7
(AtERF7) plants has reduced the sensitivity of defence cells to ABA and increased water
loss. Ethylene response factor 3 (ERF3) interacts with the subunit of the histone deacetylase
complex SAP18 (SIN3-associated polypeptide P18) and co-recruits histone deacetylase 19
(HDA19) to form a complex which inhibits the expression of the associated genes [54].
Franco-Zorrilla et al. [55] analysed co-regulated gene and transcriptome data from tran-
scription factor mutants. The results indicate that at least one target sequence for each
transcription factor is functionally important and that the function of a transcription factor
as an activator or a repressor can be predicted from specific DNA sequences. Therefore,
genes co-regulated by AP2/ERF transcription factors are also enriched for AP2/ERF target
genes, and future analyses of homologous sequences by scientists will help to identify
putative targets of transcription factors and predict their biological functions.
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3. AP2/ERF by Participating in the Regulation of Hormone-Mediated Abiotic Stresses

Phytohormones, also known as plant natural hormones or plant endogenous hor-
mones, refer to a number of organic compounds produced by the plant body in minute
quantities that can regulate (promote, inhibit) their own physiological processes. The main
role of phytohormones is to regulate the ability of plants to resist the adverse external
environment and plant growth and development. Studies have shown that AP2/ERF tran-
scription factors can synergy with hormone signalling to form a cross-regulatory network,
e.g., by participating in growth and development and abiotic stress responses mediated
by the plant hormones abscisic acid (ABA), gibberellin (GA), auxin (IAA), ethylene (ET),
brassinosteroid (BR) and cytokinin (CTK) [56–60].

3.1. AP2/ERF Transcription Factors Involved in ABA-Mediated Stress Response

The main role of ABA is to promote the shedding of organs such as plant leaves,
fruits, and calyxes and to regulate plant growth and development. ABA is one of the
key hormones in response to abiotic stresses such as drought, salt, cold, and heat. ABA
promotes the synthesis of osmotic substances and protects against abiotic stresses by
regulating stomatal opening, closure, and root architecture [61,62]. Overexpression of
ethylene response factor 71 (OsERF71) plants reduced water loss, resulting in increased
tolerance to drought stress. OsERF71 was able to regulate the expression of ABA-responsive
and proline biosynthesis genes under drought stress, resulting in increased sensitivity to
exogenous ABA treatment and proline accumulation [63]. Cheng et al. [64] identified 229
AP2/ERF genes in the latest maise reference genome, of which 32 ZmAP2/ERFs regulate
biotic stress and 24 ZmAP2/ERFs are involved in abiotic stress response. Dehydration
responsive factor (ZmDREB39) and ZmDREB89 were up-regulated in response to ABA.
Xiong et al. [65] identified a total of 135 TkERF genes from Trichosanthes kirilowii. A co-
expression network constructed using transcriptome data from different flowering stages
showed that 67 of the AP2/ERF genes were associated with abscisic acid signalling pathway
members. Seventeen genes were found to be up-regulated when tissue culture seedlings
were treated with ABA, suggesting that some members of the TkERF gene family may be
involved in phytohormone signalling pathways. Twenty genes were up-regulated under
PEG treatment, suggesting that these selected genes may be involved in plant drought
stress. AP2 transcription factor 10 (TaAP2-10) is able to be induced by abiotic stress and
ABA hormone treatment [66]. The CBF (C-repeat binding factor) subfamily of transcription
factors belongs to the AP2/ERF (Apetala 2/ethylene response factor) family of transcription
factors. Research shows cis-acting elements in the promoter region of BpCBFs that are
associated with environmental stress and hormones. Most of these transcription factors
were found to be responsive to ABA or salt stress in different plant tissues after treatment
using ABA or salt [67].

3.2. AP2/ERF Transcription Factors Involved in GA-Mediated Stress Response

The main physiological role of GA is to promote the elongation of plant cells, increase
plant height, promote growth and development of lateral buds, promote flower bud
differentiation and flowering, and inhibit ageing and shedding of leaves. Li et al. [68]
identified a total of 218 AP2/ERF genes in the sugarcane genome, and the presence of
multiple cis-regulatory elements (CREs) in the SsAP2/ERF promoter was associated with
abiotic stress, suggesting that SsAP2/ERF activity may contribute to the adaptation of
sugarcane to environmental changes. Soloist subfamily transcription factor 4 (SsSoloist4) was
most significantly up-regulated in response to treatment with the exogenous hormone GA,
suggesting that this gene may play a role in GA-associated response. OsDREB2B is an
AP2/ERF family transcription factor; overexpression of OsDREB2B in rice can significantly
improve rice drought tolerance [69]. Ma et al. [23] found that OsDREB2B overexpression
resulted in shorter plant height, and the length of the second leaf sheath in overexpressed
plants was restored to that of the wild type by exogenous GA3 application. Expression
of GA biosynthesis genes was altered in overexpression OsDREB2B plants. Fu et al. [70]
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found that overexpression of AP2/EREBP transcription factor 20 (ZmEREB20) in Arabidopsis
enhanced ABA sensitivity and caused delayed seed germination under salt stress by
regulating ABA and GA-related genes. Zhang et al. [71] found that approximately 49 genes
containing complete AP2/ERF structural domains were identified from the Taxus x media
(Yew tree) transcriptome database. Nine of these TmERF genes could respond to low
temperature and hormone treatments, and the expression of the AP2/ERF transcription
factor gene (TmERF5, TmERF14, and TmERF36) was elevated under GA treatment. These
findings indicate their potential involvement in crosstalk between abiotic stress response
signalling pathways.

3.3. AP2/ERF Transcription Factors Involved in IAA-Mediated Stress Response

The main effects of IAA are to promote the division and elongation of plant cells,
the growth of roots and stems, the development and ripening of fruits, and the regula-
tion of plants’ form and growth direction. Cai et al. demonstrated a regulatory role for
APETALA2/ethylene response factor (AP2/ERF) transcription factor 96 (OsERF096) in
the cold stress response. Targeted metabolomics analyses revealed that OsERF096 can
respond to cold stress by regulating IAA accumulation and signalling [72]. Huang et al. [73]
found that AP2/ERF transcription factor 12 (ERF012) overexpression showed resistance to
temperature, drought, salt, and heavy metal stresses. Overexpression ERF012 inhibited
root growth and promoted root hair development and leaf senescence. The application of
exogenous IAA effectively mitigated this effect. ERF012 may down-regulate its target genes
Cinnamate-4-hydroxylase (AtC4H) and 4-coumarate CoA ligase 1 (At4CL1), resulting in reduced
IAA accumulation leading to leaf senescence. Overexpression AP2/ERF transcription factor
B1 (SlERF.B1) showed significantly higher sensitivity to salt treatment at both phenotypic
and physiological levels. Plants that overexpressed SlERF.B1 showed low tolerance to
mannitol and drought stresses. SlERF.B1 expression was induced by salt, mannitol, cold,
heat, and ACC treatments but was inhibited by ABA, IAA, and 1-MCP treatments [74].

3.4. AP2/ERF Transcription Factors Involved in ET-Mediated Stress Response

ET can promote fruit ripening and leaf senescence, induce adventitious roots and
root hairs, break the dormancy of plant seeds and buds, and inhibit flowering in many
plants (but induces and promotes flowering in pineapple and its congeners). Ethylene,
one of the six plant hormones, also plays a role in a variety of stress responses, such
as salt, low temperature, and flooding [75]. AP2/ERF transcription factor submergence
1A (Sub1A) is a rice flooding tolerance gene, the expression of which was up-regulated
under flooding conditions, while ET treatment induced its expression, but GA treatment
did not. Flood-tolerant rice varieties containing the Sub1A gene synthesised ET in the
plants under flooded conditions, and ethylene promoted the degradation of ABA on the
one hand and the expression of Sub1A on the other [76,77]. The ethylene-responsive
transcription factor RAP2-2 (RAP2.2) in Arabidopsis belongs to the same subfamily as Oryza
sativa submergence tolerance gene Sub1A. RAP2.2 is induced by ET in shoots and functions
in ET-controlled signal transduction pathways, and overexpression of RAP2.2 lines showed
increased survival under hypoxia stress [78].

3.5. AP2/ERF Transcription Factors Involved in BR-Mediated Stress Response

BR has an important role in plant growth and development and, together with other
plant hormones, is involved in the regulation of many aspects of plant development, includ-
ing stem and leaf growth, root growth, vascular tissue differentiation, fertility, seed germina-
tion, maintenance of apical dominance, and plant photomorphogenesis [79]. Liu et al. [80]
demonstrated that AP2/ERF family transcription factor 72 (ERF72) may be a candidate gene
for cross-interaction between the BR signalling pathway and stress response. In Arabidopsis,
ERF72/RAP2.3 antagonised BZR1 (brassinazole-resistant 1) and ARF6 (Auxin responsive
factor 6) and inhibited hypocotyl elongation. Schmitz et al. [81] found SUB1A differentially
regulates the expression of BR synthesis-related genes during plant flooding, activates
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BR biosynthesis and signal transduction, induces the expression of Gibberellin 2-oxidase 7
(GA2ox7), a key gene for GA degradation, and, thus, controls GA levels in rice plants.

3.6. AP2/ERF Transcription Factors Involved in CTK-Mediated Stress Response

The main physiological role of CTK is to promote cell division and prevent leaf senes-
cence. The senescence and yellowing of green plant leaves occur due to the decomposition
of proteins and chlorophylls within them. At the same time, CTK can maintain protein
synthesis, thus keeping the leaves green and promoting the differentiation of buds, cell
enlargement, the development of lateral buds and the removal of apical dominance [82].
Moreover, CTK also plays an important role in plant response to abiotic stresses [83].
AP2/ERF-N22(2) has an AP2 structural domain consisting of 55 amino acid residues and a
set of acidic amino acid residues in the C-terminal region that can act as a trans-activating
structural domain. Moreover, AP2/ERF-N22(2) belongs to group VI L. Members of Ara-
bidopsis group VI L have been shown to be involved in the response to cytokinins under
drought stress [84]. Cytokinin response factor (CRF) is an AP2/ERF family transcription
factor that regulates plant cotyledon and embryo developmental processes and is also
involved in cytokinin signalling [85,86]. In Arabidopsis, cytokinin response factor 6 (CRF6)
is an AP2/ERF transcription factor that is induced by CTK. CRF6 is highly expressed in the
veins of mature leaves, promotes CTK synthesis, and is induced by abiotic stress [87,88].
Zwack et al. [89] showed that cytokinin response factor 4 (CRF4) can be induced by cold
exposure for a short period of time, especially in root and shoot tissues. Altered transcrip-
tional expression of genes of the cold signalling pathway in c-repeat binding factors (CBF)
and cold-regulated 15a (COR15a) in crf4 mutants and overexpression CRF4 lines suggests
that CRF4 may be involved in this pathway. The specific regulatory mechanism of CRF is
still unclear, so future identification of CRF target genes and upstream signalling molecules
could help explain this.

4. Role of AP2/ERF Transcription Factors in Response to Abiotic Stresses (Not
Dependent on Hormone Signalling Pathway)

Stresses such as drought, high salt, high temperature, low temperature, nutrients, and
heavy metals are the major abiotic stress factors affecting plant growth and development,
crop yield, and quality. In the course of plant evolution, complex defence mechanisms
have been developed to adapt to abiotic stresses so that plants can improve their ability
to tolerate abiotic stresses. Studies have shown that the AP2/ERF family of transcription
factors is widely involved in regulating the plant response to various abiotic stresses [90].

4.1. AP2/ERF Transcription Factors in Response to Drought Stress

Water is a vital resource for the survival of all life and has played an important role in
the evolution of life. Water is an essential constituent for photosynthesis in green plants,
and if there is a lack of water, the plant’s photosynthesis will be weakened. Leaves will
wilt and, in severe cases, can lead to the death of the plant [91]. Yu et al. [92] found that
overexpression of the AP2/ERF family gene TaERF-6-3A increased sensitivity to drought
and salt stress in Arabidopsis. Expression of stress-related and antioxidant-related genes
was down-regulated in overexpressing TaERF-6-3A plants. Genome-wide analysis of the
AP2/ERF genes in Pisum sativum (L.) identified 153 AP2/ERF genes. Jarambasa et al. [93]
found that DREB2A, DREB2C, DREB2E, and DREB2F were induced in leaves under drought
stress. Kumar et al. [94] showed that overexpressing the OsAP2/ERF-N22 line showed
higher relative water content, membrane stability index, wax content, osmotic potential,
stomatal conductance, and transpiration rate activities. Kabir et al. [95] demonstrate that
a total of 119 CoAP2/ERF genes were identified from the dark jute genome. CoDREB-
11, CoDREB-14, and CoRAV-01 genes were significantly up-regulated under salinity and
drought stress conditions. Kong et al. [96] demonstrate that the osmotic stress-induced
PtoERF15 and its target gene PtoMYC2b, which is involved in mediating blood vessel
size, density, and cell wall thickness in response to drought in poplar, were identified and
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characterised. Overexpression of PtoERF15 contributes to the maintenance of stem water
potential, thereby increasing drought tolerance.

4.2. Molecular Mechanisms of AP2/ERF Associated with Salt Stress

Soil salinity affects around 6% of the world’s land and 23% of arable land, causing
considerable economic losses through crop stress and reduced yields. Because salinity
plays a vital role in plant growth, excess soluble salts will have a toxic effect on plants above
a certain limit; this can greatly affect the growth and development of plants, ultimately
resulting in reduced yields [97]. AP2/ERF transcription factor 19 (OsERF19) was identified
in rice by Huang et al. [98]. The OsERF19 expression was inhibited by salt stress. Overex-
pressing the OsERF19 line increased the tolerance of plants to salt stress. In addition, Late
embryogenesis abundant protein gene (OsLEA3), Vacuolar Na+/H+ antiporter gene (OsNHX1),
Low-affinity Na+ transporter (OsHKT6), and Overly tolerant to salt 1 (OsOTS1) genes were
up-regulated in overexpressing lines when plants were subjected to salt stress. Within
the AP2/ERF family, transcription factor 71 (AtERF71)/HRE2 is known to be involved in
hypoxia and osmotic stress responses [99,100]. Seok et al. dissected the HRE2 promoter
and showed that the -116 to -2 region is responsible for hypoxia and salt stress responses.
This region contains both positive and negative cis-regulatory elements that may regulate
HRE2 expression under salt stress [101].

4.3. AP2/ERF Transcription Factors Involved in Plant Response to Temperature Stress
4.3.1. AP2/ERF Transcription Factors and High Temperature Stress

Temperature is the main environmental factor affecting plant growth and development
and the quality of life of the fruit after harvest; appropriate temperatures promote plant
growth. High temperatures primarily harm plant growth and development, shorten the
plant, cause localised burns on the leaves and stems, and reduce the number of flowers.
High temperatures also encourage increased transpiration, disrupting the water balance
and causing the plant to wilt and die [102]. Zhang et al. [103] found that the AP2/ERF tran-
scription factor PlTOE3 can specifically activate the Tryptophan decarboxylase gene (PlTDC)
promoter. High-temperature stress can affect the transcriptional level of PlTOE3. Over-
expression of PlTOE3 in tobacco enhanced plant melatonin production and heat stress
tolerance, whereas silencing of PlTDC expression gave the opposite results. The SHN/WIN
evolutionary branch of the AP2/ERF transcription factor family is involved in many im-
portant processes. In fact, plants respond to heat stress through heat shock transcription
factor (HSF) and heat shock protein (HSP)-mediated heat stress response (HSR), and some
NSR genes can be activated in heat-activated stress. Knockout of heat shock transcription
factor A1 (HSFA1) gene plants results in reduced activation of a large number of HSR genes
and a heat stress-sensitive phenotype [42,104]. The Arabidopsis genome encodes 21 HSFs,
which can be classified into three categories: HSFA, HSFB, and HSFC [105]. HSFA2 is the
most heat-inducible HSF; its heat induction is dependent on HSFA1 [106]. The HSFA2
knockout plants exhibit a significant heat-sensitive phenotype [107]. AP2/ERF transcrip-
tion factor DREB2A acts downstream of HSFA1 and is another important thermotropic
transcriptional activator. Overexpression of a constitutively active variant of DREB2A
up-regulates HSR genes in Arabidopsis [108,109]. Under heat stress, AP2/ERF transcription
factor ERF1 positively regulates heat tolerance in plants by binding to DRE cis-elements
in heat-responsive genes, such as HSFA3 and HSPs, and activating their expression [110].
Ectopic constitutive expression of ERF95 or ERF97 enhances basal heat tolerance in plants.
AP2/ERF transcription factor ERF95 interacts with ERF97, and this interaction is enhanced
at high temperatures, where they directly regulate a common transcriptional regulator,
HSFA2, in response to heat stress [111]. REVEILLE4 (RVE4) and RVE8 play important
roles in regulating heat tolerance in plants. The rve4 and rve8 double mutants are more
susceptible to high temperatures. RVE4/8 regulates heat tolerance by a mechanism that is
independent of hsfa1-mediated HSR and is partially influenced by the downstream tran-
scription factors ERF53 and ERF54 [112]. RESPIRATORY BURST OXIDASE HOMOLOG
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D (RbohD) is an NADPH oxidase that contributes to the production of ROS. These ROS
molecules act as signalling molecules to initiate heat stress responses and transduction.
AP2/ERF transcription factors ERF74 and ERF75 regulate RbohD transcription in response
to heat stress [113] (Figure 2A).
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Figure 2. AP2/ERF transcription factor-mediated temperature stress response model in plants.
(A) The AP2/ERF transcription factor-mediated heat stress response model. In the HSF-independent
pathway, REVEILLE4 and 8 (RVE4/8) are the major transcription factors that regulate the downstream
expression of ERF53 and ERF54 and mediate plant heat tolerance. In the HSF-dependent pathway,
heat stress induces the expression of HSFA1, which is a master regulator of transcriptional regulation.
Under non-stress conditions, heat-shock proteins (HSPs) repress HSFA1 expression, such as HSFA2,
HSFA7, DREB2A, HSFBs, and multiprotein bridging factor 1c (MBF1c), which are involved in a key
transcriptional regulatory cascade. DREB2A further activates HSFA3, which activates or fine-tunes
the expression of HSPs, ROS scavenger enzymes, and other HSR gene expressions. (B) The AP2/ERF
transcription factor-mediated cold stress response model. Cold stress induces the expression of C
repeat binding factor/dehydration response element binding protein 1s (CBF/DREB1s). CBFs/DREB1 genes
are regulated by multiple transcription factors and integrate multiple signalling pathways. The light
signalling components Phytochrome-interacting factors (PIF3, PIF4, and PIF7), the circadian oscillator
component Pseudo response regulator (PRR9, PRR7, and PRR5), as well as other transcription factors
such as Suppressor of overexpression of constans 1 (SOC1) and MYB transcription factor MYB15,
negatively regulate CBFs/DREB1 gene expression. The genes CCA1, LHY, BR, BZR1/BES1, ICE1,
ICE2, CAMTA, and other transcription factor inducers directly enhance the expression of CBF/DREB1
by binding to its promoter region. The protein stability of CBF/DREB1 is positively regulated by
basic transcription factor 3 (BTF3) phosphorylated by Open stomata 1 (OST1). AP2/ERF transcription
factor ERF regulates CBF/DREB1 expression by binding directly and indirectly to the CBF/DREB1
promoter. ERF also directly regulates the expression of other COR genes by binding to their promoters.
Arrow ends indicate the activation effect; bar ends indicate the repression effect.

4.3.2. AP2/ERF Transcription Factors and Low Temperature Stress

Symptoms of low temperature are discolouration of plant leaves, necrosis, and the
appearance of spots on the surface of the plant, making the plant grow slowly and inducing
other changes in morphological characteristics; the photosynthetic rate is significantly
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reduced, resulting in lower yields and lower quality. However, low-temperature stress
not only leads to a reduction in plant yield, but in severe cases, it can also cause plant
death [114]. Ren et al. [115] identified the apetala/ethylene responsive factor (AP2/ERF)
family apetala 2.4 (RAP2.4) in Chrysanthemum lavandulifolium and plays an important role
in plant development and response to stress. The activities of superoxide dismutase, perox-
idase, and proline content in leaves in the four overexpression lines were higher than those
in the wild type (WT). In contrast, the electrical conductivity and malondialdehyde content
were decreased, indicating that the tolerance of plants with ClRAP2.4 overexpression to
cold stress was increased. The SOD and POD activities, as well as proline content, were
higher in the overexpressing ClRAP2.4 strain than in the wild type, whereas conductivity
and malondialdehyde content were reduced, suggesting that overexpression of ClRAP2.4
is increased in plants tolerance to cold stress. Heidari et al. [116] treated two tomato
species with low temperatures and found increased ABA content in two tomato species but
increased ZT content in cold-tolerant tomato species. The contents of IAA and GA in cold-
sensitive tomato species are reduced by low temperatures. The CTK was also found to be
an important plant hormone associated with low-temperature stress in tomatoes. They also
found that the C-repeat/DRE binding factor 1 (CBF1) gene is less induced in response to low
temperature in tomato, but transcription of the inducer of the CBF expression 1 (ICE1) gene
was up-regulated under low temperature in both tomato species. ICE1 appears to regulate
cold-regulated (COR) genes in a manner that is not dependent on CBF. Numerous studies
have shown that ethylene signalling regulates freezing tolerance in plants by repressing C
repeat binding factor (CBF) motifs [117]. The CBF genes are regulated by several transcription
factors, such as Phytochrome-interacting factors (PIF3, PIF4, and PIF7), which are light
signalling components, whereas Pseudo response regulators (PRR9, PRR7, and PRR5) are
circadian oscillatory components that negatively regulate the expression of CBFs [118–121].
Circadian clock associated 1 (CCA1), late slender hypocotyl (LHY), and brassinosteroids
(BRs) signalling pathway components BRASSINAZOLE-RESISTANT (BZR1)/BRI1-EMS-
SUPPRESSOR1 (BES1) positively regulate the expression of CBFs by directly binding to the
promoter region and increasing the freezing tolerance of the plant [122]. There are other
transcription factors involved in cold-induced expression of CBFs, such as suppressors of
overexpression of constant 1 (SOC1) and MYB transcription factor MYB15, which are nega-
tive regulators. In contrast, inducers of CBF expression (ICE1, ICE2) and calcium-binding
activators of transcription (CAMTAs) act as positive regulators [123,124] (Figure 2B).

4.4. Role of Plant AP2/ERF in Response to Nutritional Element Stress

Nitrogen (N), phosphorus (P), and potassium (K), which are essential nutrients for
plants, play very important physiological roles in plant growth and development. N is
found in both proteins and nucleic acids, and proteins, in turn, are the basic substances that
make up protoplasm [125].

N is also a constituent of chlorophyll, which is indispensable for photosynthesis in
higher green plants and is, therefore, essential for plant photosynthesis [126]. RNA-seq
analysis by Joshi et al. [127] showed that N stress induced most of the transcriptome changes
in spinach roots, identifying 1,346 differential expressed genes (DEGs). In the presence of
high N in leaf tissues, a subset of AP2/ERF family member transcription factors were all
overexpressed in tissues in response to N perturbation. Bacterial accommodation within
living plant cells was restricted to nitrogen-fixing rhizobium symbiosis; bacterial uptake is
mediated by tubular structures called infection threads. Cerri et al. [128] identified a gene
encoding an AP2/ERF transcription factor known as ethylene-responsive transcription
factor (ERN1). Rhizobium primordia were formed following mutation of the ern1 gene in
Lotus japonicus, but the majority remained uninfected, and bacterial entry into the root
epidermis via infection threads was eliminated.

P is a constituent of the nucleus and nucleic acids, which have a special role in plant
life and hereditary processes [129]. Most terrestrial plants establish symbiotic relation-
ships with arbuscular mycorrhizal fungi (AMF), providing them with lipids and sugars
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in exchange for phosphorus and nitrogen. Zhang et al. [130] identified the AP2/ERF tran-
scription factor mycorrhisation 1 (MtERM1) as being able to bind directly to the AW-box
and AW-box-like cis-elements in the two half-size ABCG transporters (MtSTR2 and MtSTR)
promoters, which are required for host lipid efflux and tuft development. Chen et al. [131]
identified that the AP2/ERF transcription factor gene PalERF2 overexpression lines en-
hanced tolerance to Pi deficiency. In addition, overexpression of PalERF2 up-regulated
phosphate starvation-induced (PSI) gene expression level and increased phosphate uptake
under drought conditions.

K is an activator of many of the enzymes of photosynthesis and enhances the activity of
the enzymes and, hence, promotes photosynthesis. K also functions to control the opening
and closing of the plant’s stomata and hence facilitates the conservation of water by the
plant [132]. Kim et al. [133] showed that the AP2/ERF family transcription factor RAP2.11
was identified as a component of the low potassium response. The AP2/ERF family
transcription factor RAP2.11 regulates the expression of the high-affinity K+ uptake transporter
protein (AtHAK5) under low K+ conditions and also contributes to a coordinated response
to low potassium conditions by regulating other genes in the low K+ signalling cascade.
Chen et al. [134] demonstrated that AP2/ERF family transcription factor OsERF106 was
expressed in germinating seeds, primary roots, and developing flowers. Overexpression of
OsERF106 resulted in stunted growth, relatively high levels of malonic dialdehyde (MDA)
and reactive oxygen species (ROS), reduced CAT activity, and excessive accumulation of
sodium (Na+) and potassium (K+) ions in transgenic rice.

4.5. AP2/ERF Involved in Plant Response to Heavy Metals Stress

Heavy metals in soil are a stress factor for plants, affecting their survival in various
ways, including growth, development, and reproduction. Excessive amounts of heavy
metals affect photosynthesis in plants, thus causing symptoms such as yellowing and
wilting of plant leaves and reducing the efficiency of light energy utilisation in plants.
High concentrations of heavy metals in the soil affect the ability of plants to absorb and
utilise nutrients, leading to a reduction in the number of leaves, changes in the root system,
and a reduction in stem expansion [135–138]. Karanja et al. [139] identified a total of
247 ERF family genes in the radish genome, and a portion of the AP2/ERF genes were
preferentially expressed under drought and heat stress, whereas they were repressed under
heavy metal stress. Chen et al. [140] identified a large number of key heavy metal Cd-
induced DEGs containing transcription factors such as AP2/ERF, MYB, NAC, and WRKY.
DEGs are involved in antioxidants, heavy metal transport, and detoxification pathways,
and AP2/ERF family transcription factors were suggested to play crucial roles in kenaf Cd
tolerance. Tian et al. [141] conducted a study exposing Solanum tuberosum L. to heavy metals
Cd/Pb/Zn/Ni/Cu. They identified 181 potential StAP2/ERF genes, and the StAP2075,
StAP2077, and StAP2126 genes were found to promote Cd accumulation and yeast growth
(Cd detoxification phenotype).

5. Conclusions and Prospects

Nowadays, there are many reports on the involvement of AP2/ERFs in the regulation
of hormone signalling-mediated stress response. When a plant suffers from abiotic stress,
the inducing hormones (ABA and ET) and growth-promoting hormones (GAs, IAA, CTK,
and BRs) carry out their defence against the adverse external environment through a
mechanism regulated by AP2/ERFs (Figure 3) [142].
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Figure 3. AP2/ERF transcription factor participates in the regulation of hormone-mediated response
networks during abiotic stresses. Abiotic stress can alter the production and distribution of plant
hormones and subsequently mediate stress responses through AP2/ERF family transcription factors
and hormone signalling components. ABA: abscisic acid; GA: gibberellin; IAA: auxin; BR: oleuropein
lactone; CTK: cytokinin; ET: ethylene. Arrow ends indicate the activation effect; bar ends indicate the
repression effect.

ABA Pathway: Under abiotic stress conditions, when plants are subjected to water
deficit, the rate-limiting ABA biosynthetic enzyme Nine-cis-Epoxycarotenoid Dioxygenase
(NCED) is rapidly up-regulated to promote ABA biosynthesis [143]. Subsequently, ABA is
sensed by ABA receptors (PYR/PLY/RCAR), which form a ternary complex with protein
phosphatase 2Cs (PP2Cs) as a ternary complex, resulting in the removal of the inhibition of
SnRK2 kinases (SnRK2s). Active SnRK2 phosphorylates downstream substrate proteins,
including AREBs/ABFs, ion channels, and nicotinamide adenine dinucleotide phosphate
(NADPH) oxidases, thereby inducing ABA response [144,145]. ERF18/ORA47 activates the
PP2C family phosphatase gene ABI2. Meanwhile, ABI1 acts upstream of ORA47 to activate
ORA47, forming an ABI1-ORA47-ABI2 regulatory loop that inhibits ABA signalling and
drought tolerance [39]. RAV1 inhibits root growth sensitivity to ABA by repressing ABI3,
ABI4, and ABI5 expression. SnRK2.2, SnRK2.3, and SnRK2.6 also interact and phosphory-
late RAV1 to inhibit transcriptional repression of target genes [146]. GA Pathway: In the
absence of GA, DELLA inhibits GA responses. Abiotic stress leads to reduced GA content
and signalling by inhibiting AP2/ERF-mediated GA biosynthesis enzymes. DREB1E and
DREB1F lead to salt stress-induced growth retardation mainly by inhibiting GA20oxes [147].
Overexpressing CBF1 and ERF6 plants are sensitive to stress-induced growth retardation
due to increased expression of GA2oxs and accumulation of DELLA. ERF11 promotes plant
internode elongation by activating GA biosynthesis, and the expression of GA3ox1 and
GA20oxs is increased in overexpressing ERF11 plants [148]. IAA Pathway: Huang et al.
found that overexpression of ERF012 showed resistance to temperature, drought, salt,
and heavy metal stresses. Overexpression of ERF012 inhibited root growth and promoted
root hair development and leaf senescence. The application of exogenous IAA effectively
mitigated this effect. ERF012 may down-regulate its target genes, AtC4H and At4CL1 (key
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genes for phenylpropanoid metabolism and cell wall formation), resulting in reduced IAA
accumulation [73]. CTK Pathway: More than half of the CTK-responsive genes are regu-
lated by both CRF and B-type ARRs (typical cytokinin-responsive transcription factors),
and CRF6 also cooperates with CTK signalling to inhibit stress-induced leaf senescence
through a common subset of CTK-regulated genes. CRF6 also represses CTK-related target
genes involved in CTK biosynthesis, signalling, and transport to mitigate the adverse effects
of CTK on abiotic stresses [87,88]. BR Pathway: BR is detected by the plasma membrane
receptor kinase BRASSINOSTEROID INSENSITIVE 1 (BR1), which represses the activity of
the negative regulator BRASSINOSTEROID INSENSITIVE 2 (BIN2), leading to the accumu-
lation of the transcription factor BRASSINAZOLE-RESISTANT 2/BRI1-EMS-SUPPRESSOR
1 (BES1/BZR1), which is responsible for regulating the genes involved response to plant
growth and stress responses in relation to BR. BR positively regulates cold tolerance partly
through the CBF-mediated cold response pathway, in which BZR1 binds and promotes
CBF1/CBF2 expression in response to cold. Cold stress also promotes the accumulation
of the unphosphorylated active form of BZR1 through unknown mechanisms [149,150].
ET Pathway: ET is synthesised by the rate-limiting enzyme ACC synthase (ACS), a major
target for regulating ET production under stress conditions [151]. The binding of ET to
its receptor ethylene-insensitive 1 (ETR1) inactivates constitutive triple response 1 (CTR1)
kinase activity, releasing CTR1 from its inhibition of ethylene-insensitive 2 (EIN2). The
C-terminus of EIN2 then translocates to the nucleus, activating ethylene insensitive 3 (EIN3)
and the transcriptional cascade of ethylene-regulated genes [152,153]. ET represses CBF to
regulate cold stress negatively, positively regulates ERF-VII-mediated flooding and inunda-
tion, and enhances salt tolerance by activating ERF1 and ESE. The ET-insensitive mutants
etr1, ein2, and ein3 show enhanced freezing tolerance. EIN3 represses CBF expression by
directly binding to its promoter. Flooding causes hypoxia, which promotes ET production
and activates the expression of a group of ERF-VIIs; however, ERF-VIIs regulate the hypoxic
response partly through an ET-independent pathway. ERF-VII may also negatively regulate
ET signalling and homeostasis through feedback regulation [154]. The involvement of
AP2/ERFs in the regulation of hormone signalling-mediated stress response has been
widely reported. However, we do not know the exact regulatory mechanism; more scien-
tific exploration is needed. Question 1: How does AP2/ERF feedback regulate hormone
biosynthesis and metabolism when they receive hormone signals? Question 2: How do
AP2/ERFs regulate the expression of downstream related genes by synergising or antago-
nising multiple hormone signal transduction groups? Question 3: Can AP2/ERFs interact
with other family transcription factors to jointly regulate the expression of downstream
related genes through hormone signal transduction? Explaining these three issues will help
to systematically explain the regulatory network of AP2/ERFs in response to abiotic stress
conditions in plants and provide a theoretical basis for subsequent plant stress tolerance
breeding projects.

Plants respond to abiotic stress not only through the above hormone signalling net-
works but also through a series of other complex signalling pathways and gene expression
regulatory networks that have been established during the long-term evolution of plants.
When plants are affected by external stress, they are able to regulate their growth and
development and their ability to cope with tolerance under abiotic stress. AP2/ERF family
transcription factors can play a role in abiotic stress response through hormone-dependent
or hormone-independent signalling pathways. In recent years, there have been many
reports on the involvement of AP2/ERF family transcription factors in plants’ response
to abiotic stresses (Table 1). But they are still focused on abiotic stresses, such as drought,
high salt, high temperature, and low temperature; the molecular mechanisms of AP2/ERF
transcription factors in response to chemical reagent stress are rarely reported, for example,
pesticides, car exhaust, and haze. Car exhaust and haze, the main component of which is
sulphide, can cause plants to develop leaf scorch and impede growth and development.
Excessive use of pesticides can damage the ecosystem and lead to a decline in crop yields.
Therefore, it is important to study AP2/ERF in response to chemical stress in plants. Our
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in-depth study of the molecular mechanisms of plant responses to abiotic stresses, specifi-
cally the AP2/ERF transcription factors, encompasses various aspects such as stress signal
perception and transmission, transcriptional regulation, and expression of response genes.
This research aims to guarantee plants’ normal growth and development under abiotic
stresses, thereby ensuring food production. Ultimately, this contributes to global food
security and enhances the quality of human life.

Table 1. Abiotic stress responsive AP2/ERF transcription factors in plants.

Abiotic Stress Type
AP2/ERF

Transcription
Factors

Species Reference

Drought AtDREB1A Arabidopsis thaliana L. [155]
Cold DREB1/CBF Arabidopsis thaliana L. [156]
Cold DREB2 Arabidopsis thaliana L. [156]

Cold, salt, drought GmDREBa Soybean (Glycine max L.) [157]
Cold, salt, drought GmDREBc Soybean (Glycine max L.) [157]

Drought ERF1-V Wheat (Triticum aestivum) [158]
Temperature ZjDREB1.4 Zoysiagrass (Zoysia japonica S.) [159]

Cold, salt, drought ZmEREB3 Maize (Zea mays L.) [160]
Salt ZmEREB20 Maize (Zea mays L.) [70]

Drought ZmEREB46 Maize (Zea mays L.) [161]
Drought ZmEREB60 Maize (Zea mays L.) [162]
Drought ZmEREB137 Maize (Zea mays L.) [163]

Waterlogging ZmEREB180 Maize (Zea mays L.) [164]
Osmotic ZmEREB204 Maize (Zea mays L.) [165]
Drought ZmEREB240 Maize (Zea mays L.) [166]

Cold OsDREB1A Rice (Oryza sativa) [167]
Temperature OsDREB1B Rice (Oryza sativa) [168]
Cold, salinity OsDREB1D Rice (Oryza sativa) [169]

Drought OsDREB1E Rice (Oryza sativa) [169]

Drought OsDREB1G;
OsDREB1I Rice (Oryza sativa) [69]

Drought OsDREB2B Rice (Oryza sativa) [69]
Salt, drought, temperature OsDREB4-1 Rice (Oryza sativa) [170]
Salt, drought, temperature OsDREB1F Rice (Oryza sativa) [171]

Temperature OsWR2 Rice (Oryza sativa) [172]
Drought OsERF71 Rice (Oryza sativa) [173]

Drought
OsLG3;

OsERF62;
OsRAF

Rice (Oryza sativa) [174]

Drought OsAP37 Rice (Oryza sativa) [175]
Salt OsAP23 Rice (Oryza sativa) [176]

Salt, drought, temperature OsEREBP2 Rice (Oryza sativa) [177]
Salt SERF1 Rice (Oryza sativa) [178]
Salt OsIDS1 Rice (Oryza sativa) [179]
Salt OsERF922 Rice (Oryza sativa) [180]
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