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Abstract: Major depressive disorder (MDD) is a common complication of diabetes and is often
observed alongside diabetic neuropathic pain (DNP) as a comorbidity in diabetic patients. Long
non-coding RNA (lncRNA) plays an important role in various pathophysiological processes. The
P2X7 receptor is responsible for triggering inflammatory responses, such as pyroptosis, linked to
pain and depression. The aim of this study was to investigate the effect of lncRNA MSTRG.81401 on
hippocampal pyroptosis induced by the P2X7 receptor in diabetic rats with DNP combined with MDD
(DNP + MDD). Our results showed that the expression of lncRNA MSTRG.81401 was significantly
elevated in the hippocampus of DNP + MDD rats compared with the control group. Following
the administration of shRNA targeting lncRNA MSTRG.81401, a notable elevation in mechanical
and thermal pain thresholds was observed in rats with comorbid DNP and MDD. Additionally,
significant improvements in depression-like behaviors were evident in the open-field test (OFT),
sucrose preference test (SPT), and forced swim test (FST). In the DNP + MDD rats, elevated levels in
hippocampal P2X7 receptor mRNA and protein were observed, along with increased co-expression
of P2X7 and the astrocytic marker glial fibrillary acidic protein (GFAP). Meanwhile, in DNP + MDD
rats, the heightened mRNA expression of NOD-like receptor protein 3 (NLRP3), apoptosis-associated
speck-like protein (ASC), pyroptosis-related protein Gasdermin D (GSDMD), caspase-1, IL-1β, IL-
18, and TNF-α was detected, in addition to increased serum levels of IL-1β, IL-18 and TNF-α.
After shRNA treatment with lncRNA MSTRG.81401, the above abnormal changes in indicators for
pyroptosis and inflammation were improved. Therefore, our study demonstrates that shRNA of
lncRNA MSTRG.81401 can alleviate the pain and depression-like behaviors in diabetic rats associated
with the comorbidity of DNP and MDD by inhibiting the hippocampal P2X7 receptor-mediated
pyroptosis pathway and pro-inflammatory responses. This suggests that the P2X7R/NLRP3/caspase-
1 implicated pyroptosis and inflammatory scenario may serve as a potential target for the management
of comorbid DNP and MDD in diabetes.

Keywords: diabetic neuropathologic pain; major depressive disorder; lncRNA; P2X7 receptor;
pyroptosis; hippocampus

1. Introduction

The global prevalence of diabetes is high and is considered to be the major epidemic
of the 21st century, with an estimated global prevalence of 8.5% and increasing year by
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year [1]. One of the most common chronic complications of diabetes is diabetic peripheral
neuropathy (DPN), which is defined as the development of symptoms associated with
peripheral nerve dysfunction in patients with diabetes [2]. Approximately one-third of
patients with diabetic neuropathy report intermittent or persistent sensory abnormali-
ties (such as tingling) and pain, known as diabetic neuropathic pain (DNP) [3,4]. DNP
significantly affects the quality of life of patients, but its pathogenesis remains unclear.
Currently, apart from duloxetine and gabapentin with limited effectiveness, there is no
specific therapy for alleviating DNP [5].

Diabetic patients often exhibit a range of psychological impediments. Research has
indicated a higher propensity for depression among diabetic patients when compared to
non-diabetic cohorts [6]. The prevalence of depression among diabetic patients is approxi-
mately twice that of non-diabetic individuals [7]. Around 34% of women and 23% of men
with type 2 diabetes concurrently suffer from depression [8]. Furthermore, depression-
associated behavioral factors not only contribute to suboptimal self-care behaviors among
diabetic patients but also promote obesity and insulin resistance, thereby facilitating the
development of type 2 diabetes [9,10]. Diabetic patients with neuropathic pain are particu-
larly susceptible to comorbid depression, which in turn exacerbates their pain symptoms,
establishing a pernicious cycle that significantly impacts their quality of life [11].

Pyroptosis is an inflammatory programmed cell death distinct from apoptosis. Py-
roptosis may be implicated in a range of diseases, including diabetes, neurodegenerative
diseases, autoimmune diseases, and cardiovascular diseases [12]. Nerve injury and neural-
gia are common disorders caused by neuroinflammation. Numerous studies have shown
that activation of the NLRP3 (nod-like receptor family, pyrin domain-containing 3) in-
flammasome is involved in a variety of inflammatory reactions, such as neuropathic pain,
depression, diabetes-associated neuroinflammation, neurodegenerative diseases, cerebral
ischemia-reperfusion injury, memory, and cognitive dysfunction [13]. The inflammasome
was originally proposed by Tschopp et al. [14] and is present in immune cells, microglia, and
astrocytes [15]. The NLRP3 inflammasome is a complex that includes the NLRP3 protein,
apoptosis-associated speck-like protein containing a CARD (ASC), and pro-caspase-1 [16].
The caspase-1-dependent formation of plasma membrane pores results in the release of
pro-inflammatory cytokines, such as interleukin (IL)-1β and IL-18, leading to cellular in-
flammation. Emerging evidence has shown pyroptosis plays a vital role in the development
of diabetes [17].

Functional impairment of the hippocampal region may underpin the comorbidity of
DNP and depression, and neuroinflammation in the hippocampal region is associated with
the development of these events [18]. The purinergic P2X7 receptor, an ATP-gated ion
channel, exhibits widespread expression within the central nervous system [19], including
the hippocampus, and is implicated in the development of various central nervous diseases.
ATP serves as the sole physiological agonist for P2X7R. Under pathological conditions,
such as infections or neurologic disorders, there is a significant elevation in extracellular
ATP concentrations, leading to the activation of the P2X7 receptor [20]. Overstimulation
of the P2X7 receptor is intricately linked with inflammatory processes and can trigger
the activation of inflammasomes [21–23]. Research indicates that stimulation of P2X7R
activates the NLRP3 inflammasome, instigating the maturation and release of IL-1β [24],
and subsequently promoting the pathological process of cellular pyroptosis.

Pyroptosis can enhance inflammation, thereby facilitating the development of chronic
pain [25]. Previous studies conducted in our laboratory as well as others have provided ev-
idence suggesting that certain plant-derived medications, such as emodin, possess the abil-
ity to alleviate neuropathic pain through the inhibition of inflammatory responses [26,27].
Additionally, oxidative stress can induce pyroptosis and promote the development of de-
pression [28]. Oxidative stress and neuroinflammation are closely related to the occurrence
of depression, and antioxidants may be an effective drug for treating major depressive
disorder (MDD) [29]. For example, alpha-lipoic acid, an antioxidant that can effectively
treat distal symmetric painful diabetic neuropathy, may have a potential therapeutic ef-
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fect on depression [30]. Therefore, direct inhibition of neuroinflammation induced by
pyroptosis may be an effective strategy for treating comorbid DNP and MDD. Currently,
there is a scarcity of efficacious medications for the treatment of comorbid DNP and MDD.
Therefore, it is crucial to explore novel therapeutic agents that have promising inhibitory
effects on pyroptosis.

The long non-coding RNA (lncRNA) plays a role in multiple important cellular
functions, including chromatin rearrangement, histone modification, alternative splic-
ing of genes, and regulation of gene expression, thereby mediating various biological
processes [31]. Studies have revealed a correlation between alterations in lncRNA expres-
sion and poorly controlled blood glucose, insulin resistance, accelerated cellular aging,
and inflammation in patients with diabetes [32]. LncRNA serves as a crucial epigenetic
regulatory factor and plays diverse roles in many aspects of gene regulation. Recent data
indicate that certain lncRNAs are dysregulated in major depressive disorder (MDD), sug-
gesting their involvement in the pathogenesis of this disease [33]. Through high-throughput
chip detection, it was observed that the expression of lncRNA MSTRG.81401 ([Gene_id:
MSTRG.81401; Rat(chr17)]) is significantly upregulated in the hippocampal tissue of co-
morbid DNP and MDD rats. Our previous research had found that lncRNA MSTRG.81401
is associated with the pathogenesis of DNP combined with MDD [18]. The focus of the
present study is to ascertain whether lncRNA MSTRG.81401 can affect cellular pyroptosis
and release of inflammatory factors by influencing the expression of the P2X7 receptor in
hippocampal astrocytes, which will provide a new avenue for the treatment of DNP and
MDD comorbidity.

2. Results
2.1. Effect of MSTRG.81401 shRNA on Pain Behavior in Rats with Comorbid DNP and MDD

The changes in pain-related behaviors in rats were monitored using the thermal
withdrawal latency (TWL) and mechanical withdrawal threshold (MWT). Compared to
the control group, the TWL and MWT of rats in the DNP + MDD group were significantly
decreased (p < 0.001). After one week of injecting shRNA against MSTRG.81401, the TWL
and MWT of rats in the DNP + MDD + MSTRG.81401 shRNA group were significantly
increased (p < 0.001) (Figure 1). The data indicate that MSTRG.81401 shRNA has the
potential to alleviate neuropathic pain behaviors with associated comorbid DNP and MDD.
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Figure 1. Effects of MSTRG.81401 shRNA on mechanical withdrawal threshold (MWT) (A), thermal
withdrawal latency (TWL) (B) of comorbid diabetic neuropathic pain (DNP) and major depressive
disorder (MDD) rats. Values are mean ± SEM, n = 6; * p < 0.05, ** p < 0.01 and *** p < 0.001 vs. Ctrl
group; ### p < 0.001 vs. DNP + MDD group.
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2.2. Effect of MSTRG.81401 shRNA on Depressive Behaviors in Rats with Comorbid DNP and MDD

The changes in depression-related behaviors in rats were monitored using the su-
crose preference test (SPT), open-field test (OFT), and forced swim test (FST). Compared
to the control group, the sucrose preference rate and total distance of locomotion in the
DNP + MDD rats were significantly reduced (p < 0.001). Additionally, the immobility time
in the FST was significantly higher in these rats (p < 0.001). After one week of injecting
shRNA of MSTRG.81401, the SPT and OFT levels in the DNP + MDD + MSTRG.81401
shRNA group were significantly higher than those in the DNP + MDD group (p < 0.001).
Furthermore, the immobility time in the FST was significantly reduced in the
DNP + MDD + MSTRG.81401 shRNA group (p < 0.0001) (Figure 2). These data indicate
that shRNA of MSTRG.81401 has a mitigating effect on depression-related behaviors.
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Figure 2. Effects of MSTRG.81401 shRNA on sucrose preference test (SPT) (A), open-field test (OFT)
(B) and forced swimming test (FST) (C) of comorbid DNP and MDD rats; Trajectory maps show the open-
field movement of rats (D). Values are mean ± SEM, n = 6; * p < 0.05, ** p < 0.01, *** p < 0.001 vs. Ctrl
group; ### p < 0.001 vs. DNP + MDD group.

2.3. Evaluating Expression Changes of MSTRG.81401 in Hippocampal Tissue Using Real-Time
Quantitative PCR and In Situ Hybridization

The changes of MSTRG.81401 expression in the hippocampal tissue of control group
and model group (DNP + MDD) rats were detected using real-time quantitative PCR and
in situ hybridization techniques. The qRT-PCR results showed a significant increase in the
level of MSTRG.81401 mRNA in the hippocampus of DNP + MDD rats compared to the
control group (p < 0.001) (Figure 3A). In situ hybridization results also revealed a significant
increase in the expression of MSTRG.81401 in the hippocampal tissue of DNP + MDD rats,
observed in both hippocampal neurons and glial cells (Figure 3B).
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Figure 3. Measurement of MSTRG.81401 expression levels in hippocampus by qPCR (A) and in situ
hybridization (B). Values are mean ± SEM, n = 6; *** p < 0.001 vs. Ctrl group; ### p < 0.001 vs. DNP + MDD
group. Black arrows indicate the immunostaining cells.

2.4. Effects of MSTRG.81401 shRNA on Expression Levels of Hippocampal P2X7 Receptors in
DNP + MDD Rat

The expression of P2X7 receptors in the rat hippocampus was assessed using real-time
quantitative PCR, Western blotting, and immunofluorescence double labeling techniques.
The results demonstrated that the levels of P2X7 mRNA and protein were higher in the
DNP + MDD group compared to the control group. However, these changes were signifi-
cantly reversed after the injection of MSTRG.81401 shRNA (p < 0.01) (Figure 4A–C). The co-
expression of P2X7 and GFAP (a marker for astrocytes) in the hippocampus, as assessed by
immunofluorescence double labeling, is significantly increased in the DNP + MDD group
compared to the normal group (p < 0.01). However, after the injection of MSTRG.81401
shRNA, the co-expression levels of P2X7 and GFAP were significantly decreased in these
rats (p < 0.001) (Figure 4D,E). These findings suggest that MSTRG.81401 shRNA can coun-
teract the upregulated expression of P2X7 receptors in the hippocampus of rats with DNP
and MDD comorbidity.
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Figure 4. Measurements of P2X7 mRNA and protein levels in hippocampus and co-expression of P2X7
with GFAP. The levels of P2X7 mRNA were measured by qRT-PCR (A). P2X7 protein in hippocampus
of experimental rats was assessed by Western blotting (B) and the analyzed results are shown in
(C). Co-expression of GFAP and P2X7 in hippocampus was detected by immunofluorescence double
labeling (D); Blue staining (DAPI) marks the nucleus, green staining (GFAP) marks the astrocyte, red
staining marks P2X7, and the yellow signal is a combination of green and red signals. The scale bar
represents 50 µm. The relative fluorescence intensity levels of GFAP and P2X7R co-expression are
presented in (E). Values are mean ± SEM, n = 6; * p < 0.05, ** p < 0.01, *** p < 0.001 vs. Ctrl group;
## p < 0.01, ### p < 0.001 vs. DNP + MDD group. White arrows indicate the immunostaining cells.

2.5. Effects of MSTRG.81401 shRNA on Pyroptosis Pathway and Inflammatory Cytokines in
Hippocampal of DNP + MDD Rats

The expression levels of key molecules for inflammasome activation/proptosis (NLRP3,
GSDMD, ASC, caspase-1) and pro-inflammatory cytokines (IL-1β, IL-18, and tumor necrosis
factor α (TNF-α)) in the hippocampal tissue were determined using Western blotting. Com-
pared to the control group, these proteins were significantly increased in the DNP + MDD
group (p < 0.05). The upregulated expression levels of these proteins were significantly
relieved after one week of injection with MSTRG.81401 shRNA (p < 0.05) (Figure 5A–M). In
addition, the serum levels of the pro-inflammatory cytokines IL-1β, IL-18, and TNF-α, as
measured by ELISA, were significantly increased in the DNP + MDD group compared to
the control group (p < 0.05). Furthermore, the levels of these pro-inflammatory cytokines
were significantly decreased in the DNP + MDD + MSTRG.81401 shRNA group in com-
parison to the DNP + MDD group (p < 0.01) (Figure 6A–C). These results indicate that
MSTRG.81401 shRNA can inhibit pyroptosis in the hippocampus of DNP+ MDD rats and
reduce the expression of pro-inflammatory cytokines.
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statistical data of relative expression levels of targeted molecules after being normalized by β-actin. 
NLRP3, GSDMD and ASC (A–D); procaspase-1 and cleaved-caspase-1 (E–G); TNF-α (H,I), IL-1β 
(J,K) and IL-18 (L,M). Values are mean ± SEM, n = 6; * p < 0.05, ** p < 0.01, *** p < 0.001 vs. Ctrl group; 
# p < 0.05, ## p < 0.01, ### p < 0.001 vs. DNP + MDD group. 

Figure 5. Expression of inflammasome/pyroptosis pathway proteins (A–G) and inflammatory factors
(H–M) in hippocampus was examined by Western blotting. The bar graphs show the statistical data
of relative expression levels of targeted molecules after being normalized by β-actin. NLRP3, GSDMD
and ASC (A–D); procaspase-1 and cleaved-caspase-1 (E–G); TNF-α (H,I), IL-1β (J,K) and IL-18 (L,M).
Values are mean ± SEM, n = 6; * p < 0.05, ** p < 0.01, *** p < 0.001 vs. Ctrl group; # p < 0.05, ## p < 0.01,
### p < 0.001 vs. DNP + MDD group.
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Figure 6. The serum concentrations of TNF-α (A), IL-18 (B) and IL-1β (C) were assessed using
ELISA. Values are mean ± SEM, n = 6; * p < 0.05, ** p < 0.01, *** p < 0.001 vs. Ctrl group; ## p < 0.01,
### p < 0.001 vs. DNP + MDD group.

3. Discussion

In the present study, we demonstrated through qPCR and in situ hybridization that the
expression of hippocampal lncRNA MSTRG.81401 was significantly increased in rats with
comorbid DNP and MDD, which is consistent with our previous research results [18]. Thus,
lncRNA MSTRG.81401 may serve as a novel therapeutic target for treatment of diabetic
comorbidity. This notion is supported by the results from administering stereotactic
injection of MSTRG.81401 shRNA into the brain, since this maneuver of precise interference
not only inhibited the upregulation of MSTRG.81401 expression in the hippocampus but
also significantly improved both the pain behaviors and depressive behaviors in the rats
with comorbid DNP and MDD.

Studies have demonstrated that lncRNAs can participate in a wide range of biological
functions, such as regulating protein expression and synthesis [34], through various molecu-
lar mechanisms, often involving interactions with one or more partners [35]. RNA-binding
proteins (RBPs) are capable of binding to specific RNA molecules [36], and lncRNAs also
specifically bind to RBPs and influence their associated functions [37]. The interaction
relationship between proteins and RNAs is highly expansive, where each RBP can bind
to multiple RNAs, and a given RNA typically interacts with multiple RBPs [38]. This
relationship can be categorized into protein-focused and RNA-focused [39,40]. The for-
mer aims to identify RNAs that bind to a specific protein of interest, while the latter is to
identify proteins that bind to a specific RNA [35]. Our previous work has demonstrated
that the lncRNA MSTRG.81401 can regulate the expression of P2X4, potentially impacting
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the occurrence and development of some diseases [17]. The primary focus of the present
study is to explore the potential regulatory role of lncRNA MSTRG.81401 on P2X7. The
P2X7 receptor, known for its potent pro-inflammatory effects, can induce inflammasome
activation [41–43]. It is associated with the development of various inflammation-related
diseases, including diabetic complications, neurological disorders, peripheral inflammation,
and cancer [44]. In this study, qRT-PCR and Western blotting have shown that shRNA
of MSTRG.81401 can reduce the upregulated expression of P2X7 in the hippocampus of
rats with comorbid DNP and MDD, pointing to the role of lncRNA MSTRG.81401 in the
pathogenesis of these diabetic complications.

In addition, the results of double immunofluorescence staining have revealed that
the co-expression level of P2X7 and the astrocyte marker GFAP in the hippocampus of the
rats with comorbid DNP and MDD is significantly increased, indicating the activation of
hippocampal astrocytes in these rats. Astrocytes, ubiquitously distributed throughout the
central nervous system, serve a plethora of functions, e.g., encompassing ionic and neuro-
transmitter homeostasis, synaptogenesis or removal, synaptic modulation, neurovascular
coupling, and blood–brain barrier maintenance. Activation of astrocytes may yield dele-
terious consequences on neuronal functionality, implicating neurological and psychiatric
disorders [45–47]. It is highly likely that hippocampal astrocyte activation is involved in
the development of DNP and MDD in view of the essential role of the hippocampus in the
control of emotion related events. Or work suggests that MSTRG.81401 may participate
in the pathogenesis of comorbid DNP and MDD by upregulating the expression of P2X7
and activation of hippocampal astrocytes, since shRNA of MSTRG.81401 can reverse these
changes, as demonstrated by the significant relief of elevated co-expression of P2X7 and
GFAP in rats with comorbid DNP and MDD.

The P2X7-mediated NLRP3 pathway plays a pivotal role in cognitive impairments as-
sociated with various neurodegenerative conditions, such as Alzheimer’s disease, vascular
dementia, and cognitive disorders linked to diabetes [48–50]. Activation of P2X7 facilitates
the assembly of NLRP3 inflammasomes, the intracellular multi-protein complexes that trig-
ger inflammatory responses and pyroptotic cell death via activating the effector molecule
caspase-1. Active caspase-1 subsequently augments the production of pro-inflammatory
cytokines such as IL-1β and IL-18 and activates GSDMD [51]. Research has indicated that
neuroinflammation can enhance the immunoreactivity of NLRP3 inflammasome/caspase-1
in astrocytes, leading to increased release of pro-inflammatory cytokines, which contribute
to cell pyroptosis associated brain injury [52]. To further explore the molecular mecha-
nisms related to the involvement of lncRNA MSTRG.81401 in the pathogenesis of DNP
combined with MDD, we examined the expression levels of molecules related to pyroptosis
and inflammation in rat hippocampal tissues. The results demonstrate that in rats with
comorbid DNP and MDD, there are significant increases in the levels of NLRP3, ASC, and
caspase-1 proteins, accompanied by a concurrent elevation in the concentrations of IL-1β,
TNF-α, and IL-18 proteins within the hippocampus and serum. Moreover, the admin-
istration of MSTRG.81401 shRNA can effectively inhibit these alterations of key players
implicated in the induction of pyroptosis and inflammation. Thus, these findings indicate
that MSTRG.81401 shRNA may alleviate the pain and depression-like behaviors in rats
with comorbid DNP and MDD by suppressing the pyroptosis-inflammation pathway in
hippocampal cells through downregulating P2X7.

In conclusion, our study revealed an elevation of lncRNA MSTRG.81401 in the hip-
pocampus of DNP + MDD rats, which subsequently increased the expression and activa-
tion of the P2X7 receptor. This led to the activation of the NLRP3/caspase-1-mediated
pyroptosis pathway and subsequent inflammation escalation. Moreover, our experiments
demonstrated the use of shRNA against lncRNA MSTRG.81401 was able to suppress these
processes effectively. Therefore, we propose that targeting lncRNA MSTRG.81401 could
serve as a promising therapeutic approach for managing comorbid DNP and MDD. The
knowledge from this work using MSTRG.81401 shRNA may provide a novel avenue to
deal with the comorbidity.
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4. Materials and Methods
4.1. Establishment of Animal Models

Male Sprague–Dawley rats, weighing 200 ± 10 g, were purchased from Changsha
Tianqin Biotechnology Co., Changsha, China. Considering that the presence of estrogen
and the estrus cycle in female mice may influence the outcomes of animal behavior tests,
we specifically chose male Sprague–Dawley rats for our study. The animal experiments
were approved by the Experimental Animal Welfare Ethics Committee of Nanchang Uni-
versity (Approval code: NCULAE-20230128089). The procured male rats were arbitrarily
segregated into four groups equally, namely the standard control group (control group),
DNP combined with MDD group (model group), model rats treated with MSTRG.81401
shRNA group (model + MSTRG.81401 shRNA group), and model rats treated with NC
shRNA group (model + NC shRNA group). The timeline for animal model establishment
is shown in Figure 7. After one week of adaptation to a normal diet, the rats were fed a
high-sugar and high-fat diet for four weeks. The rat models of type 2 diabetes (fasting blood
glucose > 7.8 mmol/L, postprandial blood glucose > 11.1 mmol/L, random blood glucose
> 16.7 mmol/L) were induced by intraperitoneal injection of streptozotocin. DNP rats
were selected based on MWT and TWL measurements, followed by four weeks of chronic
unpredictable mild stress [53]. SPT, FST, and OFT were utilized to identify rats with MDD,
ultimately establishing a rat model with comorbid DNP and MDD. Based on the group
assignments, equivalent amounts of MSTRG.81401 shRNA or NC shRNA were injected
into the lateral ventricles of the rats (with the Bregma point as the origin, X = +1.5 mm,
Y = −0.8 mm, Z = −3.8 mm) using a stereotaxic apparatus. The ratio of shRNA to transfec-
tion reagent was 1:2 (4 µg:8 µL) according to the manufacturer’s instructions.
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4.2. Assessment of Neuropathic Pain Behaviors

Mechanical withdrawal threshold (MWT). The MWT of the rats was ascertained
using a BME-404 type electronic algometer (Institute of Biomedical Engineering, Chinese
Academy of Medical Sciences, Tianjin, China), with a Von-Frey filament diameter of 0.6 mm.
The pressure measurement range of the stimulator was 0.1 to 50 g, with a resolution of
0.05 g. After a 30-min adaptation period in a colorless and transparent glass frame for the
tested rat, the central part of the left hind foot of the rat was stimulated with a Von-Frey
wire. The pressure was gradually increased until the rat lifted its left hind paw, and the
measurement value was recorded. The stimulation interval was 2 min, and the average of
three consecutive measurements was obtained [11].

Thermal withdrawal latency (TWL). The BME-410C thermal stimulation detector men-
tioned above was also utilized to assess TWL. Prior to evaluation, each rat was acclimated
for 30 min on a glass plate within a transparent square bottomless acrylic box. At the com-
mencement of the experiment, a beam of radiant heat was used to stimulate the mid-surface
of the hind paw plantar surface and activate a timer to start the test. The cut-off time for
thermal stimulation was 30 s, and the timer was terminated at the same time when the rat
lifted the hind paw and immediately disconnected the light source. The time displayed on
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the timer was recorded as the TWL, with the unit being s. Testing commenced every 2 min,
with the final average derived from three stable data points [11].

4.3. Assessment of Depressive Behaviors

Sucrose preference test (SPT). SPT is a reward-based test used as an indicator of
anhedonia and depression-like behavior [18]. The test involved a 48-h sucrose drinking
training for the experimental rats. For the first 24 h, each cage of rats was given two bottles
of 2% sucrose solution, followed by one bottle of 2% sucrose solution and one bottle of pure
water for the next 24 h (with a mid-way swap of the two bottles’ positions). Subsequently,
the rats were deprived of food and water for 14–23 h, and the consumption of sucrose
solution and pure water within a one-hour period was measured. Sucrose preference rate
(%) = sucrose consumption/total consumption × 100% [11].

Open-field test (OFT). The OFT should be conducted in a quiet environment, minimiz-
ing human interference. The rats were placed in a dark environment for 30 min to adapt.
Subsequently, the test rats were placed in a black box measuring 40 × 60 × 50 cm. Each rat
was gently placed in the middle of the box, and the total distance traveled by the rat within
5 min was observed and recorded using SMART 3.0 software, measured in centimeters.
Before introducing the next rat into the box, the equipment should be cleaned with a 75%
ethanol solution [11].

Forced swimming test (FST). The rats are placed in a glass cylinder with a height of
80 cm and an inner diameter of 40 cm. The water temperature was approximately 20 ◦C,
with a water depth of 30 cm. The duration of immobility of the rats in the water within a
5-min period (i.e., the time when the rats ceased struggling and floated in a fixed posture)
was recorded and measured in s [11].

4.4. qRT-PCR

The rats were anesthetized by intraperitoneal injection of 10% chloral hydrate solution
(CAS:302-17-0; Shanghai Macklin Biochemical Co., Ltd., Shanghai, China). The freshly
obtained hippocampal tissue was washed with phosphate-buffered saline (PBS) buffer
solution and stored in an RNA holding storage solution. After overnight incubation
at 4 ◦C, the tissue samples were stored at −20 ◦C for long-term use. Prior to use, all
instruments were treated with DEPC. Total RNA was isolated from the tissue samples
using TRIzol Total RNA Reagent (Beijing TransGen Biotech Co., Beijing, China). After
total RNA extraction and reverse transcription, PCR systems were prepared, and the
amplification was detected using a StepOnePlus PCR system (Applied Biosystems, Foster
City, CA, USA). The primer sequences are as follows: β-actin, forward 5′-TAA AGA CCT
CTA TGC CAA CAC AGT-3′ and reverse 5′-GGG GTG TTG AAG GTC TCA AA-3′; P2X7,
forward 5′-GAT GGA TGG ACC CAC AAA GT-3′, and reverse 5′-GCT TCT TTC CCT TCC
TCA GC-3′; and lncRNA MSTRG.81401, forward 5′-AAGCGGCATAATCCAATGTC-3′ and
reverse 5′-CATAAGCAGTTTGGGGCAAT-3′.

4.5. In Situ Hybridization

The in situ hybridization experiment was conducted using the RNASweAMI™ in situ
hybridization DAB detection kit (Servicebio, Wuhan, China). Following the instructions,
tissue paraffin sections were subjected to dewaxing and rehydration. Subsequently, a heat
repair was performed using 1× repair solution, followed by the addition of Proteinase K
working solution to digest the tissue for 20–30 min. After incubating at room temperature
with 3% H2O2 solution for 15 min in the dark, the preheated hybridization solution was
added, and the samples were incubated at 40 ◦C in a preheated hybridization instrument for
30 min. The hybridization solution was discarded, and the preheated target probe mixture
1 in the hybridization solution was added to cover the sample, followed by incubation in
the hybridization instrument at 40 ◦C for 3 h. The target probe mixture 1 in hybridization
solution was discarded, and the sections were sequentially washed with preheated 2 × SSC,
1 × SSC, 0.5 × SSC, and 0.1 × SSC solutions for 5 min each. The sections were gently
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shaken to remove excess liquid, and the preheated target probe mixture 2 in hybridization
solution was added to cover the sample, followed by incubation at 40 ◦C for 45 min. The
target probe mixture 2 in the hybridization solution was discarded, and the sections were
washed using the same method as before. The sections were gently shaken to remove excess
liquid, and the preheated DIG signal probe in hybridization solution was added to cover
the sample, followed by incubation in the hybridization instrument at 37 ◦C for 45 min.
The DIG signal probe in the hybridization solution was discarded, and the sections were
washed using the same method as before. For HRP conjugation with digoxigenin antibody,
the sections were gently shaken to remove excess liquid, and the tissue was covered with
blocking solution and incubated at room temperature for 30 min. The sections were gently
shaken to remove excess liquid, and the sample was covered with anti-DIG (HRP) working
solution, followed by incubation at 37 ◦C for 50 min. After that, the sections were washed
with 1 × PBS four times, each time for 5 min. For DAB staining, DAB chromogen solution
was applied onto the tissue section for 3–5 min, followed by rinsing with distilled water.
The section was stained with hematoxylin solution for 3 min, rinsed with tap water, and
differentiated with hematoxylin differentiation solution for 3–5 s. Then the section was
rinsed with tap water and treated with hematoxylin bluing solution for 3–5 s, followed by
running water rinse and dehydration. For image capture, the section was observed under a
standard bright-field microscope, using an appropriate magnification (20×–40×) objective
lens. The target probe detection results are manifested as brown punctate or clustered
signals within the cell cytoplasm, while the cell nuclei appear as deep blue.

4.6. Western Blotting

After anesthetizing the rats, the hippocampal tissue was isolated and rinsed with
ice-cold PBS. The tissue was then placed in the spherical part of a 2 mL homogenizer and
mixed with RIPA lysis buffer (C1053+; Applygen, Beijing, China), which had been prepared
in advance with proportional amounts of protease inhibitor and phosphatase inhibitor.
The tissue was ground on ice for approximately 30 min until a homogeneous mixture
was obtained without visible clumps. It was then centrifuged at 4 ◦C and 15,000 rpm for
10 min, and the supernatant was transferred to a new centrifuge tube while measuring
its volume. An appropriate amount of protein loading buffer (P51114; TransGen Biotech,
Beijing, China) was added, and the mixed sample was boiled for 5 min. Protein separation
was performed using SDS-PAGE, followed by transfer onto an immunoblotting PVDF mem-
brane (Millipore, Burlington, MA, USA). The membrane was then blocked with 5% skim
milk (1172GR500; BioFroxx, Guangzhou, China) for two hours, followed by washes with
TBST. The primary antibody was then added and incubated overnight at 4 ◦C. Afterward,
the membrane was washed three times with 1 × TBST for 10 min each. The secondary anti-
body (Zhong Shan-Gold Bridge, Beijing, China) was diluted 1:2000 and incubated with the
membrane at room temperature for 2 h. The PVDF membrane was then washed three times
for 10 min each and treated with an application of enhanced chemiluminescent substrate
(FD8020; Fude Biotechnology Co., Ltd., Hangzhou, China). Visualization of bands was
performed using a ChemiDocTM XRS+ system (Bio-Rad, Hercules, CA, USA). Densitometry
analysis of the target bands was conducted using ImageJ 1.53e software (National Institutes
of Health, Bethesda, MD, USA). The relative expression levels of target proteins were
calculated using the corresponding β-actin bands as controls. The primary antibodies used
and their sources are as follows: P2X7 (1:800, APR-008, Alomone, Jerusalem, Israel), NLRP3
(1:800, IMG-6668A, Novus Biologicals, Centennial, CO, USA), GSDMD (1:800, NBP2-33422,
Novus Biologicals, CO, USA), ASC (1:500, DF6304, Affinity Biosciences, Cincinnati, OH,
USA), pro-caspase-1 (1:1000, AB179515, Abcam, Cambridge, UK), cleaved-caspase-1 (1:1000,
AF4022, Affinity Biosciences, OH, USA), IL-1β (1:500, BA14789, Boster, Pleasanton, CA,
USA), TNF-α (1:500, BA0131, Boster, CA, USA), IL-18 (1:500, DF6252, Affinity Biosciences,
OH, USA), and β-actin (1:1000, Zhong Shan-Gold Bridge, Beijing, China).
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4.7. Double Immunofluorescence Labelling

Paraffin sections of hippocampus were taken for dewaxing treatment, washed with
PBS, and fixed with 4% paraformaldehyde. Permeabilization was achieved by incubating
the slices with 0.5% Triton-X 100 (BL-372, Sbjbio, Nanjing, China) for 15 min at 37 ◦C.
Blocking was performed using 1-h incubation at 4 ◦C with goat serum (ZU-9022, Zhong
Shan-Gold Bridge, Beijing, China). The primary antibodies: anti-glial fibrillary acidic
protein (GFAP, 1:200, Biolegend, San Diego, CA, USA) and anti-P2X7 (1:500, Alomone
Labs, Jerusalem, Israel) were incubated overnight at 4 ◦C. Subsequently, the secondary
fluorescent antibodies: goat anti-rabbit tetramethylrhodamine (TRITC) (1:200, Zhong Shan-
Gold Bridge) and goat anti-mouse fluorescein isothiocyanate (FITC) (1:200, Zhong Shan-
Gold Bridge) were incubated in the dark for one hour at 37 ◦C. The cell nuclei were stained
with DAPI (Boster, CA USA), and the slides were sealed with anti-fluorescence quencher
(Boster, CA, USA). Finally, images were captured using a confocal microscope (Olympus,
Tokyo, Japan). The average light density values were calculated using ImageJ software to
describe the staining intensity [11].

4.8. Enzyme-Linked Immunosorbent Assay (ELISA)

The concentrations of IL-1β, TNF-α, and IL-18 in the serum were determined using
respective ELISA kits (Wuhan Shenke Experimental Technology, Wuhan, China). According
to the manufacturer’s instructions, the standard samples (1st to 5th) were first prepared
by proper dilutions. A 96-well plate was set up for blanks (without samples and enzyme
reagents), standards, and samples to be tested, respectively, all in triplicate. The standard
samples were added in a volume of 50 µL, while the test samples were first added in 40 µL
dilution solution and then supplemented with 10 µL of serum to be tested. The plate was
then sealed with a sealing film and incubated at 37 ◦C for 30 min. Afterward, the plate was
washed five times, and 50 µL of enzyme reagent was added to each well. The plate was
sealed again and incubated at 37 ◦C for 30 min. Following another five washes, 50 µL of
color reagent A and 50 µL of color reagent B were added to each well. The plate was gently
shaken to ensure thorough mixing and then incubated at 37 ◦C in the dark for 10 min for
color development. Finally, 50 µL of stop solution was added to terminate the reaction, and
the absorbance (OD value) of each well was measured at 450 nm wavelength.

4.9. Statistical Analysis

The experimental data were analyzed using SPSS 20.0 software (SPSS, Chicago, IL,
USA). The differences in behavioral data were assessed using a two-way analysis of variance
(ANOVA) combined with Tukey’s post hoc test. For the remaining experimental data, a one-
way ANOVA was employed, and pairwise comparisons between groups were conducted
using the LSD test. All data were presented as mean ± standard error for statistical
description, and a p < 0.05 was considered statistically significant.

5. Conclusions

The administration of shRNA targeting lncRNA MSTRG.81401 can inhibit the ex-
pression of hippocampal P2X7, reduce pyroptosis and inhibit the release of inflammatory
cytokines, thus improving pain and depression-like behaviors in rats with comorbid DNP
and MDD. The underlying molecular mechanism may involve the suppression of the acti-
vation of the P2X7/NLRP3/caspase-1 pyroptosis pathway in hippocampal cells, thereby
alleviating inflammatory responses and pathological damage.
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