
Citation: Chuang, T.-D.; Ton, N.;

Rysling, S.; Boos, D.; Khorram, O. The

Effect of Race/Ethnicity and MED12

Mutation on the Expression of Long

Non-Coding RNAs in Uterine

Leiomyoma and Myometrium. Int. J.

Mol. Sci. 2024, 25, 1307. https://

doi.org/10.3390/ijms25021307

Academic Editor: Bruna Scaggiante

Received: 16 December 2023

Revised: 18 January 2024

Accepted: 18 January 2024

Published: 21 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

The Effect of Race/Ethnicity and MED12 Mutation on the
Expression of Long Non-Coding RNAs in Uterine Leiomyoma
and Myometrium
Tsai-Der Chuang 1,2 , Nhu Ton 2, Shawn Rysling 2, Drake Boos 2 and Omid Khorram 1,2,3,*

1 Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
tchuang@lundquist.org

2 The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; nhu.ton@lundquist.org (N.T.);
shawn.rysling@lundquist.org (S.R.); drake.boos@lundquist.org (D.B.)

3 Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California,
Los Angeles, CA 90024, USA

* Correspondence: okhorram@lundquist.org; Tel.: +1-(310)-222-3867

Abstract: The objective of this study was to elucidate the expression of long non-coding RNA
(lncRNA) in leiomyomas (Lyo) and paired myometrium (Myo) and explore the impact of race and
MED12 mutation. Fold change analysis (Lyo/paired Myo) indicated the expression of 63 lncRNAs was
significantly altered in the mutated group but not in the non-mutated Lyo. Additionally, 65 lncRNAs
exhibited an over 1.5-fold change in the Black but not the White group. Fifteen differentially expressed
lncRNAs identified with next-generation sequencing underwent qRT-PCR confirmation. Compared
with Myo, the expression of TPTEP1, PART1, RPS10P7, MSC-AS1, SNHG12, CA3-AS1, LINC00337,
LINC00536, LINC01436, LINC01449, LINC02433, and LINC02624 was significantly higher, while the
expression of ZEB2-AS1, LINC00957, and LINC01186 was significantly lower. Comparison of normal
Myo with diseased Myo showed significant differences in the expression of several lncRNAs. Analysis
based on race and Lyo MED12 mutation status indicated a significantly higher expression of RPS10P7,
SNHG12, LINC01449, LINC02433, and LINC02624 in Lyo from Black patients. The expression of
TPTEP1, PART1, RPS10P7, MSC-AS1, LINC00337, LINC00536, LINC01436, LINC01449, LINC02433,
and LINC02624 was higher, while LINC01186 was significantly lower in the MED12-mutated group.
These results indicate that Lyo are characterized by aberrant lncRNA expression, which is further
impacted by race and Lyo MED12 mutation status.
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1. Introduction

Leiomyomas are benign fibrotic tumors characterized by excess accumulation of ex-
tracellular matrix (ECM), increased cell proliferation, and inflammation [1–3]. Ovarian
steroids play a central role in stimulating their growth and progression [4], and Black
women have a higher prevalence, size, number of tumors, and symptom severity as com-
pared to White and Hispanic women [5–7]. Accumulated genomic studies in leiomyomas
have indicated the existence of genetic heterogeneity in these tumors, including chromoso-
mal rearrangements and gene mutation such as HMGA2 (high-mobility group AT-hook
2), COL4A5/6 (collagen, type IV, alpha 5 and alpha 6), MED12 (mediator complex subunit
12), and FH (fumarate hydratase), which may be related to leiomyoma development and
progression [8–10]. Recent studies have focused on the role of MED12 mutation in the
pathophysiology of uterine leiomyomas [11–14]. MED12 serves as a crucial element within
the mediator complex, which, in humans, consists of 30 subunits. This complex plays a vital
role in the transcription process, acting as a transcription coactivator for RNA polymerase
II and participating in the regulation of a diverse set of genes [15,16]. Dysregulation of
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MED12 is found in many human cancers [16]. Somatic MED12 mutation in exon 2 occurs
at a frequency of 60 to 80% in leiomyomas and has a functional role in their initiation
and progression, potentially through its influence on many important pathways, includ-
ing the Wnt/β-catenin signaling, hedgehog signaling, sex steroid receptor signaling, and
transforming growth factor (TGF)-β receptor signaling pathways [12–14,17,18]. We have
previously reported on the differential expression of protein-coding genes, some of which
are influenced by race and MED12 mutation of the tumor [19,20].

Significant evidence has accumulated indicating a role for lncRNAs in tumorige-
nesis [21,22], and recent profiling studies using next-generation RNA sequencing have
revealed the aberrant expression of non-coding RNA (ncRNA), including lncRNAs, in
leiomyomas [23–29]. LncRNAs are single-strand RNA molecules >200 nucleotides in length
and transcribed from different genomic loci representing bidirectional, intergenic, intronic,
sense, or antisense regions of protein-coding genes [30,31]. LncRNAs can modulate gene
expression through various mechanisms, including functioning as a “molecular sponge”
or competing endogenous RNA (ceRNA), and through epigenetic mechanisms such as
alterations in chromatin structure, recruitment of epigenetic enzymes, chromatin looping,
recruitment of transcription factors or RNA polymerase II, and the release of transcriptional
repressors [22,32–35]. In previous studies, we reported on the differential expression of
lncRNAs and sncRNAs, which have 17–20 nucleotides and are further classified as microR-
NAs (miRNAs, 17–22 nucleotides), small nuclear/nucleolar RNA (snRNA and snoRNA,
70–120 nucleotides), and PIWI-interacting RNA (piRNA, 26–33 nucleotides) [25,36] in a
small set of specimens [23,25]. Furthermore, we reported that a special class of long non-
coding RNAs, the super-enhancer lncRNAs (SE-lncRNAs), which are transcribed from
super-enhancer (SE) genomic loci forming an RNA:DNA:DNA triplex with multiple anchor
DNA sites within their sequence, are differentially expressed in Lyo [29]. Functionally,
in in vitro studies, we demonstrated the role of lncRNAs MIAT and XIST in Lyo extra-
cellular matrix accumulation through their sponge effects on miR-29c- and miR-200c-,
respectively [26,27]. The objective of this study was to elucidate the expression of lncRNA
in a large sample set of Lyo and matched Myo specimens and to determine the role of any
MED12 mutation of Lyo and race on their expression.

2. Results
2.1. Differential Expression of Race/Ethnicity- and MED12 Mutation-Associated Long
Non-Coding RNA Transcripts in Leiomyoma and Matched Myometrium

To elucidate the differential expression profile of lncRNAs in Lyo and paired Myo, we
performed next-generation RNA sequencing (NGS) using RNA isolated from 19 paired
leiomyomas. Following normalization, Hierarchical clustering and TreeView analysis re-
sulted in identification of 4135 lncRNAs whose expression was altered, with increased
expression of 1174 lncRNAs and decreased expression of 748 lncRNAs by 1.5-fold or greater
in Lyo as compared to paired Myo (Figure 1A). After filtering through the volcano plot
analysis, 1068 lncRNAs exhibited upregulation, while 718 lncRNAs displayed downregula-
tion in leiomyomas as compared to their corresponding myometrium (fold change ≥ 1.5
and p < 0.05; Figure 1B). Following this analysis, principal component analysis (PCA) was
conducted to assess the similarity in RNA transcript patterns between the two groups. The
data’s high reliability was confirmed through k-mean analysis, which clustered the samples
accordingly (Figure 1C).

We proceeded to investigate the variance in expression of lncRNAs between specimens
with MED12 mutations and those without mutations. This analysis, performed as fold
change (Leiomyoma/paired Myometrium), resulted in the identification of 3443 lncRNAs
with altered expression, of which, the expression of 870 lncRNAs was increased, while
the expression of 746 lncRNAs was decreased by 1.5-fold or greater in MED12-mutated
specimens as compared with non-mutated specimens. Hierarchical clustering and TreeView
analysis effectively categorized these transcripts into distinct groups (Figure 2A). Addition-
ally, we identified 63 lncRNAs that exhibited more than 1.5-fold change (either up or down)
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specifically in the mutated specimens and with no change in the non-mutated specimens, as
depicted in the heatmap (Figure 2B). The Gene Ontology (GO) and KEGG (Kyoto Encyclo-
pedia of Genes and Genomes) pathway enrichment analysis for these 63 uniquely expressed
lncRNAs in the mutated group indicated predominant involvement in cancer-associated
cell signaling regulation (Figure 2C).
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Figure 1. Examination of the heterogeneity and transcriptomic changes of lncRNAs in leiomyomas
compared to the myometrium. (A) Hierarchical clustered heatmap analysis was performed, illus-
trating the differentially expressed lncRNAs (fold change ≥ 1.5, p < 0.05) in 19 paired leiomyomas
and their corresponding myometrium. The color gradient reflects gene expression as z-scores. (B) A
volcano plot highlights upregulated (red; n = 1068) and downregulated genes (blue; n = 718) with a
false discovery rate (FDR) p-value < 0.05. (C) Principal component analysis (PCA) plot of RNA-seq
results from paired leiomyoma and myometrium samples (n = 19). Each dot represents a single
sample, with myometrial samples (Myo) shown in black and leiomyoma samples (Lyo) in red.

The comparison of the differential expression of lncRNAs based on race resulted in
the identification of 3457 lncRNAs with altered expression, of which the expression of
851 lncRNAs was increased, while the expression of 876 lncRNAs was decreased by 1.5-fold
or greater in the Black group as compared with the White group. Hierarchical clustering and
TreeView analysis effectively categorized these lncRNAs into distinct groups (Figure 3A).
We identified 65 lncRNAs that exhibited more than a 1.5-fold change (either up or down)
specifically in the Black but not the White group, as illustrated in the heatmap (Figure 3B).
The Gene Ontology (GO) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway
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enrichment analysis for these 65 lncRNAs revealed that these lncRNAs were predominantly
involved in the regulation of cell cycle and several cell-signaling pathways (Figure 3C).
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Figure 2. Examination of transcriptomic heterogeneity in lncRNAs within paired specimens based on
MED12 mutation status (A) was performed utilizing Hierarchical clustered heatmap analysis; fold
change (Leiomyoma/paired Myometrium) was assessed for MED12-mutated (n = 11) compared to
non-mutated (n = 8) groups (fold change ≥ 1.5, p < 0.05). The color gradient reflects gene expression
as z-scores. (B) Heatmap highlights the 63 enriched genes (Leiomyoma/paired Myometrium) present
in the MED12-mutated (n = 11) but absent in the non-mutated (n = 8) groups (fold change ≥ 1.5,
p < 0.05). The color gradient represents gene expression levels as z-scores. (C) Gene Ontology (GO)
and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis reveals the
interactive set of pathways associated with these 63 lncRNAs.



Int. J. Mol. Sci. 2024, 25, 1307 5 of 17Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 5 of 17

Figure 3. (A) Hierarchical clustered heatmap analysis, assessed as fold change (Leiomyoma/paired 
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< 0.05). The color gradient illustrates gene expression as z-scores. (B) Heatmap depicts the 65 en-
riched transcripts (Leiomyoma/paired Myometrium) found in the Black group (n = 12) but not in
the White group (n = 7) (fold change ≥ 1.5, p < 0.05). The color gradient represents gene expression 
levels as z-scores. (C) Gene Ontology (GO) and KEGG (Kyoto Encyclopedia of Genes and Genomes) 
pathway enrichment analysis reveals the interactive set of pathways associated with these 65 
lncRNAs.

2.2. Validation of Race/Ethnicity- and MED12 Mutation-Associated Long Non-Coding RNA 
transcripts in Leiomyoma and Matched Myometrium

We next selected 15 novel lncRNAs from the NGS analysis and confirmed their ex-
pression by qRT-PCR in 10 non-diseased myometrial samples and in 69 Lyo with their 
matched Myo from premenopausal patients, including the same tissues that were used 
for RNAseq. Among these 15 lncRNAs, the expression of TPTEP1, PART1, RPS10P7, MSC-
AS1, SNHG12, CA3-AS1, LINC00337, LINC00536, LINC01436, LINC01449, LINC02433 and 
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Figure 3. (A) Hierarchical clustered heatmap analysis, assessed as fold change (Leiomyoma/paired
Myometrium) comparing the Black group (n = 12) with the White group (n = 7) (fold change ≥ 1.5,
p < 0.05). The color gradient illustrates gene expression as z-scores. (B) Heatmap depicts the 65 enriched
transcripts (Leiomyoma/paired Myometrium) found in the Black group (n = 12) but not in the White
group (n = 7) (fold change ≥ 1.5, p < 0.05). The color gradient represents gene expression levels as
z-scores. (C) Gene Ontology (GO) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway
enrichment analysis reveals the interactive set of pathways associated with these 65 lncRNAs.

2.2. Validation of Race/Ethnicity- and MED12 Mutation-Associated Long Non-Coding RNA
transcripts in Leiomyoma and Matched Myometrium

We next selected 15 novel lncRNAs from the NGS analysis and confirmed their expres-
sion by qRT-PCR in 10 non-diseased myometrial samples and in 69 Lyo with their matched
Myo from premenopausal patients, including the same tissues that were used for RNAseq.
Among these 15 lncRNAs, the expression of TPTEP1, PART1, RPS10P7, MSC-AS1, SNHG12,
CA3-AS1, LINC00337, LINC00536, LINC01436, LINC01449, LINC02433 and LINC02624 was
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significantly higher, while the expression of ZEB2-AS1, LINC00957 and LINC01186 was
significantly lower in Lyo as compared to matched Myo (Figure 4). When Lyo levels were
compared with Myo from non-diseased uteri, the same pattern of change was noted, al-
though the degree of overexpression was more exaggerated for TPTEP1, PART1, RPS10P7,
MSC-AS1, SNHG12, LINC00536, LINC01436, and LINC01449 (Figure 4). The comparison
of lncRNA levels in Myo from diseased uteri with Myo from non-diseased uteri revealed
overexpression of TPTEP1, RPS10P7, MSC-AS1, SNHG12, ZEB2-AS1, LINC01436, and
LINC01449 and reduced expression of CA3-AS1, LINC00337, LINC02433, and LINC02624
in the diseased Myo (Figure 4). When lncRNA levels were compared as fold change
(Leiomyoma/paired Myometrium) in MED12-mutated and non-mutated specimens and
Lyo from Black and White patients, the expression of TPTEP1, PART1, RPS10P7, MSC-AS1,
LINC00337, LINC00536, LINC01436, LINC01449, LINC02433, and LINC02624 was found
to be significantly higher, while the expression of LINC01186 was significantly lower in
the MED12-mutated group (Figure 5). Moreover, RPS10P7, MSC-AS1, and LINC01186
expression were significantly altered in the MED12-mutated group but minimally changed
in the non-mutated group (Figure 5). The expression analysis based on race revealed
that the expression of RPS10P7, SNHG12, LINC01449, LINC02433, and LINC02624 was
significantly higher in Lyo from Black women as compared with white women (Figure 6).
Among these lncRNAs, the expression of RPS10P7 and SNHG12 in Lyo, as compared with
their matched myometrium, was significantly higher in the Black group but minimally
altered in the White group (Figure 6). Further comparisons among the three race/ethnicity
groups were made based only on expression levels in the Lyo and in the Myo (Figure 7). A
comparison of leiomyoma expression of lncRNAs revealed significantly higher levels of
LINC00536 in the Black and Hispanic as compared to the White group and significantly
higher levels of LINC01186 in the Hispanics as compared to the White group (Figure 7). A
comparison of myometrial expression of lncRNAs revealed significantly lower levels of
SNHG12 in the Black as compared to the White group and significantly higher ZEB2-AS1
and LINC01186 expressed in the Hispanics as compared to the White group (Figure 7). A
summary of the analysis from Figures 4–7 is shown in Table 1.
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69 leiomyomas with their paired myometrium by qRT-PCR. The results are presented as mean ± SEM,
with p values (* p < 0.05; ** p < 0.01; *** p < 0.001) indicated by corresponding lines.
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Table 1. LncRNAs selected based on the RNAseq analysis according to race and MED12 mutation status.

Symbol Lyo vs. Myo
MED12-Mut(Lyo/Myo)

vs.
MED12-WT(Lyo/Myo)

Black(Lyo/Myo) vs.
White(Lyo/Myo)

Black(Myo) vs.
White(Myo)

Black(Lyo) vs.
White(Lyo)

TPTEP1 Up (p < 0.001) Up (p < 0.01) No Significance No Significance No Significance
PART1 Up (p < 0.001) Up (p < 0.05) No Significance No Significance No Significance

RPS10P7 Up (p < 0.001) Up (p < 0.01) Up (p < 0.05) No Significance No Significance
MSC-AS1 Up (p < 0.001) Up (p < 0.001) No Significance No Significance No Significance
SNHG12 Up (p < 0.001) No Significance Up (p < 0.05) Down (p < 0.05) No Significance
CA3-AS1 Up (p < 0.001) No Significance No Significance No Significance No Significance
ZEB2-AS1 Down (p < 0.001) No Significance No Significance No Significance No Significance
LINC00337 Up (p < 0.05) Up (p < 0.05) No Significance No Significance No Significance
LINC00536 Up (p < 0.001) Up (p < 0.01) No Significance No Significance Up (p < 0.05)
LINC00957 Down (p < 0.001) No Significance No Significance No Significance No Significance
LINC01186 Down (p < 0.001) Down (p < 0.01) No Significance No Significance No Significance
LINC01436 Up (p < 0.001) Up (p < 0.001) No Significance No Significance No Significance
LINC01449 Up (p < 0.001) Up (p < 0.001) Up (p < 0.05) No Significance No Significance
LINC02433 Up (p < 0.001) Up (p < 0.05) Up (p < 0.05) No Significance No Significance
LINC02624 Up (p < 0.01) Up (p < 0.01) Up (p < 0.05) No Significance No Significance

Based on their extensive interaction with miRNAs, we selected two lncRNAs, SNHG12
and LNC01449, for functional analysis using the Cytoscape software version 3.10.1 (Figure 8).
This analysis was constructed based on ENCORI/starBase (Encyclopedia of RNA Interac-
tomes) [37,38] and demonstrated the highlighted associations between target transcripts
which were predominantly involved in the regulation of cell signaling and glycolysis. The
analysis showed the involvement of many proteins such as MAP3K7, RPS6KB1, PPP2R2A,
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RPS6KB2, and HK2 in this interactive network, all of which are well established in leiomy-
oma pathogenesis [39–43], and other proteins such as ULK1, ELAVL1, SHC3, INSR, and
IRS2, which are novel and require further investigation.
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3. Discussion

Our present study indicates that lncRNAs are aberrantly expressed in Lyo, confirming
our earlier study, which was based on a small sample set [23]. We identified a set of
lncRNAs which were altered significantly in MED12-mutated Lyo and in Lyo from Black
women, but minimally changed in non-mutated Lyo, and in Lyo from White women. We
selected 15 lncRNAs (TPTEP1, PART1, RPS10P7, MSC-AS1, SNHG12, CA3-AS1, LINC00337,
LINC00536, LINC01436, LINC01449, LINC02433, LINC02624, ZEB2-AS1, LINC00957, and
LINC01186) from the NGS analysis and detected their expression with qRT-PCR in 10 non-
diseased myometrial and 69 paired leiomyoma specimens. Our results confirmed that
the expression of these lncRNAs was consistent with the NGS analysis, and that their
expression was affected by the presence of MED12 mutation (TPTEP1, PART1, RPS10P7,
MSC-AS1, LINC00337, LINC00536, LINC01436, LINC01449, LINC02433, LINC02624, and
LINC01186) and race (RPS10P7, SNHG12, LINC01449, LINC02433, and LINC02624).

A strength of this study was that comparisons of lncRNA levels were made both with
matched Myo from the diseased uteri and with non-diseased Myo in patients not using
hormonal medications prior to surgery. A recent study [44] suggested the use of Myo from
non-diseased uteri to compare with Lyo is more advantageous than a comparison made
with diseased Myo because of potential effects of leiomyomas on the adjacent Myo. Our
data showed that the comparison of gene expression between Lyo and adjacent Myo is
similar to the comparison with non-diseased Myo, although for the upregulated lncRNAs,
the magnitude of change was more pronounced for most lncRNAs when comparison
was made with non-diseased Myo. This finding, along with the significant differences in
expression of several lncRNAs in diseased versus non-diseased Myo, supports the notion
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that the presence of Lyo in and of itself could potentially affect the expression of lncRNA in
the adjacent Myo, as previously suggested [44]. However, due to immense heterogeneity
in fibroid tissues and our finding demonstrating a similar pattern of differential expression
for most lncRNAs using diseased versus non-diseased Myo, the commonly used practice
of comparing gene expression levels in Lyo with adjacent Myo is supported.

LncRNAs have been demonstrated to regulate gene expression at various levels
through their interaction with miRNAs, mRNAs, DNA, and protein and by acting as
epigenetic regulators in stem cell pluripotency and specific lineage commitment [45,46].
In a cell- and tissue-specific fashion, miRNAs and lncRNAs employ these mechanisms
to regulate diverse cellular activities under physiological conditions. Additionally, they
play a pivotal role in an extensive array of disorders, encompassing tumorigenesis, tumor
progression, invasion, and metastasis, as well as cancer diagnosis and prognosis [33,45,46].
The functional role of lncRNAs in leiomyoma pathogenesis has recently been explored [28].
Cao et al. reported on the upregulation of the lncRNA H19 in leiomyomas and its association
with elevated HMGA2 expression. Because of this linkage, the expression of several genes
associated with cell proliferation, inflammation, and extracellular matrix (ECM) deposition
was altered [47]. Our recent findings revealed increased expression levels of the lncRNAs
XIST (X-inactive specific transcript) and MIAT (myocardial infarction-associated transcript)
in leiomyomas [26,27]. These lncRNAs function as sponges for miR-29c and miR-200c,
leading to an upregulation of their respective targets, which include COL3A1, COL1A1,
FN1, and TGF-β3 [26,27]. In addition, the expression of MIAT correlated with the MED12
mutation status of the leiomyomas, and knock down of MIAT in leiomyoma smooth muscle
cells’ spheroids blocked the effects of TGF-β3 on the induction of COL1A1 and COL3A1
expression [27].

Several of the lncRNAs identified in this study have been shown to be involved in
tumorigenesis. Among these, TPTEP1 was reported to suppress diabetic retinopathy by
reducing oxidative stress [48], inhibiting stemness and radio resistance [49], and it exhibited
substantial antitumor effects in several cancers, including hepatocellular carcinoma (HCC)
and non-small-cell lung cancer (NSCLC) [50,51]. In addition, recent studies indicated that
the expression level of CA3-AS1 was decreased in gastric cancer and colorectal cancer [52,53].
The overexpression of CA3-AS1 suppressed the proliferation, invasion, and metastatic
capabilities of both gastric cancer and colorectal cancer cells through modulation of the miR-
93/BTG3/PTEN axis [52,53]. In contrast to the findings in malignant tumors, leiomyomas
which are benign expressed higher levels of TPTEP1 and CA3-AS1. PART1, also known as
prostate androgen-regulated transcript 1, was identified in exosomes and affected tumor
progression via the miR-17-5p/SOCS6 axis and miR-302a-3p/CDC25A axis [54,55]. Another
lncRNA, MSC-AS1, promoted cancer progression in gastric, colorectal, hepatocellular,
melanoma, and ovarian cancer [56–61], and was shown to up-regulate CDK14 expression
by acting as a molecular sponge for miR-29b-3p [62]. Our group and others have reported
that leiomyomas, as compared with matched myometrium, have decreased expression of
the miR-29 family, which plays essential roles in regulating the ECM and cell proliferation
through epigenetic mechanisms [63–65]. SNHG12, also known by other names (LNC04080,
ASLNC04080, C1orf79, LINC00100, PNAS-1230), was overexpressed in several cancers,
including non-small-cell lung cancer, renal cell carcinoma, and prostate cancer, and its
levels correlated with tumor size, progression, and metastasis [66]. This lncRNA was found
to impair DNA damage repair, leading to lesional DNA damage, vascular senescence,
and accelerated atherosclerosis [66]. The dysregulation of this lncRNA in Lyo might have
relevance to its pathogenesis, as prior studies have shown the aberrant expression of DNA
repair enzymes and genomic instability in Lyo [67].

Several lncRNAs LINC00337, LINC00536, and LINC01436, which were overexpressed
in Lyo in a MED12 mutation-dependent manner, have been shown to have a role in tumori-
genesis in other tissues. LINC00337 was upregulated in pancreatic ductal adenocarcinoma
(PDAC) and facilitated PDAC cell proliferation, along with cell cycle transition, by acting
as an E2F1 co-activator through its binding to E2F1 [68]. LINC00337 acts as an oncogenic
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lncRNA via its effect on EZH2, to repress p21 and promote gastric cancer cell prolifera-
tion [69], and through the miR-1285/YTHDF1 axis, to promote the progression of lung
adenocarcinoma [70]. In both colorectal cancer (CRC) and non-small-cell lung cancer
(NSCLC), this lncRNA plays a role in promoting tumorigenesis, angiogenesis, and tumor
progression. It achieves this by recruiting DNMT1 to suppress the expression of CNN1 and
TIMP2 [71,72]. Thus, LINC00337 may be involved in the stimulation of cell proliferation in
leiomyomas, since leiomyomas express higher levels of E2F1, EZH2, and DNMT1 [65,73].
LINC00536 has been demonstrated to enhance the development and progression of breast
cancer through the miR-214/ROCK1 axis and the miR-4282/CENPF axis [74,75]. Addition-
ally, it plays a role in promoting hepatocellular carcinoma via the miR-203b/VEGFA axis
and contributes to the progression of bladder cancer by modulating the Wnt3a/β-Catenin
signaling pathway [76,77]. Leiomyomas are also characterized by activation of the WNT/β-
catenin pathway, which is correlated with MED12 mutation status [13]. LINC01436 has been
shown to be involved in gastric cancer cell proliferation, apoptosis, metastasis, and radio
resistance through upregulation of MAPK1 and FBOX11 via sponging and epigenetically si-
lencing miR-585 [78,79]. Thus, LINC01436 may be involved in leiomyoma progression. Our
NGS analysis and in vitro confirmation showed the expression of ZEB2-AS1, LINC00957,
and LINC01186 was significantly lower in Lyo as compared to paired Myo. The lncRNA,
ZEB2-AS1, is a natural antisense transcript that corresponds to the 5’ UTR of zinc finger
E-box binding homeobox 2 (ZEB2). It has been reported to promote tumorigenesis and
cancer progression in numerous types of cancer, including gastric, lung, colon, pancreatic,
and breast cancer [80]. In an in vivo mouse model of cardiac hypertrophy, the expression
levels of ZEB2-AS1 were elevated, and they altered the progression of cardiac hypertrophy
through downregulation of PTEN (phosphatase and tensin homolog) [81]. Our results
showed the expression of LINC01186 was downregulated in leiomyomas. Recent studies
also demonstrated a lower level of LINC01186 in lung cancer and papillary thyroid carci-
noma (PTC). This lncRNA was involved in the regulation of EMT and cell proliferation,
migration, and invasion in both cancer cells [82,83].

More recently, a role for MED12 in tumor initiation has been proposed, as evidenced
by the development of leiomyoma-like tumors in transgenic mice with a uterine conditional
mutation in MED12 [8,84]. Leiomyomas with a MED12 mutation are smaller in size and are
frequently located subserously [85]. MED12 mutation-negative leiomyomas display copy
number alterations in several other mediator complex subunits, such as MED18, MED8,
CDK8, and the long non-coding RNA, RNA340 (CASC15). Mutation in the MED12 gene
has been shown to disrupt its ability to activate cyclin C-dependent CDK8 [86] and its
CDK19 stimulatory activity [87]. Furthermore, the silencing of MED12 in the immortalized
human uterine fibroid cell line (HuLM) inhibited Wnt/β-catenin signaling and sex steroid
receptor signaling, as well as proteins associated with cell cycle and fibrosis [13]. Our
results demonstrated that the expression of several lncRNAs was affected by the presence
of a MED12 mutation, which could be contributing to the differences in tumor size and
progression in mutated leiomyomas as compared with non-mutated leiomyomas and
merits further investigation.

Race plays an important role in leiomyoma severity and progression, with Black pa-
tients having larger-size and more numerous leiomyomas, a greater severity of symptoms,
and earlier onset [2,88]. Previous research has presented evidence elucidating potential
mechanisms contributing to the racial disparity in tumor development and progression,
including a higher incidence of vitamin D deficiency in Black patients [89,90]; higher levels
of aromatase (CYP19), progesterone receptor A (PR-A), and lower levels of retinoic acid
receptor-α (RARA) [89,90]; and increased polymorphism of the genes ER (estrogen recep-
tor), CYP17 (cytochrome P450C17α), and COMT, which are involved in estrogen synthesis,
in tumors from Black women [89,90]. Recent reports from our laboratory have revealed
a dysregulation of protein-coding and noncoding genes in a race-dependent manner in
Lyo, including genes related to tryptophan metabolism [91,92] and SE-lncRNAs/mRNA
pairs [29]. In addition, several miRNAs, including miR-200c, miR-21, miR-23b, and Let-7s,
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were dysregulated significantly in a race-specific manner in leiomyomas [93,94]. In the
present study, we showed a race-dependent expression of several lncRNAs, which could
be a contributing factor to differences in the expression of protein-coding genes and the
racial disparity in fibroid symptomatology.

In summary, our data provide a comprehensive expression profile of lncRNAs in
leiomyomas and demonstrate the influence of race/ethnicity and MED12 mutation on
their expression, indicating their relevance to fibroid pathogenesis. Our findings also
revealed that the differential expression pattern of lncRNAs was similar when comparing
lncRNA expression levels in Lyo with adjacent matched Myo versus non-diseased Myo.
The aberrant expression of lncRNAs in Lyo through various mechanisms such as interaction
with miRNAs, mRNAs, DNA, and proteins could influence the expression of protein-coding
genes associated with cell proliferation, ECM accumulation, and inflammation in Lyo.

4. Materials and Methods
4.1. Myometrium and Leiomyoma Tissues Collection

To reduce the variance among Lyo, tumors between 3 to 5 cm in diameter and with
intramural location were obtained from premenopausal women (n = 79; aged 30–54) who
underwent hysterectomy for symptomatic Lyo at Harbor-UCLA Medical Center. Normal
myometrium was also obtained from surgical cases performed for non-Lyo indications
such as prolapse and other urogynecologic disorders. Both gross, histologic and ultrasound
studies did not show the presence of Lyo in these 10 specimens. Prior approval from
the Institutional Review Board (18CR-31752-01R) at the Lundquist Institute was obtained.
Informed consent was obtained from all the patients participating in the study who were
not taking any hormonal medications for at least 3 months prior to surgery. The tissues were
snap-frozen and stored in liquid nitrogen for further analysis as previously described [25,95].
The racial distribution for the 10 non-diseased myometrial specimens was White (N = 1)
and Hispanic (N = 9), and for the 69 pairs was White (n = 8); Black (n = 24); Hispanic
(n = 33), and Asian (n = 4).

4.2. MED12 Mutation Analysis

Genomic DNA from leiomyomas and paired myometrial specimens from premenopausal
women (n = 69) was extracted from 100 mg of freshly frozen tissue using MagaZorb DNA
Mini-Prep Kit (Promega, Madison, WI, USA) according to the manufacturer’s protocol.
PCR amplification and Sanger sequencing (Laragen Inc. Culver City, CA, USA) was per-
formed to investigate the MED12 exon 2 mutations using the primer sequences in the 5′–3′

direction: sense, GCCCTTTCACCTTGTTCCTT and antisense, TGTCCCTATAAGTCTTC-
CCAACC, as previously described [27]. The 19 pairs of tissues used for next-generation
RNA sequencing were from 11 MED12 mutation-positive and 8 MED12 mutation-negative
leiomyomas. The mutation analysis of the specimens (n = 69) indicated that 46 leiomyomas
had the MED12 mutations (46/69 pairs; 66.7%) with no mutations in the myometrium.
Missense mutations in MED12 exon 2 were the most frequent alteration (38/46 pairs),
followed by in-frame insertion–deletion type mutations (8/46 pairs). The missense mu-
tations in exon 2 included c.130G>C (p.Gly44Arg) (5/38 pairs), c.130G>A (p.Gly44Ser)
(7/38 pairs), c.130G>T (p.Gly44Cys) (2/38 pairs), c.131G>C (p.Gly44Ala) (3/38 pairs),
c.131G>A (p.Gly44Asp) (15/38 pairs), c.131G>T (p.Gly44Val) (5/38 pairs), and c.128A>C
(p.Gln43Pro) (1/38 pairs). The MED12 mutation rate was 55.6% (5/9 pairs) in White
patients, 82.6% in Black (19/23 pairs), and 60.6% in the Hispanic group (20/33 pairs).

4.3. RNA Sequencing and Bioinformatic Analysis

Total RNA was extracted from leiomyoma and matched myometrium (n = 19) using
TRIzol (Thermo Fisher Scientific Inc., Waltham, MA, USA). RNA concentration and in-
tegrity was determined using a Nanodrop 2000c spectrophotometer (Thermo Scientific,
Wilmington, DE, USA) and Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara,
CA, USA) as previously described [29,96]. Samples with RNA integrity numbers (RIN)
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greater than or equal to 9 were used for library preparation. One microgram of total RNA
from each tissue was used to produce strand-specific cDNA libraries using the Truseq (Illu-
mina, San Diego, CA, USA) according to manufacturer’s instructions. The RNA sequencing
was carried out at Novogene Corporation Inc., (Sacramento, CA, USA) and bioinformatics
analysis was performed as previously described [19,20]. To visualize the strength of dif-
ferential gene expression, the Hierarchical clustering and TreeView graph, volcano plot,
principal component analysis (PCA) plot, and the Gene Ontology (GO) and KEGG (Kyoto
Encyclopedia of Genes and Genomes) Pathway Enrichment Analysis plot were made using
Flaski and NcPath [97,98], and the interactive network of lncRNA-miRNA-mRNA was
analyzed and made with the ENCORI/starBase (Encyclopedia of RNA Interactomes) and
Cytoscape software Version 3.10.1 [37,38,99]. Overall, all the differential gene expressions
were acceptable for subsequent statistical analysis. The RNA sequencing data is deposited
in Gene Expression Omnibus (GEO) database with accession number (GSE224991).

4.4. Quantitative RT-PCR

Briefly, 2 µg of RNA was reverse transcribed using random primers for selected genes
according to the manufacturer’s guidelines (Applied Biosystems, Carlsbad, CA, USA).
Quantitative RT-PCR was carried out using SYBR gene expression master mix (Applied
Biosystems) as previously described [25]. The expression levels of selected genes were
quantified using Invitrogen StepOne System, with FBXW2 (F-box and WD repeat domain
containing 2) used for normalization [100]. All reactions were run in triplicate, and relative
mRNA expression was determined using the comparative cycle threshold method (2−∆∆Cq),
as recommended by the supplier (Applied Biosystems). Values were expressed as fold
change compared to the control group. The primer sequences in the 5′–3′ direction used
are listed in Supplementary Table S1.

4.5. Statistical Analysis

Throughout the text, results are presented as mean ± SEM and analyzed with PRISM
software (version 10.1.2, Graph-Pad, San Diego, CA, USA). Dataset normality was deter-
mined using the Kolmogorov–Smirnoff test. The data presented in this study was not
normally distributed and therefore non-parametric tests were used. Comparisons involv-
ing two groups were analyzed using the Mann–Whitney test (Figure 5). Kruskal–Wallis
test was used for comparisons involving multiple groups (Figures 4, 6 and 7). Statistical
significance was established at p < 0.05.
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