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Abstract: Polycystic ovary syndrome (PCOS) is the most common endocrine condition in women
of reproductive age, and several risk factors found in PCOS are associated with an increased risk of
Alzheimer’s disease (AD). Proteins increased in AD have been reported to include fibronectin (FN)
fragments 3 and 4 (FN1.3 and FN1.4, respectively) and ApoE. We hypothesized that Alzheimer-related
proteins would be dysregulated in PCOS because of associated insulin resistance and obesity. In this
comparative cross-sectional analysis, aptamer-based SomaScan proteomic analysis for the detection
of plasma Alzheimer-related proteins was undertaken in a PCOS biobank of 143 women with PCOS
and 97 control women. Amyloid precursor protein (APP) (p < 0.05) and amyloid P-component (APCS)
(p < 0.001) were elevated in PCOS, while alpha-synuclein (SNCA) (p < 0.05) was reduced in PCOS.
Associations with protective heat shock proteins (HSPs) showed that SNCA positively correlated
with HSP90 (p < 0.0001) and HSP60 (p < 0.0001) in both the PCOS and control women. Correlations
with markers of inflammation showed that APCS correlated with interleukin 6 (IL6) (p = 0.04), while
Apolipoprotein (Apo) E3 correlated with TNF-alpha (p = 0.02). FN, FN1.3, FN1.4 and ApoE were all
elevated significantly (p < 0.05). An AD-associated protein pattern with elevated FN, FN1.3, FN1.4
and ApoE was found in PCOS, in addition to elevated APP and reduced SNCA, which was the same
as reported for type 2 diabetes (T2D) with, additionally, an elevation in APCS. With the AD biomarker
pattern in PCOS being very similar to that in T2D, where there is an association between AD and T2D,
this suggests that larger prospective cohort studies are needed in women with PCOS to determine if
there is a causal association with AD.

Keywords: polycystic ovary syndrome; amyloid-associated proteins; Alzheimer’s disease

1. Introduction

Polycystic ovary syndrome (PCOS) is the most common endocrine condition in women
of reproductive age, characterized by menstrual irregularity, anovulatory infertility and
hirsutism. There is also an increase in the prevalence of metabolic features, including
type 2 diabetes (T2D); hypertension; and, potentially, cardiovascular disease [1,2] and fatty
liver disease [3], the mechanism of which is still unclear, though insulin resistance and
obesity-related inflammation have been implicated [1,4]. There are additional hereditable
genetic factors [5,6] that contribute to and interact with epigenetic and environmental
factors [7].

Several risk factors found in PCOS are associated with an increased risk of Alzheimer’s
disease (AD). Predictions suggest the worldwide prevalence of patients with dementia,
including those with AD, will increase to 115.4 million in 2050 [8]. AD accounts for up
to 80% of all dementia cases [9], and there is evidence of an increased risk of T2D pa-
tients developing AD [10–12], which is important given that 10% of PCOS women may
develop diabetes [13]. The pathophysiology of AD is not fully understood but includes
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inflammation [14] and protein misfolding [15]; β-amyloid is formed from native amyloid
precursor protein (APP), and misassembly of amyloid precursor protein (APP) fragments
results in toxic oligopeptide formation [14]; and β-amyloid fragments, mainly the amyloid
beta 42 (Aβ-42) isoform, exhibit cytotoxic properties. Tau protein is involved in tubu-
lin formation, and the formed and deposited neurofibrillary fibers are the result of the
hyperphosphorylation of the Tau protein [14].

Women with PCOS are recognized as more commonly suffering from mood disorders,
such as anxiety and depression, and sleep disturbances compared with women without
PCOS [16]. Further, there is some evidence to suggest that there may be a link between
Alzheimer’s disease and PCOS. Studies have reported that women with PCOS may be
at increased risk of developing cognitive impairment and Alzheimer’s disease later in
life [17]. This could be due to the underlying insulin resistance that is associated with
PCOS, which can affect cognitive function and increase inflammation [18]. In a functional
magnetic resonance (MRI) study, women with PCOS showed a decreased amplitude of
low-frequency fluctuation, associated with poor executive performance and depressive
disorders, and this negatively correlated with the plasma insulin level in subjects with
insulin resistance [19]. Others have shown that reduced functional connectivity within the
right frontal lobe upon MRI is related to the high luteinizing hormone (LH) levels present
in PCOS [20]. Studies have suggested that the cognitive dysfunction in PCOS is, in part,
due to hormonal dysregulation, including increased testosterone [21] and insulin [22].

A study utilizing aptamer-based proteomics in a comparison between AD, frontotem-
poral dementia (FTD) and controls showed that six proteins, fibronectin (FN), FN1.3, FN1.4,
von Willebrand factor (VWF) and extracellular matrix protein 1 (ECM1), were discrimina-
tory with elevation in AD in comparison with both FTD and controls [23].

We previously reported that an elevation in plasma amyloid precursor protein (APP),
which is associated with AD, and decreased alpha-synuclein (SNCA) were found in patients
with T2D [24]. The proteins available in the SomaScan panel included APP, which is
associated with a decrease in established Alzheimer’s disease [25]; the soluble form of tau,
which has shown specificity to AD [26]; the amyloid P component has shown to be reduced
in the sera of patients with AD [27]; and SNCA, which is involved in the pathophysiology
of Alzheimer’s disease [28,29]; one study showed elevated levels of SNCA in AD compared
with heathy controls [30]; the overexpression of pappalysin (PAPPA) has been shown to
play a role in Aβ peptide accumulation in Alzheimer’s disease [31]; Apolipoprotein (Apo)
E levels have been investigated in AD [32], with some reporting an increase [33], some
a decrease [34] and some no change [35]; serum amyloid A1 (SAA1) is an acute-phase
protein that may play a housekeeping role in healthy tissue, but increased expression has
been shown in the brain in Alzheimer’s disease [36]; nerve growth factor (NGF) imbalance
occurs in patients affected by AD [37]; plasma glial fibrillary acidic protein (GFAP) may
be associated with amyloid burden in AD [38]; noggin rescues age-related stem cell loss
in an animal model of neurodegeneration, and we found it to be decreased in type 2
diabetes [24,39] (Figure 1).

Given that 10% of subjects with PCOS will develop T2D [13], it is important to know if
the two conditions share risk factors for the development of AD, which, if recognized, may
lead to preventative therapeutic strategies. We, therefore, hypothesized that such a pattern
of AD-related protein changes seen in T2D may be reflected in PCOS patients given the
insulin resistance and increased risk of developing T2D that these subjects have; therefore,
we analyzed Alzheimer-related protein levels in women with and without PCOS from a
UK Biobank and whether these proteins were correlated with markers that are common in
the inflammatory pathway.
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Figure 1. A schematic to illustrate the biology of amyloid-beta (Aβ)-induced neuronal death. The 
enzyme secretases act on amyloid-beta precursor protein (APP) to cleave the protein into three frag-
ments. Sequential cleavage via β-secretases and γ-secretases produces the amyloid-beta (Aβ) pep-
tide fragments. No Aβ is formed if the APP is cleaved by α-secretase. Aβ undergoes oligomerization 
with the help of Apolipoprotein E (ApoE). Aβ oligomers form senile (neuritic) plaque. Aβ oligomers, 
in association with ApoE and microtubule-associated protein tau (MAPT), form neurofibrillary tan-
gles that eventually lead to neuron death. Aβ clearance from the brain is positively regulated by 
ApoE proteins (ApoE2, ApoE3) and negatively regulated by ApoE and ApoE4. Aβ degradation is 
also regulated by the serum amyloid P component (APCS). Upward green arrows indicate the Alz-
heimer-related proteins upregulated in PCOS (APP, APCS and ApoE); downward red arrows indi-
cate the Alzheimer-related protein (SNCA) that is downregulated in PCOS. 

2. Results 
Baseline data for the 137 PCOS subjects and 97 controls are shown in Table 1. The two 

cohorts were age-matched, but subjects with PCOS had a greater body mass index (BMI), 
increased insulin resistance, hyperandrogenemia and increased C-reactive protein (CRP, 
an inflammatory marker). 

Table 1. Demographics and baseline hormonal and metabolic parameters of the polycystic ovary 
syndrome (PCOS) subjects and controls. Data presented are median (IQR). 

Baseline Demographics 
PCOS (n = 137) Controls (n = 97) 

p-Value 
Median (IQR) Median (IQR) 

Age (years) 27.9 (11.0) 28.5 (11.0) 0.09 
BMI (Kg/m2) 33.0 (9.9) 25.0 (5.7) <0.001 

Body weight (Kg) 93.2 (33.3) 68.9 (20.9) <0.001 
Waist Circumference (cm) 101(21) 78(14.9) <0.001 

Insulin (IU/mL) 9.0 (8.0) 5.7 (4.1) 0.001 
HOMA-IR 2.6 (2.4) 1.3 (1.1) <0.005 

CRP (mg/L) 3.1 (4.7) 1.0 (1.7) 0.001 
SHBG (nmol/L) 21.0 (26.5) 53.5 (37.0) 0.001 

Testosterone (nmol/L) 1.4 (0.9) 1.0 (0.4) <0.001 

Figure 1. A schematic to illustrate the biology of amyloid-beta (Aβ)-induced neuronal death. The
enzyme secretases act on amyloid-beta precursor protein (APP) to cleave the protein into three frag-
ments. Sequential cleavage via β-secretases and γ-secretases produces the amyloid-beta (Aβ) peptide
fragments. No Aβ is formed if the APP is cleaved by α-secretase. Aβ undergoes oligomerization with
the help of Apolipoprotein E (ApoE). Aβ oligomers form senile (neuritic) plaque. Aβ oligomers, in
association with ApoE and microtubule-associated protein tau (MAPT), form neurofibrillary tangles
that eventually lead to neuron death. Aβ clearance from the brain is positively regulated by ApoE
proteins (ApoE2, ApoE3) and negatively regulated by ApoE and ApoE4. Aβ degradation is also
regulated by the serum amyloid P component (APCS). Upward green arrows indicate the Alzheimer-
related proteins upregulated in PCOS (APP, APCS and ApoE); downward red arrows indicate the
Alzheimer-related protein (SNCA) that is downregulated in PCOS.

2. Results

Baseline data for the 137 PCOS subjects and 97 controls are shown in Table 1. The two
cohorts were age-matched, but subjects with PCOS had a greater body mass index (BMI),
increased insulin resistance, hyperandrogenemia and increased C-reactive protein (CRP, an
inflammatory marker).

Table 1. Demographics and baseline hormonal and metabolic parameters of the polycystic ovary
syndrome (PCOS) subjects and controls. Data presented are median (IQR).

Baseline Demographics PCOS (n = 137) Controls (n = 97) p-Value
Median (IQR) Median (IQR)

Age (years) 27.9 (11.0) 28.5 (11.0) 0.09
BMI (kg/m2) 33.0 (9.9) 25.0 (5.7) <0.001

Body weight (kg) 93.2 (33.3) 68.9 (20.9) <0.001
Waist Circumference (cm) 101(21) 78(14.9) <0.001

Insulin (IU/mL) 9.0 (8.0) 5.7 (4.1) 0.001
HOMA-IR 2.6 (2.4) 1.3 (1.1) <0.005

CRP (mg/L) 3.1 (4.7) 1.0 (1.7) 0.001
SHBG (nmol/L) 21.0 (26.5) 53.5 (37.0) 0.001
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Table 1. Cont.

Baseline Demographics PCOS (n = 137) Controls (n = 97) p-Value
Median (IQR) Median (IQR)

Testosterone (nmol/L) 1.4 (0.9) 1.0 (0.4) <0.001
FAI 4.5 (5.3) 2.2 (1.9) <0.001

FSH (IU/L) 4.9 (2.8) 5.6 (3.6) 0.09
LH (IU/L) 6.1 (5.5) 4.3 (5.4) 0.009

TSH (mU/L) 1.9 (0.4) 1.8 (0.4) 0.09
AMH (pmol/L) 40 (42.7) 18.1 (24.8) <0.001

Baseline Glucose (mmol/L) 4.7 (0.5) 4.5 (0.6) 0.01
2 Hour Glucose (mmol/L) 5.6 (1.8) 4.9 (1.3) 0.01

BMI—body mass index; HOMA-IR—homeostasis model of assessment—insulin resistance; CRP—C reactive
protein; SHBG—sex hormone-binding globulin; FAI—free androgen index; AMH—anti-Mullarian hormone;
FSH—follicle-stimulating hormone; LH—luteinizing hormone; TSH—thyroid stimulating hormone.

The results of the SomaScan analysis of Alzheimer-related proteins are shown in
Table 2 for the PCOS and control women.

Table 2. Levels of Alzheimer-related proteins in women with polycystic ovary syndrome (PCOS)
versus controls. Data presented are median (IQR) of relative fluorescent units (RFUs).

Control (n = 97)
Median (IQR)

PCOS (n = 137)
Median (IQR) p-Value

APP 18,763 (13,615) 21,698 (14,260) 0.04
SNCA 10,544 (4528) 9589 (3468) 0.04
APCS 32,981 (10,795) 40,889 (9122) <0.0001

PAPPA 10,809 (6030) 11,597 (5196) 0.49
MAPT 140 (45) 157 (64) 0.34
ApoE 31,169 (17,676) 36,361 (20,187) 0.01

ApoE2 261,224 (55,647) 265,481 (53,411) 0.67
ApoE3 195,313 (71,683) 211,003 (74,881) 0.06
ApoE4 207,878 (67,027) 218,393 (67,602) 0.22
SAA 723 (1348) 690 (1244) 0.51
NOG 2534 (889) 2307 (802) 0.48

ApoA1 14,679 (3003) 14,562 (3837) 0.33
GFAP 562 (312) 564 (246) 0.14
NGF 418 (94) 418 (104) 0.56
vWF 12,319 (5195) 13,040 (9478) 0.04
FN 14,898 (7663) 17,380 (14,450) 0.01

FN1.3 3100 (947) 3168 (1558) 0.02
FN1.4 66,449 (14,318) 71,627 (25,002) 0.007
ECM1 20,403 (4377) 19,721 (5860) 0.99

Amyloid precursor protein (APP); alpha-synuclein (SNCA); amyloid P-component (APCS); pappalysin (PAPPA);
microtubule-associated protein tau (MAPT); Apolipoprotein E (ApoE); ApoE2; ApoE3; ApoE4; serum amyloid A
(SAA); noggin (NOG); ApoA1; glial fibrillary acidic protein (GFAP); nerve growth factor (NGF); von Willebrand
factor (vWF); fibronectin (FN); fibronectin fragment 3 (FN1.3); fibronectin fragment 4 (FN1.4); extracellular matrix
protein 1 (ECM1).

2.1. Levels of Alzheimer-Related Proteins in PCOS

Significantly elevated levels of APP (p < 0.05) and APCS (p < 0.001) were seen in PCOS,
while SNCA (p < 0.05) was reduced in PCOS (Figure 2). The levels of other Alzheimer-
related proteins, namely, PAPPA, MAPT, ApoE2, ApoE3, ApoE4, SAA, NOG and ApoA1,
were comparable between PCOS subjects and controls (Table 2). A comparison between
APP, APCS, SNCA and ApoE in T2D showed that the proteins APP and APCS in PCOS
mirrored the same changes seen in a T2D cohort [24], and indeed, a comparison between the
PCOS and T2D plasma values showed comparable levels, though SNCA was significantly
higher in PCOS (p < 0.01)(Table 3). FN (p < 0.01), FN1.3 (p < 0.05), FN 1.4 (p < 0.01),
ApoE (p < 0.01) and VWF (p < 0.04) were significantly elevated, while ECM1 did not differ
(Table 2).
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Figure 2. Alzheimer-related plasma protein levels in women with and without polycystic ovary
syndrome (PCOS). APP (p < 0.05) (A); APCS (p < 0.001) (B); and ApoE (p < 0.01) (C) were elevated in
PCOS, while SNCA (p < 0.05) (D) was reduced in PCOS. # p < 0.05; * p < 0.01; **** p < 0.0001.

Table 3. A comparison of key Alzheimer’s disease-related protein levels in a cohort of patients with
type 2 diabetes (T2D) [24] and the women reported here with polycystic ovary syndrome (PCOS) plus
their respective controls. Data are presented as median (IQR). Protein levels are reported as RFUs
(relative fluorescent units). There was no difference between T2D and PCOS for APP and APCS, but
SNCA was significantly higher in PCOS (* p < 0.01).

T2D (n = 23) Controls (n = 23) PCOS (n = 137) Controls (n = 97)

APP 24,206 (38,065) 14,004 (14,521) 21,698 (14,260) 18,763 (13,615)

APCS 34,918 (6658) 34,700 (8503) 40,889 (9122) 32,981 (10,795)

SNCA 5519 * (1595) 6644 (2606) 9589 * (3468) 10,544 (4528)

ApoE 32,267 (19,636) 33,762 (20,514) 36,361 (20,187) 31,169 (17,676)

GFAP 328 * (45) 354 (88) 564 * (246) 562 (312)

NGF 399 (81) 435 (134) 418 (104) 418 (94)
Amyloid precursor protein (APP), alpha-synuclein (SNCA), amyloid P-component (APCS), Apolipoprotein E
(ApoE), glial fibrillary acidic protein (GFAP), nerve growth factor (NGF).

2.2. Stratification of Hyperandrogenemia, Obesity, Insulin Resistance, Glucose and Age in the
PCOS Population

To determine if other facets inherent to PCOS may have given rise to these differences,
stratification of the PCOS population based on non-hyperandrogenemia vs. hyperandro-
genism (total testosterone ≤ 1.5 nmol/L vs. 1.6 nmol/L and above); non-obesity vs. obesity
(BMI ≤ 30 kg/m2 vs. >30 kg/m2); non-insulin resistance vs. insulin resistance (HOMA ≤ 2
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vs. >2); non-hyperglycemia vs. hyperglycemia (fasting plasma glucose ≤ 5.9 mmol/L or
6.0 mmol/L and higher); and older vs. younger women (upper tertile of age compared
to lower tertile) was undertaken. There was a difference when stratifying according to
hyperandrogenemia, with APCS, ApoE and ApoA1 higher in hyperandrogenemia (p < 0.01,
p < 0.04 and p < 0.01, respectively), while PAPPA was decreased in hyperandrogenemia
(p < 0.01). There was no difference seen when stratifying according to obesity, insulin
resistance, fasting glucose or age.

2.3. Correlation Analyses

For the four proteins that differed between PCOS subjects and control women (APP,
APCS, ApoE and SNCA), correlations with age; BMI; insulin resistance (HOMA-IR); testos-
terone; circulating levels of selected inflammatory proteins and protective heat shock pro-
teins (HSPs); interleukin 6 (IL6); tumor necrosis factor alpha (TNFa); HSP90AA1 (termed
heat shock protein 90; HSP90); and HSPD1 (termed heat shock protein 60; HSP60)) were
performed.

SNCA correlated positively with HSP90AA1 and HSPD1 in both the PCOS and control
women (p < 0.0001). APCS correlated positively with IL6 (p = 0.04), and ApoE correlated
positively with TNFa (p = 0.02) only in women with PCOS (Figure 3). There was no
association found for APP, APCS, ApoE, NGF, GFAP and SNCA with age, BMI, HOMA-IR
or testosterone.
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HSPD1 (HSP60) (B) in both PCOS and control women (p < 0.0001). APCS correlated positively with 

Figure 3. Correlations of Alzheimer-related proteins that differed between women with and without
polycystic ovary syndrome (PCOS). SNCA correlated positively with HSP90AA1 (HSP90) (A) and
HSPD1 (HSP60) (B) in both PCOS and control women (p < 0.0001). APCS correlated positively with
IL6 (p = 0.04) (C), and ApoE correlated positively with TNFa (p = 0.02) (D) only in women with PCOS.
Controls: black open circles; PCOS: blue squares.

3. Discussion

Here, we report changes in Alzheimer-related plasma proteins in women with PCOS
in comparison with women without PCOS, and intriguingly, the pattern of protein changes,
with higher APP and lower SNCA, that was seen in this PCOS cohort was reflected in the
basal samples of a cohort of subjects with T2D using the same aptamer-based technology,
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and those, in turn, reflected findings reported for AD [40–42]. In addition, the serum levels
of APP and APCS were comparable between those with PCOS and T2D, though SNCA
(decreased in both PCOS and T2D) was higher in PCOS versus T2D. β-amyloid is a product
of APP that is also associated with a decrease in established Alzheimer’s disease [25];
however, it is not clear what plasma APP levels are found in those at risk of developing
Alzheimer’s disease and whether an elevation may precede the subsequent decrease in
established disease. APCS is also associated with a decrease in established Alzheimer’s
disease [27], but its levels in those at risk and in pre-Alzheimer’s disease are not known.
Studies have suggested the involvement of alpha-synuclein in the pathophysiology of
Alzheimer’s disease [28,29], and one study showed elevated plasma levels for SNCA in
Alzheimer’s disease compared with healthy controls [30], though others have not [43].
These findings are, therefore, important given a report showing AD-related proteins in T2D
and the relationship of T2D with AD, and the findings here for the same AD-related proteins
in PCOS are supported by an aptamer-based proteomic study that showed discriminatory
differences in six proteins in AD (FN, FN1.3, FN1.4, VWF and ECM1) that were elevated in
AD in comparison with both FTD and controls [23]; here, all but ECM1 were elevated in
PCOS in comparison with controls.

When stratified according to demographic parameters, hyperandrogenemia showed
increased APCS, ApoE and ApoA1, whereas PAPPA was decreased. The role of testosterone
in Alzheimer’s disease has been reported in men where a lower testosterone level was asso-
ciated with AD [44]. The role of testosterone in the development of AD in women is unclear,
with a Mendelian randomization study suggesting that there was no association between
testosterone and AD, though PCOS was not investigated in that study [45]; however, the
results here suggest that further investigation is warranted, as the increase in APCS and
the decrease in PAPPA related to testosterone may be protective [27,31].

It has been suggested that women with PCOS may have an increased risk of AD,
with documented changes in cognition [17,19–22], and it is well recognized that patients
with T2D have an increased risk of developing AD [10–12]. The question then arises as to
whether women with PCOS have the same risk as those with T2D for developing AD. It is
recognized that the mean and variability of insulin resistance seen in PCOS is of similar
magnitude to that seen in T2D [46], and there is an increasing body of literature suggesting
that the underlying insulin resistance associated with PCOS is responsible for alterations in
cognitive function and, additionally, increases inflammation [18]. Insulin resistance leads
to changes in insulin signaling through the PBK/AKT and MAPK pathways, leading to
metabolic effects and cell homeostasis [47]; changes in insulin resistance may contribute to
the sustained chronic inflammatory response in the AD brain that facilitates neurofibrillary
tangle development and β-amyloid plaques [48]. Obesity is common in both PCOS and
T2D, and obesity is also associated with an increased risk of AD [49]. This, then, presents a
complex milieu, with insulin resistance leading to increased obesity because of compen-
satory hyperinsulinemia [50]; however, conversely, obesity, through mechanisms of chronic
inflammation, adipokine activation and mitochondrial dysfunction [18], leads to insulin
resistance, so a vicious cycle may result. The inflammation that is consequent upon insulin
resistance/obesity may then be reflected in the development of cognitive impairment and
progression to AD [51,52]. In this study, few correlations with inflammatory markers were
seen, with only APCS correlating positively with IL6 and ApoE correlating positively with
TNF-alpha only in women with PCOS, but no other correlations between inflammatory
markers and APP and SNCA were found. Furthermore, there was no apparent association
of AD-related proteins APP, APCS, ApoE, NGF, GFAP and SNCA with age, BMI, HOMA-IR
or testosterone.

AD is characterized by pathological features of amyloid deposition in the brain [53–55],
and there are abnormal interactions between amyloidogenic proteins and cellular machinery
and membranes [56] that are considered to be diseases of protein misfolding [57–59] and
may be associated with HSPs. Some evidence of this was seen in this study, where SNCA
correlated positively with HSP90AA1 and HSPD1 in both the PCOS and control women,
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suggesting that a reduction in SNCA may be detrimental and induce the activation of the
protective HSP response.

AD is characterized by the accumulation of β-amyloid (Aβ) proteins in the brain,
with the generation of Aβ from amyloid precursor protein (APP) being the critical step
in the development of AD [60], and elevated serum levels have been reported [41,42] in
accord with this report. Amyloid P component (APCS) has been reported in plaques and
neurofibrillary tangles in Alzheimer’s disease [27], and it may decrease the proteolysis
of Aβ deposits, resulting in further plaque formation [61]; therefore, increased serum
levels may be detrimental, in keeping with our findings here. Alpha-synuclein induces
the fibrillization of MAPT (tau) and is also involved in Alzheimer’s disease-related brain
pathology through its interactions with Aβ [28]. It is, therefore, apparent that there is a
suggestion of an increase in AD risk with the protein profile seen in PCOS, mirroring that
seen in T2D.

The treatment recommendations for PCOS suggest that lifestyle management should
be the first step, and women with PCOS should lose 5–10% of their body weight and
undertake regular physical exercise [62]. Such lifestyle management has been found to be
successful [63] but is often difficult to sustain [64], and it is unknown whether AD-related
risk factors are improved. Bariatric surgery has been shown to have a marked effect on
PCOS with a reduction in BMI, insulin resistance and androgen levels and the return of
regular menses, but no reports on AD-related risk factors are available [65]; however, the
current evidence suggests that early and sustained lifestyle changes may have a long-
term beneficial effect on cognition and AD-related risk and, at the very least, would not
be harmful.

The limitations of this study include that it was a cross-sectional study, and the study
numbers were small. As the study only included a white Caucasian population, it would
need to be repeated to take into account ethnic differences. PCOS phenotype A, which
expresses all three of the diagnostic criteria, is reported to be associated with a higher risk
of adverse metabolic and cardiovascular outcomes compared with other phenotypes, and
phenotype D is the least severe [66]; therefore, the expression of AD-related proteins needs
to be clarified for individual PCOS phenotypes. A subsequent validation of the protein
changes described with additional quantitative methods would also add value to the
findings. Potentially, PCOS animal studies would provide further information, particularly
as brain histology would accompany blood findings. AD is characterized by amyloid
deposits whose major protein component is beta A4; beta A4 is a product of APP that is
associated with a decrease in established Alzheimer’s disease [25]; however, sAPPα and -β
and their variants were not available on the SomaScan panel to measure. In addition, the
comparison of the protein levels between PCOS and T2D was limited, as the studies were
not run on the same plates contemporaneously. Adjusting for BMI and insulin resistance is
very difficult, as both are so highly correlated with PCOS that regression adjustment for
either or both would remove the effects of PCOS; therefore, determining if a decrease in
AD-related risk factors is dependent on obesity and/or insulin resistance would require a
population of PCOS subjects that were nonobese and not insulin resistant.

4. Materials and Methods

In a cross-sectional analysis, plasma levels of Alzheimer-related proteins were mea-
sured in women with PCOS (n = 137) who were recruited presenting to the endocrine clinic
of Hull Royal Infirmary, UK, and subjects without PCOS (n = 97) recruited via advert to
a PCOS biobank (ISRCTN70196169: 2012–2017), as approved by the Newcastle & North
Tyneside Ethics Committee (reference number 10/H0906/17 and date of approval 6 June
2014) [67] and in accordance with the 1964 Helsinki declaration and its later amendments
or comparable ethical standards; all subjects gave written informed consent.

The women were all white Caucasians residing within 30 km of the endocrine clinic
center. Inclusion criteria of PCOS: PCOS was diagnosed according to the Rotterdam
consensus [68], based on two out of three of those criteria, namely, clinical and biochemical
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evidence of hyperandrogenism (Ferriman–Gallwey score >8, free androgen index >4 (local
laboratory reference level), total testosterone > 1.5 nmol/L (local laboratory reference
level)), oligomenorrhea or amenorrhoea and polycystic ovaries diagnosed with transvaginal
ultrasound. PCOS exclusion criteria: Any significant medical history; currently taking
medication of any kind (including oral contraceptive pills or over-the-counter medication).
Confounding diagnoses such as nonclassical 21-hydroxylase deficiency were appropriately
screened, as detailed previously [67]. Inclusion criteria for control subjects: Regular menses,
normal physical examination, polycystic ovaries excluded by ultrasound, no concomitant
medical conditions and not on any medications. Diabetes was excluded in all subjects with
an oral glucose tolerance test. No subject had AD, and there was no family history of stroke
or a family history of AD. The demographic data for the PCOS and control cohorts are
shown in Table 1 [67].

Patients fasted overnight, and subsequently, blood samples were collected, as well as
baseline weight and blood pressure. Height, weight, waist circumference and body mass
index (BMI) were recorded according to WHO guidelines [69]. BMI information was defined
as weight in kilograms and height in centimeters with the formula kg/m2, according to
WHO guidelines. Blood was withdrawn and prepared via centrifugation at 3500× g for
15 min, aliquoted and stored at −80 ◦C. Analysis for sex hormone-binding globulin (SHBG);
insulin (DPC Immulite 200 analyzer, Euro/DPC, Llanberis, UK); and plasma glucose
(to calculate HOMA-IR) (Synchron LX20 analyzer, Beckman Coulter, High Wycombe,
UK) was undertaken. Free androgen index (FAI) was derived from total testosterone
divided by SHBG ×100. Insulin resistance (IR) was calculated using the homeostasis model
assessment (HOMA-IR; (insulin u glucose)/22.5). Serum testosterone was quantified using
isotope-dilution liquid chromatography–tandem mass spectrometry (LC-MS/MS) [70].
Total cholesterol, triglycerides and high-density lipoprotein cholesterol (HDL-C) levels
were measured enzymatically using a Synchron LX20 analyzer (Beckman-Coulter, High
Wycombe, UK). Low-density lipoprotein cholesterol (LDL-C) was calculated using the
Friedewald equation. All hormone assays were performed with an Abbott Architect i4000
immunoassay analyzer (Abbott Diagnostics Division, Maidenhead, UK).

Alzheimer-related plasma proteins were measured using the Slow Off-Rate Modified
Aptamer (Soma)-Scan platform [71]. Calibration was based on standards as previously
described [72].

Quantification of proteins was undertaken using an aptamer-based methodology:
the Slow Off-Rate Modified Aptamer (SOMAmer)-based protein array [73,74]. In short,
plasma samples collected in EDTA were processed according to the following manufacturer-
recommended method: (1) Equilibration of analyte/primer beads binding-SOMAmers
(using a photocleavable linker, the synthetic SOMAmer labeled with a fluorophore was
conjoined to a biotin moiety). (2) Analyte–SOMAmers complexes were immobilized on a
streptavidin-substituted base. (3) Ultraviolet (UV) light was used to cleave and, therefore,
release, the analyte–SOMAmer complexes into solution. (4) Using biotinylation, immobi-
lization of the analyte–SOMAmer complexes on a streptavidin support was accomplished.
(5) Analyte–SOMAmer complexes were eluted, and the released SOMAmers were utilized
as analyte quantification surrogates. (6) Quantification was accomplished through hy-
bridization to SOMAmer-complementary oligonucleotides. Raw intensities, hybridization
and median and calibration signals were normalized and standardized [71,72].

Using version 3.1 of the SomaScan assay, the following proteins were targeted: amy-
loid precursor protein (APP), alpha-synuclein (SNCA), amyloid P-component (APCS),
pappalysin (PAPPA), microtubule-associated protein tau (MAPT), apolipoprotein E, ApoE2,
ApoE3, ApoE4, serum amyloid A (SAA), noggin (NOG), ApoA1, nerve growth factor (NGF)
and glial fibrillary acidic protein (GFAP). In addition, AD-associated proteins FN, FN1.3,
FN1.4, VWF, ApoE and VWF were measured, together with the levels of the following
inflammatory proteins and protective heat shock proteins (HSPs): interleukin-6 (IL6), tumor
necrosis factor-alpha (TNFa), HSP90AA1 (HSP90) and HSPD1 (HSP60).
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Statistics

Power was based on the APP and SNCA protein changes reported to be different in
T2D [75] (nQuery version 9, Statsol, San Diego, CA, USA). APP: For an alpha of 0.05 with an
effect size of 0.85, a total of 62 subjects (31 per arm) would be needed for 80% power: SNCA:
For an alpha of 0.05 with an effect size of 0.80, a total of 68 subjects (34 per arm) would be
needed based on 90% power if these proteins were to be significantly different in PCOS.
Visual inspection of the data was undertaken followed by Student’s t-tests for normally
distributed data and Mann–Whitney tests for non-normally distributed data as determined
by the Kolmogorov–Smirnov test. All analyses were performed using GraphPad Prism
version 9.4.1 (San Diego, CA, USA).

5. Conclusions

These data show that an AD-associated protein pattern with elevated FN, FN1.3, FN1.4
and ApoE was found in PCOS, in addition to elevated APP and reduced SNCA, which was
the same as that reported for T2D with, additionally, an elevation in APCS. With the AD
biomarker pattern in PCOS being very similar to that in T2D, where there is an association
between AD and T2D, this suggests that larger prospective cohort studies are needed in
women with PCOS to determine if there is a causal association with AD.
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