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Abstract: The Acyl-activating enzyme (AAE) 3 gene encodes an oxalyl-CoA synthetase that catalyzes
the conversion of oxalate to oxalyl-CoA as the first step in the CoA-dependent pathway of oxalate
catabolism. Although the role of this enzyme in oxalate catabolism has been established, its biological
roles in plant growth and development are less understood. As a step toward gaining a better
understanding of these biological roles, we report here a characterization of the Arabidopsis thaliana
aae3 (Ataae3) seed mucilage phenotype. Ruthidium red (RR) staining of Ataae3 and wild type (WT)
seeds suggested that the observed reduction in Ataae3 germination may be attributable, at least
in part, to a decrease in seed mucilage accumulation. Quantitative RT-PCR analysis revealed that
the expression of selected mucilage regulatory transcription factors, as well as of biosynthetic and
extrusion genes, was significantly down-regulated in the Ataae3 seeds. Mucilage accumulation
in seeds from an engineered oxalate-accumulating Arabidopsis and Atoxc mutant, blocked in the
second step of the CoA-dependent pathway of oxalate catabolism, were found to be similar to WT.
These findings suggest that elevated tissue oxalate concentrations and loss of the oxalate catabolism
pathway downstream of AAE3 were not responsible for the reduced Ataae3 seed germination and
mucilage phenotypes. Overall, our findings unveil the presence of regulatory interplay between
AAE3 and transcriptional control of mucilage gene expression.
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1. Introduction

Seed coat mucilage, known as myxospermy, is present in more than 80 families of
angiosperms, including the model plant Arabidopsis thaliana [1]. Seed coat mucilage is
produced by the mucilage secretory cells (MSCs) which make up the outermost layer of the
seed coat. Once produced, the mucilage is extruded into the apoplast—the space between
the primary cell wall and plasma membrane—of the seed coat [2,3]. Seed coat mucilage
is composed of pectin, cellulose, hemicellulose, and protein [4–7]. The cellulose plays a
critical structural role, while the pectic polysaccharides account for the hydrophilic nature
of mucilage [7,8].

This hydrophilic property allows the mucilage, upon exposure to an aqueous en-
vironment, to encapsulate the seed in a gel-like transparent capsule [1,4,9]. The moist
environment provided by the hydrated mucilage is important in facilitating seed imbibi-
tion, metabolic activity, and, ultimately, germination. Other reported functions for seed
mucilage include roles in seed dispersal [1,9–11] and as a signaling molecule in interactions
between plants and pathogens [12,13].

The production of seed coat mucilage is a highly regulated process [2,14–16]. Genetic
analysis of seed coat development in Arabidopsis identified an array of genetic loci and/or
genes that are involved in MSC differentiation, mucilage biosynthesis, pectin modification,
and mucilage extrusion [1,11,14,15]. Recent advances in seed biology have also provided
insight into the function of specific transcription factors (TFs) in regulating seed coat
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development and mucilage production [17]. In addition, proteomic analysis has revealed
that Arabidopsis seed coat mucilage contains some mucilage-specific proteins, suggesting
that a unique set of genes involved in mucilage accumulation are expressed during seed
coat development [5].

Even though the mucilage is just present in the seed coat, the appropriate levels of
metabolic and photosynthetic activity are evident in developing seeds, suggesting that these
processes may play a critical role in seed coat development and mucilage formation [18].
Oxalic acid (oxalate), an end product of carbon metabolism, has been shown to play a
critical role in many biological and metabolic processes in plants [19]. In soybean, oxalate
has been shown to accumulate in the seed coat in the form of the calcium oxalate crystal
during seed coat development and embryo maturation [20]. However, metabolic (oxalate)
regulation and contribution to seed coat development, as well as mucilage production and
maturation, are poorly understood.

Phenotypic analysis of an Ataae3 T-DNA mutant revealed that a lack of AAE3, an
acyl-activating enzyme 3 [21], resulted in an increase in oxalate accumulation, a reduction in
vegetative growth, a reduction in seed mucilage production, and a reduction in seed germi-
nation [22]. Characterization of the Medicago truncatula aae3 (Mtaae3) RNAi knock-down
and Mtaae3 Tnt1 knock-out mutants [23] also revealed an increase in oxalate accumulation,
a reduction in vegetative growth, a delay in seed germination, and a defect in seed coat
development [24]. AAE3 has been shown to encode an oxalyl CoA synthetase that catalyzes
the first step in a previously uncharacterized pathway of oxalate catabolism in plants and
yeast [22–29]. Although the biochemical activity of AAE3 has been established, its function
in plant growth and development remains unclear.

In the present study, we expand our investigation into the role of AAE3 in seed coat
mucilage formation and extrusion. Quantitative RT-PCR was employed to analyze the
expression of selected genes involved in seed coat mucilage biosynthesis and secretion.
Seeds from oxalate-accumulating Arabidopsis transgenic plants (Obc1 plants) were assayed
for mucilage accumulation, mucilage gene expression, and seed germination to assess
whether the observed Ataae3 germination and mucilage phenotypes were related to the
elevated tissue oxalate concentrations that resulted from the inability of Ataae3 to catabolize
oxalate. Similarly, seeds from an Arabidopsis mutant, Atoxc, that lack the oxalyl-CoA decar-
boxylase required to catalyze the second step in the CoA-dependent pathway of oxalate
catabolism, were evaluated for the accumulation of mucilage to determine whether Ataae3′s
reduced mucilage phenotype was caused by the absence of a downstream pathway metabo-
lite. Overall, our findings show that AtAAE3’s functional role extends beyond oxalate
catabolism into other processes such as seed mucilage accumulation and germination.

2. Results and Discussion
2.1. Disruption of AAE3 Reduces Seed Germination and Mucilage Accumulation

Although Ataae3 seeds looked indistinguishable from WT controls (Supplementary
Figure S1), seed germination assays showed a significant delay in Ataae3 seed germina-
tion compared to WT (Figure 1A). Ruthenium red (RR) staining of WT and Ataae3 seeds
revealed that the Ataae3 seeds lacked the mucilage coating that encompassed the WT seeds
(Figure 1B). To assess whether Ataae3 seeds had an alteration in the biosynthesis and/or
extrusion of mucilage, water-soluble extracts of Ataae3 and WT seeds were semi-quantified
for mucilage content using a RR dot-blot staining assay. As shown in Figure 1C, Ataae3
seeds still possessed the ability to produce some mucilage, but this mucilage appeared to
be retained within the seed coat. Thus, Ataae3 seeds displayed a reduction in mucilage
biosynthesis and extrusion. In addition, staining with 2,3,5-triphenyltetrazolium chloride
revealed that Ataae3 seeds had higher seed coat permeability in comparison with WT
controls (Figure 1D) [22]. Thus, the lack of AAE3 activity also affected other aspects of
seed coat development. Seed germinations are complicated biological processes that are
controlled by many factors [30,31]. It has been known that seed mucilage is crucial for
controlling seed dormancy and germination [32–34]. Therefore, our findings indicated that
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the observed reduction in seed mucilage accumulation may explain, at least in part, the
observed reduction in Ataae3 seed germination.
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Figure 1. Deletion of AtAAE3 impairs seed germination, seed coat mucilage accumulation, and
increases seed permeability. (A) Arabidopsis WT and Ataae3 seeds were germinated on 0.5× MS media
with 0.5% sucrose for 4 days. (B) Arabidopsis WT and Ataae3 seeds were stained with ruthenium red
solution to visualize mucilage accumulation on the seed coats. (C) Quantification of mucilage in
Ataae3 and WT seeds. RR staining intensity was quantified using Image J (ij153-win-java8). Student’s
t-test; n = 3; ** p < 0.01 indicates a statistically significant difference between mutant seeds and wild
type controls. (D) Seeds were stained with 2,3,5-triphenyltetrazolium chloride to evaluate seed coat
permeability. Scale bars = 500 µm.
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2.2. Disruption of AAE3 Reduces Mucilage-Related Gene Expression

As a step toward uncovering the connection between the observed reduction in seed
mucilage accumulation and a lack of AtAAE3 activity, we assessed the expression of differ-
ent mucilage-related genes using q-RT-PCR. The first set of genes we analyzed were a group
of abundant seed mucilage proteins, called testa abundant proteins (TBA1 through 3), and
two lipid transfer proteins (LTP 4 and 6). These proteins were identified as seed mucilage
proteins by proteomic analysis [5]. The expression of the three TBA and two LTP genes
were found to be significantly reduced in developing Ataae3 seeds compared to WT controls
(Figure 2).
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Figure 2. Effect of AtAAE3 on mucilage-related gene expression. Disruption of AtAAE3 significantly
suppresses seed coat mucilage gene expression, as revealed by q-RT-PCR. Student’s t-test; n = 3;
*** p < 0.001 indicates a significant difference between mutant seeds and wild type controls.

Next, we measured the expression of several key genes, shown by genetic studies [14]
to be involved in seed coat mucilage biosynthesis and extrusion. Expression of mucilage-
modified 4 (MUM4), encoding a putative NDP-L-rhamnose synthase that is required for
the synthesis of the pectin rhamnogalacturonan I [35,36], was found to be significantly
reduced in Ataae3 seeds compared to WT (Figure 2). MUM2, encoding a β-Galactosidase
that is required for maturation of rhamnogalacturonan I [37,38], and AtBXL1, encoding a
bifunctional β-D-xylosidase/α-L-arabinofuranosidase that is involved in pectic arabinan
modification [39], play critical roles in seed mucilage release. Q-PCR analysis indicated
that the expression of MUM2 and AtBXL1 was not changed in Ataae3 seeds compared to
WT controls (Figure 2). By contrast, the expression of a gene encoding a class III peroxidase,
peroxidase 36 (PER36), was significantly decreased in Ataae3 seeds (Figure 2). PER36
is expressed exclusively in the outer integument (oi2) cell and is required for mucilage
extrusion [40]. Our findings indicate that PER36 may contribute to the lack of mucilage
extrusion in Ataee3 seeds. Overall, these results support a link between the expression of
AtAAE3 and seed mucilage extrusion.
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2.3. Disruption of AAE3 Reduces Mucilage Regulatory Gene Expression

Q-RT-PCR analysis of a group of key TFs [17] that regulate seed mucilage accumu-
lation showed that the expression of each tested TF was down-regulated in Ataae3 seeds
compared to WT controls (Figure 3). The floral homeotic TF gene, APETALA2 (AP2), has
been shown to regulate seed coat mucilage biosynthesis [14] in addition to flower and
ovule development [41]. The measured reduction in AP2 expression in Ataee3 seeds corre-
lated with the decreased mucilage production in the mutant seed (Figure 1C). The MYB
(v-Myb myeloblastosis viral oncogene homolog)–bHLH (basic helix–loop–helix)–WD40 do-
main (MBW) TF complex, consisting of TRANSPARENT TESTA GLABRA1 (TTG1), MYBs,
TRANSPARENT TESTA2 (TT2), TT8, and ENHANCER OF GLABRA3 (EGL3) [42–44],
controls seed coat differentiation and mucilage through regulation of TTG2 and GL2 [17].
The expression of TTG1, TT2, TT8, and EGL3, and of their target genes, TTG2 and GL2,
were significantly down-regulated in Ataae3 seeds compared to WT controls (Figure 3).
The MYB–bHLH–WD40 (MBW) TF complex is thought to function in seed coat differen-
tiation and mucilage deposition in a manner that is independent of the AP2 regulatory
pathway [17].
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Figure 3. Effect of AtAAE3 on mucilage-related transcription factor expression. Disruption of AtAAE3
significantly suppresses expression of regulatory transcription factor genes involved in seed mucilage
formation and seed coat development. Student’s t-test; n = 3; * p < 0.05, ** p < 0.01, and *** p < 0.001
indicate a significant difference between mutant seeds and wild type controls.

MYB61, a member of the R2R3-MYB transcription factor family, has been shown to
be critical for seed coat mucilage deposition and extrusion [45]. MYB61 is thought to
function in a genetic pathway distinct from that of TTG1 in seed coat differentiation and
development [45]. In Ataae3 seeds, the expression of MYB61, like TTG1, was significantly
reduced compared to WT controls (Figure 3). It has been shown that the transcription
factor, MUM1/LUH, is independent of other TFs in seed mucilage release as a result of
positive regulation of MUM2 and AtBXL1 [46]. The expression of MUM1 in Ataae3 seeds
was significantly reduced in comparison to WT controls (Figure 3). Interestingly, both
MUM2 and AtBXL1 expressions, as distinct from MUM1, were not changed (Figure 2).
It is possible that MUM1 controls MUM2 and AtBXL1 expression indirectly, through an
unidentified regulator [47] whose expression could also be altered in Ataae3 seeds. Overall,
the determined decrease in the expression of key seed mucilage regulatory genes in Ataae3
seeds is consistent with the measured decrease in Ataae3 seed mucilage accumulation.
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2.4. An Increase in Oxalate Accumulation Affects Seed Coat Development, but Not
Mucilage Accumulation

Loss of AtAAE3 in Arabidopsis blocks the CoA-dependent pathway of oxalate catabolism
and increases the accumulation of oxalate in the leaf tissues (WT: 0.75 ± 0.2 mg/g dry wt
vs. Ataae3: 1.3 ± 0.3 mg/g dry wt [22]) as well as in mature seeds (WT: 1.8 ± 0.2 mg/g
dry wt vs. Ataae3: 6.0 ± 1.0 mg/g dry wt [22]). It has been proposed that the increased
accumulation of tissue oxalate could result in the disruption of seed coat mucilage pro-
duction and cell wall development [22]. To test this proposal, we utilized an Arabidopsis
transgenic line [48] expressing the oxalate biosynthetic component 1 (Obc1) gene, cloned
from the animal bacterial pathogen Burkholderia mallei [49]. The Obc1 transgenic plants
accumulated higher tissue oxalate concentrations and formed crystals (Figure 4A,B) of
calcium oxalate [48]. Although Obc1 seeds had higher oxalate concentrations than controls
(Figure 4B), RR staining revealed that these seeds accumulated mucilage in a manner
that was similar to WT controls (Figure 4C). Likewise, qRT-PCR analysis showed that the
expression of mucilage-related genes was not changed in Obc1 seeds compared to WT
controls (Figure 5). Taken together, our finding suggests that the accumulation of oxalate in
the Ataae3 seeds is not the cause of the reduction in mucilage accumulation.
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t-test; n = 3; *** p < 0.001 indicates a significant difference between Obc1 seeds and wild type controls.
(C) Arabidopsis WT and Obc1 seeds were stained with RR to visualize mucilage accumulation on
the seed coats. (D) Seeds were stained with 2,3,5-triphenyltetrazolium chloride to evaluate the seed
coat permeability. Scale bars = 500 µm. (E) Quantification of seed permeability (%). n > 100; a, b,
and c indicate significant differences between wild type, Ataae3, and Obc1 seeds. Accumulation
of oxalate content in Obc1 seeds does not change seed mucilage formation but significantly alters
seed coat permeability. (F) Arabidopsis WT, Ataae3, and Obc1 seeds were germinated on a 0.5× MS
medium, using 0.5% sucrose, for 4 days. Seed germination (%) was determined. n > 100; a and b
indicate significant differences between WT, Ataae3, and Obc1 seeds. There was no difference in seed
germination between WT and Obc1 seeds.
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Figure 5. Effect of excess oxalate on mucilage gene expression. Q-RT-PCR analysis of RNA samples
extracted from wild type and Obc1 siliques. The results indicate that accumulation of oxalate content
does not change the expression of seed mucilage genes but does affect the expression of some
regulatory genes involved in seed coat development. Student’s t-test; n = 3; ** p < 0.01 indicates a
significant difference between wild type and Obc1 seeds.

In contrast to mucilage accumulation, Obc1 seeds showed a significant increase in
seed coat permeability in comparison to WT controls (Figure 4D,E), suggesting that excess
oxalate may affect seed cell wall development. As found in Ataae3 seeds (Figure 3), GL2
expression was also significantly reduced in Obc1 seeds compared to WT controls (Figure 5).
It is possible that this alteration in expression may be linked to the change in seed coat
permeability observed in Ataae3 and Obc1 (Figure 4D,E). Further studies, however, are
required before any firm conclusions can be drawn.

To assess the effect of elevated tissue oxalate concentration on seed germination, WT,
Ataae3, and Obc1 seeds were plated as previously described [22]. In contrast to Ataae3,
Obc1 seeds were found to germinate in a similar manner to WT controls (Figure 4F). This
finding suggested that the reduction in Ataae3 seed germination was attributable to a lack
of mucilage rather than to an alteration in seed permeability.

2.5. AAE3 Is Critical for Seed Mucilage Accumulation

To determine whether the lack of mucilage was specific to the loss of AAE3 function
and not a general phenomenon resulting from a missing downstream metabolite due to
disruption of the CoA-dependent pathway of oxalate catabolism (Figure 6A), seeds from
the Atoxc mutant were stained to reveal the presence of mucilage (Figure 6B). The AtOXC
has been shown to catalyze the second step in the CoA-dependent pathway of oxalate
catabolism [50,51]. Loss of AtOXC in Arabidopsis reduces the degradation of oxalate and
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increases the accumulation of seed oxalate concentration (WT: 0.7 ± 0.1 mg/g dry wt vs.
Atoxc: 2.7 ± 0.3 mg/g dry wt [51]). RR staining revealed that Atoxc seeds accumulate ample
amounts of mucilage, similar to WT (Figure 6B). This finding shows that the reduction in
mucilage is specific to the Ataae3 mutant and does not result from a missing downstream
metabolite from the CoA pathway of oxalate catabolism.
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Our findings demonstrate that AtAAE3 is crucial for seed cell wall development
and for mucilage production and extrusion (Figures 1, 4 and 6). AtAAE3 belongs to the
acyl-activating enzyme superfamily that plays an important role in the biosynthesis of
many metabolites [52]. For instance, long-chain acyl-CoA synthetase (LACS) 1 and 2 in the
clade I of the AAE superfamily are required for biosynthesis of cuticular wax products, and
deletion of LACS 1 and 2 genes results in organ fusion, defective flower development, and
reduced seed production [53]. Like AAE3, AAE13 is in clade VII of the AAE superfamily
and encodes a malonyl-CoA synthetase that is critical for anthocyanin biosynthesis, plant
growth, and seed set production [54,55]. Furthermore, Arabidopsis AAE9, encoding an
isobutyl-CoA synthetase, has been shown to be a key factor involved in branched-chain
amino acid catabolism in iso-branched wax biosynthesis [56]. It was recently reported
that disruption of SlAAE3 expression in tomato significantly reduced the degradation of
tissue oxalate and affected tomato fruit quality through an alteration in nutrient metabolites
concentrations [29]. TmAAE3 from Taxus × media has been shown to be involved in
the activation of 4-methylbutyric acid (N-debenzoyl-N-(2-methylbutyryl) taxol side chain)
biosynthesis [57]. Interestingly, a recent report also demonstrates that LsAAE3 from grass
pea is part of another biosynthetic pathway in that it provides the substrate for the pro-
duction of the neurotoxin, β-L-oxalyl-2,3-diaminopropionic acid (β-L-ODAP) [58]. These
studies suggest diverse roles for AAE family members, including AAE3, in metabolite
biosynthesis, plant growth, and organ development. Nevertheless, the mechanisms by
which AtAAE3 affects seed coat mucilage formation and extrusion remains unknown and
will be the focus of future investigations.

In conclusion, we showed that a loss of AAE3 function results in an increase in tis-
sue oxalate concentrations, decreased seed germination, and reduced seed coat mucilage
accumulation. Disruption of AAE3 significantly down-regulates the expression of key
mucilage-biosynthetic and extrusion-related genes, as well as of major regulatory transcrip-
tion factors in developing seeds that contribute to the decrease in mucilage formation and
extrusion, as well as to the defect in seed coat permeability (Figure 7). Our findings indicate
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that AAE3 plays a critical role in seed cell wall development, and that it offers a clue as to
the potential regulatory interplay between metabolite homeostasis and gene transcriptional
control in mucilage production and extrusion.
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involved in mucilage production and extrusion in WT mucilage secretory cells (MSCs). In the
Ataae3 mucilage secretory cells (MSCs) (right panel), expression of the TFs and their target genes is
significantly down-regulated, reducing mucilage production and mucilage extrusion.

3. Materials and Methods
3.1. Reagents

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA) unless stated
otherwise. The oxalate diagnostic kit was purchased from Trinity Biotech (Jamestown,
NY, USA).

3.2. Plant Materials and Growth Conditions

Wild type (WT, ecotype Columbia, Col-0), Ataae3 T-DNA insertional line, Obc1 over-
expression lines, and Atoxc mutant lines were described previously [22,48,51]. For Ara-
bidopsis growth, seeds were sown on commercial soil (Pro-Line, growing mix, C/20, Jolly
Gardener, Oldcastle Lawn and Garden, Inc., Poland Spring, ME, USA), and grown under
100–200 µE using a 16 h day/8 h night photoperiod at 22 ◦C.

3.3. Dry Seed Mucilage Extraction and Measurement

The extraction of seed mucilage was conducted following a modified procedure from
a previous report [45]. In brief, dry WT and Ataae3 seeds were ground to a fine powder
using a mortar and pestle. Equal amounts of dry seed powder were homogenized in
2 M imidazole (pH 7.5) and centrifuged to remove the insoluble matter. The recovered
supernatant was extracted with five volumes of ethanol and centrifuged. After removal of
the supernatant, the precipitated material was dissolved in water. This precipitation step
was repeated three times.

After the final resolubilization step, the soluble polysaccharides were quantified by
dot-blot assay, following a published protocol [59]. In brief, 5 µL of the extracted samples
were applied to a positively charged nylon membrane. The sample material was fixed to
the membrane by heating at 70 ◦C for 5 min, followed by two brief washes in water to
remove excess salts. The membranes were then stained with ruthenium red (RR) solution
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(34 µM) at room temperature (RT) for 15 min. After staining, the membranes were rinsed
with water and dried at RT. Each membrane was scanned, and the RR staining intensities
were quantified using Image J (ij153-win-java8).

3.4. Analysis of Seed Phenotypes

To visualize seed mucilage, Arabidopsis WT, Ataae3, Obc1, and Atoxc seeds were stained
with RR. In brief, the seeds were incubated for 15 min in a 0.03% (w/v) RR solution, rinsed
gently with water, and viewed using a light microscope as previously described [22]. To
determine seed permeability, Arabidopsis WT, Ataae3, and Obc1 seeds were stained with 1%
(w/v) 2,3,5-triphenyltetrazolium chloride at 30 ◦C for 24 h, as previously described [22].
After staining, seeds were rinsed with water and viewed under the light microscope.

3.5. Microscopic Analysis of Calcium Oxalate Crystal in Arabidopsis Leaves

Leaf samples were harvested from WT and Obc1 plants and cleared in 95% (v/v)
ethanol. The leaf samples were then equilibrated with water and visually inspected for
calcium oxalate crystal deposition using light microscopy and crossed-polarizers. Images
of whole-leaf mounts were captured using a CCD72 camera mounted on a Zeiss Axiophot
light microscope [48].

3.6. Oxalate Measurements

Oxalate determinations were carried out as previously described [48], with some
modifications. Dried WT and Obc1 mutant seed samples were weighed and ground
in water using a mortar and pestle. Total oxalate concentrations were determined by
simply solubilizing the crystals with the addition of H+-Dowex in 4 mM sulfuric acid. The
samples were incubated at 60 ◦C for 1 h to dissolve the oxalate crystals. The pH of the
mixture was then adjusted (pH 5–7), followed by charcoal filtration and centrifugation.
The supernatant was then analyzed for oxalate content according to the manufacturer’s
instructions. Standards were prepared from oxalic acid dihydrate and used for both soluble
and total oxalate measurements, as recommended by the manufacturer. Measurements
were performed in duplicate on three independently grown sets of plants, the results
averaged, and standard errors calculated [48].

3.7. RNA Isolation, cDNA Synthesis, and qRT-PCR Analysis

Gene expression analysis was conducted following a previously published proce-
dure [60]. Siliques (7 dap) were collected from WT, Ataae3, and Obc1 plants, and analyzed
for mucilage gene expression following the guidance provided in previous reports [2,3,61].
In brief, 100 mg of siliques collected from each plant line were individually pooled. Total
RNA was extracted from each silique pool using the RNAqueous Kit (Ambion, Austin,
TX, USA) following the instruction provided by the manufacturer. Isolated total RNA
samples were further purified through treatment with DNase I (RNase-free, New England
Biolabs, Ipswich, MA, USA). First-strand cDNA was synthesized using random hexamers
and reverse transcriptase (ThermoFisher Scientific, Waltham, MA, USA). The resulting
cDNA was diluted to 250 ng/µL, and 2 µL of the diluted cDNA was used as a template for
each qRT-PCR reaction. qRT-PCR was performed using the SYBR green-based system and
the Bio-Rad CFX96™. CFX Maestro software version 2.3 was used for data collection and
analysis. Relative mRNA levels were normalized to an internal reference. Primers used are
listed in Supplementary Table S1.

3.8. Statistical Analysis

All results are reported as means ± SEM. An analysis of variance was used to analyze
data. Student’s t-test was used to compare the two groups. * p < 0.05, ** p < 0.01, and
*** p < 0.001 were used as indicators of the level of statistical significance.
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