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Abstract: Environmental barrier coatings (EBCs) are an enabling technology for silicon carbide
(SiC)-based ceramic matrix composites (CMCs) in extreme environments such as gas turbine engines.
However, the development of new coating systems is hindered by the large design space and
difficulty in predicting the properties for these materials. Density Functional Theory (DFT) has
successfully been used to model and predict some thermodynamic and thermo-mechanical properties
of high-temperature ceramics for EBCs, although these calculations are challenging due to their high
computational costs. In this work, we use machine learning to train a deep neural network potential
(DNP) for Y2Si2O7, which is then applied to calculate the thermodynamic and thermo-mechanical
properties at near-DFT accuracy much faster and using less computational resources than DFT. We use
this DNP to predict the phonon-based thermodynamic properties of Y2Si2O7 with good agreement to
DFT and experiments. We also utilize the DNP to calculate the anisotropic, lattice direction-dependent
coefficients of thermal expansion (CTEs) for Y2Si2O7. Molecular dynamics trajectories using the DNP
correctly demonstrate the accurate prediction of the anisotropy of the CTE in good agreement with
the diffraction experiments. In the future, this DNP could be applied to accelerate additional property
calculations for Y2Si2O7 compared to DFT or experiments.

Keywords: environmental barrier coatings; thermodynamics; density functional theory; molecular
dynamics; machine learning

1. Introduction

Silicon carbide (SiC)-based ceramic matrix composites (CMCs) hold strong promise
for gas turbines in both aerospace and power generation applications, as they have higher
temperature capability and lower density than currently prevalent nickel-based superalloys.
However, SiC-based CMCs are prone to degradation from oxygen and water vapor at high
temperatures via the formation of a silica thermally grown oxide scale and subsequently
volatile Si(OH)4, which leads to the recession of the component [1,2]. As such, environmen-
tal barrier coatings (EBCs) are necessary for CMC engine components, as they can match
the high temperature capabilities and mitigate water vapor-induced corrosion.

Silicate materials, including materials such as mullite and the rare-earth disilicates
(RE2Si2O7), are currently the most highly regarded EBCs due to their good chemical resis-
tance to oxidation and thermal expansion match with the underlying substrate. Yttrium
disilicate (Y2Si2O7) is especially highly regarded as it has a similar bulk coefficient of
thermal expansion (CTE) as the SiC-based CMCs (~4.5–5 × 10−6 K−1), which prevents
cracking and subsequent spallation due to thermal cycling under engine operating con-
ditions. However, Y2Si2O7 EBCs are subject to several failure mechanisms such as water
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vapor-induced volatility, mechanical erosion/foreign object damage, and thermochemical
degradation due to reactions with calcia–magnesia–alumina–silicates (CMAS) ingested
by the engine. Phase transitions in the Y2Si2O7 crystal structure also occur over the range
of engine operating temperatures, increasing the likelihood of mechanical failures due to
volumetric changes [3].

To effectively design new EBC materials, the thermodynamic and thermomechanical
properties of candidate EBCs must be well understood. To this end, approaches including
empirical modeling and theoretical modeling such as Density Functional Theory (DFT)
have been shown to have predictive capabilities for candidate EBC materials and properties
of interest [4–9]. While informative, both modeling approaches have limitations. Empirical
models generally describe trends well but can have limited quantitative accuracy or fail
to describe edge cases appropriately [10–12]. DFT, on the other hand, can have a large
computational cost due to the vast chemical space of possible EBCs and the range of length
scales needed to calculate properties of interest. This is especially true with the recent focus
on so-called “high-entropy” ceramics, which can utilize five or more unique cations within
the silicate structure [13,14].

CTE is an essential design parameter for EBC development to effectively reduce
thermomechanical stresses upon heating and cooling in an engine cycle. Several studies
have demonstrated that the mean CTE in Si–O bonds in silicate minerals is ~0.0 K−1,
indicating that the primary expansion occurs in the RE–O bonds in RE silicates [11,15–22].
Hazen and Prewitt developed an empirical model for the expansion of metal–oxygen bonds
valid for oxides and silicates [10]. However, this model utilizes the Pauling bond strength,
z/p, where z is the cation charge and p is the cation coordination number, as the predictor
of thermal expansion, α, and does not account for the cation ionic radius. Yttrium disilicate
can have several phase transformations as a function of temperature: α-Y2Si2O7 (space
group P1), β-Y2Si2O7 (space group C2/m), γ-Y2Si2O7 (P21/c), and δ-Y2Si2O7 (Pna21).
The α-phase contains four unique cation crystallographic sites: three with a coordination
number of 8 and one with a coordination number of 6. The β- and γ-phases each contain
one unique cation crystallographic site with a coordination of 6, while the δ-phase contains
two unique cation sites each with a coordination of 7. Therefore, the Hazen and Prewitt
model is unable to predict variations in the CTE between the β- and γ-phases. Similarly,
the Hazen and Prewitt model would be unable to predict variations in the CTE between
systems with different cations with the same coordination number.

Alternatively, a support vector regressor model using radial basis functions (SVRRBF)
was developed by Ayyasamy and coworkers [4]. This model was trained on DFT data to
predict the CTE of rare-earth disilicates (RE2Si2O7). It was successful at predicting CTEs for
materials that are not available from experimental data, including Sm2Si2O7. Their model
was not trained to predict the anisotropy of the CTE, only the apparent bulk CTE (ABCTE).
Additionally, models such as this are generally limited to the prediction of one quantity for
one class of materials.

Thermal properties can be calculated using the harmonic approximation to calculate
the phonon vibrational modes. These phonon vibrational modes can be used to calculate
thermal properties extrapolated to finite temperatures using the quasi-harmonic approxi-
mation. Such calculations can be crucial for determining the properties of RE disilicates, as
thermal properties have been shown to be primarily driven by crystal structure bonding
rather than RE cation species [11,23,24]. These calculations are computationally expensive
and generally give the CTE on a volume basis rather than per lattice direction. However,
it is important to determine the CTE anisotropy (i.e., on a per-lattice direction basis) for
coating design, so alternative methods are required. These values can be calculated from
molecular dynamics simulations at the desired temperature.

Classical atomistic simulations and even machine learning approaches are possible
alternatives to expand the capabilities of theoretical simulations for EBC design [4,25].
Atomistic molecular dynamics simulations require fewer computational resources than
DFT on a per-atom basis and are capable of being used to compute a variety of interesting
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and useful chemical properties. However, to our knowledge, there are no suitable atomistic
potentials for rare-earth disilicates. As such, in this work, we use a machine learning deep
neural network approach to build an atomistic potential for classical molecular dynamics
simulations of Y2Si2O7.

To reduce the computational cost of the DFT calculations, significant recent efforts
to develop machine learning models to accelerate structure and property calculations
have been reported. Several excellent review articles of machine learning approaches
for materials have been published in recent years [25–32]. Multiple machine learning
approaches have been implemented to calculate the material properties from a variety of
descriptor feature vectors as inputs. Supervised learning regression models are particularly
popular to calculate a single property for a wide chemical space of materials, such as
SchnetPack [33], MEGNET [34], and CGCNN [35]. Another approach is to use machine
learning to fit a (deep) neural network potential (DNP) for atomistic simulations, which
enables the calculation of a variety of properties usually for a single material depending on
the type of MD simulation. Several software packages to develop DNPs exist, including
amp [36], ænet [37], ANI [38], M3GNet [39], ALIGNN [40], and DeePMD [41], among others.
These packages generally deviate in their descriptor representation of the chemical system.
For crystal lattices, popular representations include atom-centered symmetry functions
(ACSFs) [42,43], smooth overlap of atomic positions (SOAPs) [44], and graph-based feature
representations [35]. An extensive review of chemical representations for machine learning
was recently published [45].

These machine learning advancements show promise to greatly accelerate the calcula-
tion of material properties and the discovery of new materials for a variety of applications.
DNPs have been demonstrated to obtain near-DFT accuracy in a range of material sys-
tems [46–51]. They have also been shown to compare well in property calculations with
other methods of approximating the potential energy surface in system sizes that are
cost-prohibitive in DFT, such as empirical interatomic potentials [12,52] and cluster expan-
sions [53,54]. In this work, we implement one of these methods, the machine learning-based
fitting of a DNP for a promising EBC candidate, yttrium disilicate. We show that the DNP
can correctly predict the structures and properties for the three primary crystal phases of
Y2Si2O7: β-Y2Si2O7, γ-Y2Si2O7, and δ-Y2Si2O7. We discuss the use of the DNP to perform
the calculations of the properties that are intractable with DFT and for which no known
classical MD potentials exist. Finally, to test the transferability of the potential, we calculate
the crystal structure and thermal properties for a structure that was not included in the
DNP training dataset: α-Y2Si2O7.

2. Materials and Methods
2.1. Computational Methods
2.1.1. Density Functional Theory Simulations

Baseline first-principles simulations were performed using the Vienna Ab-Initio Sim-
ulation Package (VASP, version 5.4.4) implementation of plane-wave density functional
theory [55–58]. These calculations were employed with a plane-wave energy cutoff of
520 eV and a k-space integration mesh of 1500 k-points per reciprocal atom. Projector-
augmented wave (PAW) pseudopotentials were used to model the core electrons [59–61].
Valence electrons were modeled in some calculations with the Perdew–Burke–Ernzerhof
(PBE) exchange–correlation functional [62,63], while others used the PBE modified for
solids (PBEsol) functional. Initial geometries were obtained from the Materials Project
database and were optimized to a maximum residual force tolerance of 1 × 10−4 eV/Å on
any individual atom.

2.1.2. Deep Neural Network Interatomic Potential Training

The DeePMD-kit package (version 2.1.0) was utilized to generate the machine learning-
based atomistic potential [41]. DFT ab-initio molecular dynamics simulations were similarly
performed in VASP to generate the training data for the DeePMD-kit. However, the plane-



Materials 2024, 17, 286 4 of 17

wave cutoff energy was decreased to 400 eV and k-space mesh with a 0.24 Å−1 spacing
between k-points that was found to be sufficient [50]. The PBE exchange–correlation
functional was used in these calculations. The database was constructed iteratively using
adaptive training as performed in previous studies [47,49–51,64]. Briefly, using the first
iteration of the dataset, we generated three randomly seeded DNPs, sampled 100 ps MD
trajectories based on isothermal–isobaric (NPT) ensembles at various temperatures from
300 K to 2000 K, and selected configurations for further training that deviated from a set
force criterion (~0.2 eV/Å). We carried out DFT calculations on the selected structures
and used the additional data to enhance the dataset, and then generated the second
iteration of DNPs. The adaptive training was continued until no new configurations
were identified in this approach. In total, we have around 14,000 configurations for the
primitive unit cell of the β-phase, 4000 configurations for the primitive unit cell of the
γ-phase, and 1500 configurations for the primitive unit cell of the δ-phase. While more
configurations of β-Y2Si2O7 were included than γ- or δ-Y2Si2O7, we do not expect the
model to be biased to a particular crystal structure. Rather, we expect that the inclusion
of more configurations of the β-phase to lead to lower variance in the predicted forces
for that structure relative to the others. We note that no configurations for the α-phase
were included in the training data. Additionally, the database included 3000 configurations
obtained with the 2 × 2 × 2 supercell.

The deep neural network potentials (DNPs) were developed with the DeepPot-SE
method [65] as implemented in DeePMD-Kit [41]. A cut-off radius of 7 Å was used for
neighbor searching, and 2 Å was set for the distance in which the smoothening starts. The
embedding net was set to be 25 × 50 × 100 and the fitting net to be 240 × 240 × 240.
The neural network was trained using the Adam stochastic gradient descent method that
decreases exponentially from 0.001. The loss function prefactors for the energy, forces, and
virials were kept at constant values of 1, 10,000, and 10, respectively. These parameters were
found to be adequate and appropriate in our previous studies. The atomistic calculations
using the DNP were carried out using LAMMPS.

2.1.3. Molecular Dynamics Simulations

Classical molecular dynamics (MD) simulations were performed using the Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS, version stable_29Sep2021_
update3) [66]. MD simulations were run using supercells of 1 × 1 × 1 (β, γ: 22 atoms;
δ: 44 atoms), 2 × 2 × 2 (β, γ: 176 atoms; δ: 352 atoms), 3 × 3 × 3 (β, γ: 594 atoms;
δ: 1188 atoms), and 5 × 5 × 5 (β, γ: 2750 atoms; α, δ: 5500 atoms) multiples of the
conventional unit cells for each crystal phase. Simulations were performed in four steps,
using a 0.002 ps (2 fs) timestep for all steps. Firstly, a structure minimization was performed
allowing all cell lattice parameter and angle degrees of freedom to vary using the conjugate
gradient algorithm until the energy was converged to a tolerance of 1 × 10−4 eV. Secondly,
an equilibration run in the canonical (NVT) ensemble was performed for 100,000 timesteps
(200 ps). Thirdly, an equilibration run in the microcanonical (NVE) ensemble was performed
for 100,000 timesteps (200 ps). Fourthly, a production run in the isothermal–isobaric
(NPT) ensemble was performed for 1,000,000 timesteps (2 µs). Temperature and pressure
were maintained with the Nosé–Hoover thermostat and barostat, respectively, with a
temperature damping constant of 0.01 ps in the equilibrium runs and 10 ps in the production
run and a pressure damping constant of 1000 ps. Finally, a production run in the NVE
ensemble was performed for 1,000,000 timesteps (2 µs) to confirm full equilibration of
the system. There was negligible difference in the calculated bond lengths and radial
distribution functions between the NPT production trajectory and the NVE production
trajectory, providing further evidence that the MD simulations were fully equilibrated.

2.1.4. Phonon Calculations

Phonon and thermodynamic property calculations were performed using the finite-
displacement approach as implemented in the Phonopy package (version 2.31.1) [67]. A
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2 × 2 × 2 supercell was used for all phonon calculations. The quasi-harmonic approximation
as implemented in Phonopy was used to model thermodynamic properties at non-equilibrium
unit cell volumes [68]. The PhonoLAMMPS (version 0.8.3) package [69] was used to produce
the Phonopy results using the DNP and LAMMPS as the force constant calculator.

2.2. Experimental Methods

γ-Y2Si2O7 and δ-Y2Si2O7 were previously synthesized in an earlier manuscript by the
authors [24]. Briefly, Y2Si2O7 spray-dried powder obtained from Praxair, Inc. (99%) was
heat-treated at 1600 ◦C for 10 h resulting in single-phase γ-Y2Si2O7. To obtain single-phase
δ-Y2Si2O7, the as-received powder was heat-treated at 1700 ◦C for 5 h. α-Y2Si2O7 was
synthesized for this study using a sol–gel method. All precursors were obtained from
Alfa Aesar (>99%). Yttrium nitrate hydrate (Y(NO3)3·6H2O) and tetraethyl orthosilicate
(Si(OC2H5)4, TEOS) were used as precursors. Y(NO3)3·6H2O was mixed with deionized
water, and TEOS was mixed with ethanol in separate containers. The two containers were
then stirred together with hydrochloric acid (HCl) to produce a gel, which was dried
overnight at 60 ◦C and to produce a powder. The powder was then calcined at 1100 ◦C for
8 h to obtain α-Y2Si2O7. X-ray diffraction (XRD) scans of all three synthesized powders are
displayed in Figure 1.
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Figure 1. Powder X-ray diffraction scans for α- (black), γ- (blue), and δ-Y2Si2O7 (red) powders
obtained at room temperature. γ- and δ-phase powders were single phase and corresponding peaks
are indicated by triangle and diamond symbols, respectively. For the α-Y2Si2O7 scan, the triclinic α-
phase is indicated by star symbols, the yttrialite phase is indicated by square symbols, and the apatite
phase is indicated by circle symbols. β-phase CTE data were obtained from the high-temperature
scans of the δ-phase sample [24].

Differential scanning calorimetry (DSC) was utilized to measure the specific heat
capacity (CP) of the γ-, δ-, and α-Y2Si2O7 synthesized powders [70]. The experiments were
performed on a Netzsch STA 409 instrument using platinum crucibles with lids. An empty
crucible was heated with the same temperature program to obtain a temperature calibration
curve, and a sapphire standard was run to obtain a baseline curve for measurement. Sample
powders were weighed out between ~20 to 50 mg so that the mass of the sample was similar
to the mass of the standard. The powders were placed into the platinum crucibles and
pressed into compacts before analysis. The powders were measured from room temperature
to 1000 ◦C at a heating rate of 10 ◦C/min under flowing nitrogen at 50 mL/min.
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CTEs for β-Y2Si2O7, γ-Y2Si2O7, and δ-Y2Si2O7 were measured and reported in our
previous publication [24], with the experiments described in detail elsewhere [23,24]. CTEs
for α-Y2Si2O7 were measured for this manuscript. In brief, an Empyrean diffractometer
(Malvern Panalytical, Worcestershire, UK) was utilized to carry out in situ XRD scans of each
powder from room temperature to 1500 ◦C with an Anton Paar HTK2000N heating stage.
A standard CeO2 powder obtained from the National Institute of Standards Technology
(NIST) was used to conduct the temperature calibration on the instrument. The lattice
parameters at each temperature were estimated using Rietveld refinement in TOPAS
software (Bruker Corporation, Billerica, MA USA, version 5) [71]. CTEs for each lattice
direction were calculated as the slope of ∆L/L0 vs. ∆T. The average bulk CTEs of the
materials were estimated as 1/3 of the unit cell volumetric expansion (∆V/V0 vs. ∆T).

3. Results and Discussion
3.1. Lattice Parameters—Equilibrium Volume

A zero-pressure, 0 K geometry optimization was performed using the atomistic po-
tential to compare to the DFT-optimized crystal cell. These results are shown in Table 1.
The lattice constants calculated with both the PBE and PBEsol functionals are in good
agreement with the lattice parameters determined experimentally from the X-ray diffrac-
tion data [72–79]. The experimental values were all taken at atmospheric pressures, which
should have a negligible effect on the agreement between the simulated and experimental
results. However, there were slight differences between the two functionals. The PBEsol-
predicted lattice constants were slightly shorter than the experimental data in most cases,
while the PBE-predicted lattice constants were slightly longer than the experimental data.

Table 1. Calculated cell parameters for the β-, γ-, and δ-Y2Si2O7 conventional unit cell at 0 K. PBE is
the Perdew–Burke–Ernzerhof exchange–correlation functional, PBEsol is the PBE revised for solids
exchange–correlation functional. Experimental values were measured at 298 K [72–79].

Phase Theory a b c α β γ

β
C2/m

DFT (PBE) 6.914 9.063 4.781 90 101.97 90

DFT (PBEsol) 6.854 8.965 4.740 90 101.79 90

DNP (PBE *) 6.898 9.047 4.768 90 101.95 90

Ref. [72] 6.88 8.97 4.72 90 101.7 90

Ref. [78] 6.873 8.970 4.718 90 101.72 90

γ DFT (PBE) 4.753 10.901 5.633 90 96.18 90

P21/c DFT (PBEsol) 4.710 10.813 5.569 90 95.98 90

DNP (PBE *) 4.739 10.885 5.621 90 96.14 90

Ref. [73] 4.68824 (5) 10.84072 (9) 5.58219 (6) 90 96.0325 (3) 90

Ref. [74] 4.69 10.86 5.59 90 96.01 90

Ref. [75] 4.663 (5) 10.784 (21) 5.536 (5) 90 96.06 90

Ref. [76] 4.6881 (2) 10.8416 (5) 5.5824 (2) 90 96.035 (1) 90

Ref. [78] 4.685 10.842 5.583 90 96.046 90

Ref. [79] 4.6916 (4) 10.8521 (10) 5.5872 (5) 90 96.040 (3) 90

δ DFT (PBE) 13.802 5.087 8.196 90 90 90

Pna21 DFT (PBEsol) 13.619 5.027 8.121 90 90 90

DNP (PBE *) 13.772 5.074 8.186 90 90 90

Ref. [75] 13.69 (2) 5.020 (5) 8.165 (10) 90 90 90

Ref. [77] 13.81 5.02 8.30 90 90 90

Ref. [78] 13.663 5.020 8.150 90 90 90

* DNP was trained with AIMD simulations using the PBE functional.
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3.2. Bond Distances and Radial Distribution Functions

Since Y and Si only coordinate directly with O, the Y–O and Si–O radial distribution
functions (RDFs) were calculated for each of the 5 × 5 × 5 supercell MD trajectories every
200 K from 200 K to 2000 K. These results are shown in Figure 2. As expected, tall, narrow
peaks are indicated in the RDF plots at ~2.2 Å for Y–O and ~1.6 Å for Si–O, matching up
with their equilibrium bond lengths. Subsequent peaks at longer distances indicate the
crystalline nature of these materials (see Figures S1–S3 in the Supplementary Materials).
Breadth in these peaks is due to thermal fluctuations. It can also be seen from Figure 2 that
as the temperature increases, the peak height decreases and the width increases. This is
likely due to a “smearing” of interatomic distances due to thermal fluctuations averaged
over the trajectory. While there is some loss in peak definition at further distances with the
increasing temperature, there is not an indication of melting since peaks still exist. This
agrees with the melting temperature of Y2Si2O7, which is ~1830 ◦C (~2100 K) [80].

Materials 2024, 17, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 2. Radial distribution functions for Y–O and Si–O bonds from 200 K to 2000 K for the Y–O 
bonds in the (a) β-, (c) γ-, and (e) δ-phases of Y2Si2O7 as well as the Si–O bonds in the (b) β-, (d) γ-, 
and (f) δ-phases of Y2Si2O7 as extracted from molecular dynamics simulations using the developed 
interatomic potential. The vertical dashed lines are the bond lengths determined from XRD experi-
ments at room temperature. 

3.3. Thermal Properties 
Gibbs free energies (G) and constant pressure heat capacities (CP) were calculated 

using the quasi-harmonic approximation for all three phases of Y2Si2O7. These results are 
shown in Figure 3. These values were calculated for four supercell sizes, N × N × N, where 
N = 1, 2, 3, or 5 and compared to the DFT results utilizing either the PBE or PBEsol func-
tional. These values of N were selected for direct comparison to the DFT results and due 

Figure 2. Radial distribution functions for Y–O and Si–O bonds from 200 K to 2000 K for the Y–O
bonds in the (a) β-, (c) γ-, and (e) δ-phases of Y2Si2O7 as well as the Si–O bonds in the (b) β-,
(d) γ-, and (f) δ-phases of Y2Si2O7 as extracted from molecular dynamics simulations using the
developed interatomic potential. The vertical dashed lines are the bond lengths determined from
XRD experiments at room temperature.
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The Y–O and Si–O peaks for β-Y2Si2O7 and γ-Y2Si2O7 match very well with the
results obtained from diffraction experiments at 298 K. However, the peaks for δ-Y2Si2O7
(Figure 2e,f) are slightly lower than the experiment. This is potentially due to the large
spread in bond distances for these bonds in the δ-phase and the homogenization of these
interactions during the training of the pairwise DNP. Since the DNP is a pairwise potential,
it is likely that these bonds are homogenized to some degree during training, leading to a
smaller spread in the distribution of bond lengths. This is also possibly indicative of the
lack of influences considered in classical MD such as, i.e., electronic structure effects. While
there is some quantitative disagreement between the experimental and simulation results,
the qualitative trends in bond expansion are generally captured well. We are confident that
the analyzed bonds remained consistent throughout the simulation as no hydrogen atoms
were visually observed rotating into a new symmetrically equivalent site over the course of
a trajectory, as all remained in their initial sites.

3.3. Thermal Properties

Gibbs free energies (G) and constant pressure heat capacities (CP) were calculated
using the quasi-harmonic approximation for all three phases of Y2Si2O7. These results
are shown in Figure 3. These values were calculated for four supercell sizes, N × N × N,
where N = 1, 2, 3, or 5 and compared to the DFT results utilizing either the PBE or PBEsol
functional. These values of N were selected for direct comparison to the DFT results and
due to the previous literature examples using similar supercell sizes for DFT phonon
calculations [5,8,81–85]. While the calculation of additional properties may require even
larger supercells, the errors in the properties calculated in this work were seen to have
reasonably converged within this range of supercell sizes. The full set of results is shown
in the Supplementary Materials in Figures S4–S9. There is very good agreement between
all supercell sizes and the DFT-PBE results except for the 1 × 1 × 1, where it is likely
that finite-size effects are caused by interactions between atoms and their own periodic
images. There is deviation between the DNP results and DFT-PBEsol results; however, the
agreement between the DNP results and DFT-PBE is quite good. Since the DNP was trained
on DFT-PBE training data, this deviation is more indicative of the difference between
DFT-PBE and DFT-PBEsol than any shortcomings of the DNP. For the γ-phase, the CP is
larger for the cases where N = 2, 3, and 5 than the DFT-PBE results (Figure 3b). However,
the DNP results in those cases are actually closer to the experimental values obtained
from the literature [86–89]. This provides some evidence that using the larger unit cells
in the DNP calculations can improve the CP calculation results. Additionally, we see in
Figure 3c that for the δ-phase, the DNP does a better job of predicting the experimental
results than DFT. The reduction in computational expense using the DNP compared to DFT
allows for increased supercell sizes to minimize the finite-size effects for phonon frequency
calculations, and it can also enable the calculation of additional properties such as diffusion
constants at low gas concentrations (assuming the DNP is appropriately trained).
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DNP finite-displacement phonon calculations compared to DFT and experimental results, including
Sun2008 [86], Cordfunke1998 [87], Fabrichnaya2001 [88], and Kolitsch1992 [89].

3.4. Anisotropic Coefficients of Thermal Expansion

As stated in the Introduction, the CTE is an important design criterion for EBC design.
Because these materials can exhibit anisotropy in thermal expansion, it is necessary to
obtain the lattice direction-dependent CTE components rather than a bulk, volumetric
CTE. To this end, we used the potential to calculate the coefficient of thermal expansion
(CTE) of the three predominant crystal phases of Y2Si2O7 to compare with those in the
literature. Y2Si2O7 has specifically been shown in the literature to have anisotropic thermal
expansion [24,73,76]. Therefore, it is necessary to adequately describe the CTE for each of
the lattice directions. Several literature sources provide the mean linear CTE or bulk CTE,
which assumes isotropic expansion over the temperature range. Plots showing the lattice
expansion in the a, b, and c lattice directions along with comparison to the experimental
and literature data are shown in Figure 4 and Table 2. Additionally, comparisons of the
CTE values calculated at the different supercell sizes are available in the Supplementary
Materials in Figures S10–S12. While there are slight quantitative deviations between the
calculated data and experimental data, the general qualitative agreement is good between
the DNP and experiment. It is likely that this deviation could further be reduced by
increasing the size of the supercell or the simulated time.

Table 2. Coefficients of thermal expansion (×10−6 K−1) for β-, γ-, and δ-Y2Si2O7, including those for
the individual lattice constants and for the average linear bulk CTE.

Phase T Range [K] a
(×10−6 K−1)

b
(×10−6 K−1)

c
(×10−6 K−1)

Average Bulk Linear CTE
(×10−6 K−1)

β
C2/m

DNP 200–2000 7.45 4.98 0.89 4.33

Ref. [24] 298.15–1773.15 8.13 4.66 1.41 4.73

Ref. [73] 293.15–1473.15
293.15–1673.15

5.74
6.23

4.17
4.37

2.23
2.12

4.0
4.1

γ
P21/c

DNP 200–2000 6.89 6.83 0.79 4.77

Ref. [24] 298.15–1773.15 6.14 6.67 1.11 4.64

Ref. [73] 293.15–1473.15 0.69 5.90 5.17 3.9

Ref. [76] 504 2.2

Ref. [76] 1473 3.8

Ref. [86] 293–1527 3.9

Ref. [90] 293–1273 4.6

δ
Pna21

DNP 200–2000 11.80 11.48 3.92 9.20

Ref. [24] 298.15–1773.15 11.22 10.43 2.41 8.02

Ref. [73] 293.15–1473.15
293.15–1673.15

10.40
10.75

9.92
10.32

2.48
2.59

7.7
8.1
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dotted curve represents the fitted model from Dolan et al. [73]. Square, circle, and triangle markers
represent experimental data from Stokes et al. [24], Fukuda et al. [76], and Sun et al. [86], respectively.
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The slopes of the curves in Figure 4 give the CTE for each of the lattice directions.
Here, we calculated the CTE in each lattice direction for each crystal phase of Y2Si2O7 and
found that the calculated values matched well with the experimental results. A comparison
of the calculated and experimental CTEs is shown in [24,73,76,86,90]. In the β- and γ-
phases (Figure 4a,b), respectively), the CTE in the a- and b-directions was overpredicted
and the CTE in the c-direction was underpredicted. However, in the δ-phase (Figure 4c),
the potential overpredicts the CTE in all three lattice directions. We note here that even
though the DNP struggled to some degree to predict the interatomic bond lengths, as
seen in Figure 2, these errors generally average out over the span of the larger crystal
supercell from the phonon and CTE calculations, leading to generally good agreement in
these properties of interest.

3.5. Transferability

To inspect the transferability of the DNP, we calculated the crystal lattice parameters,
heat capacity, Gibbs free energy, and CTE of a crystal structure that was not included in the
DNP training dataset: α-Y2Si2O7. These results are shown in Table 3. While inclusion of
the α-Y2Si2O7 structure in the training dataset would likely lead to a more accurate model,
it is not always feasible to include every possible crystal structure in the training data,
whether due to computational resource limitations, structures being previously unknown,
etc. Therefore, we wanted to test the DNP on an unseen structure. Interestingly, the
DNP-predicted 0 K crystal structure lattice parameters for α-Y2Si2O7 were closer to the
experimental results from Dolan et al. [73] than the experiments performed as part of this
work. However, the discrepancies are small between the lattice parameters from all three
sets of data.

Table 3. Calculated cell parameters for the α-Y2Si2O7 conventional unit cell at 0 K. PBE is the
Perdew–Burke–Ernzerhof exchange–correlation functional, PBEsol is the PBE revised for solids
exchange–correlation functional. Experimental values were measured at 298 K [72–79].

Phase Theory a b c α β Γ

α

P1

DFT (PBE) 6.660 6.694 12.153 94.07 91.53 92.11

DFT (PBEsol) 6.593 6.616 12.00 94.47 91.08 91.84

DNP (PBE *) 6.655 6.693 12.162 94.50 91.21 91.89

Expt. † 6.581 6.633 12.021 94.53 89.03 88.23

Ref. [73] 6.5881(4) 6.6392(6) 12.031(1) 94.479(7) 90.946(7) 91.800(6)

* DNP was trained with AIMD simulations using the PBE functional. † This work.

Additionally, the thermodynamics properties calculated above were also calculated
for α-Y2Si2O7. These results are shown in Figures 5 and 6 and Table 4. The Cp predicted by
the DNP (Figure 5a) is very close to that predicted by the DNP for the other three crystal
structures in this work, but there is significant deviation from that determined from the
DSC measurements here. Further study is required to determine the accuracy of these
calculations. There is a similar discrepancy in the calculated CTE (Figure 6) compared
to the XRD measurements. In this case, the qualitative trends in the CTE anisotropy are
correctly predicted, but the quantitative values are less accurate than the three crystal
structures included in the DNP training dataset. These discrepancies likely indicate that a
more thorough training process is required for a more transferrable DNP model. Further
validation of the DNP on additional crystal structures with similar moieties to Y2Si2O7
such as yttrium monosilicate, yttria, and silica would provide additional evidence of model
transferability and will be the subject of a future study.
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Table 4. Coefficients of thermal expansion (×10−6 K−1) for α-Y2Si2O7, including those for the
individual lattice constants and for the average linear bulk CTE.

Phase T Range [K] a
(×10−6 K−1)

b
(×10−6 K−1)

c
(×10−6 K−1)

Average Bulk Linear CTE
(×10−6 K−1)

α

P1

DNP 200–2000 5.36 12.47 12.95 10.77

Expt.† 298.15–1373.15 5.36 8.49 9.33 7.72

Ref. [73] 293.15–1473.15 5.21 8.60 10.29 8.0
† This work.

4. Conclusions

In this work, we have developed an interatomic potential for Y2Si2O7 using a machine
learning framework trained on DFT data. This potential was used in classical MD simula-
tions to accurately reproduce thermodynamic properties calculated via finite-difference
method phonon calculations. While certain properties, especially the calculated interatomic
bond lengths, differed from the experimental results, the qualitative trends matched well,
and the DNP was still able to predict properties of interest for the EBC design accurately.
These results obtained orders of magnitude faster than state-of-the-art DFT calculations
and could therefore be used as a screening method prior to more costly calculations or
experiments. In addition, we used the potential to calculate the thermal expansion of
three predominant crystal phases of Y2Si2O7. These simulated results showed the inherent
anisotropy of the thermal expansion in each of the individual lattice directions. Finally,
to test the transferability of the DNP, we calculated the properties for α-Y2Si2O7. The
calculated results showed qualitative agreement with the trends from the experimental
data, but a more robust training is likely needed for quantitative agreement for structures
outside of the training dataset. The development of the DNP in this work enables future
calculations of the material properties for Y2Si2O7 using alternative statistical sampling
techniques such as Monte Carlo simulations or advanced MD sampling. These could be
applied to additional properties of interest such as phase stability or gas diffusivity that
would be computationally intractable with standard DFT methods. The results from these
simulations could provide insights and guide the experimental validation of properties for
which experimental data are scarce. Calculations of such properties using the DNP will be
the subject of future studies. As such, the DNP developed in this work can be used to aid in
and accelerate the computational design of EBCs for aerospace applications, thermal barrier
coatings for aerospace and land-based power generation, coatings for nuclear thermal
propulsion applications, and other related applications as well.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma17020286/s1, Figure S1: β-Y2Si2O7 radial distribution function
from 0 to 10 Å; Figure S2: γ-Y2Si2O7 radial distribution function from 0 to 10 Å; Figure S3: δ-Y2Si2O7
radial distribution function from 0 to 10 Å; Figure S4: Heat capacities (CP) calculated via the QHA for
β-Y2Si2O7 using DFT (including the PBE and PBEsol exchange-correlation functionals) and classical
MD and the DNP as the respective force calculators. For the DNP simulations, we compared supercells
of size N×N×N where N = 1, 2, 3, and 5; Figure S5: Gibbs free energies (G) calculated via the QHA for
β-Y2Si2O7 using DFT (including the PBE and PBEsol exchange-correlation functionals) and classical
MD and the DNP as the respective force calculators. For the DNP simulations, we compared supercells
of size N×N×N where N = 1, 2, 3, and 5; Figure S6: Heat capacities (CP) calculated via the QHA for
γ-Y2Si2O7 using DFT (including the PBE and PBEsol exchange-correlation functionals) and classical MD
and the DNP as the respective force calculators. For the DNP simulations, we compared supercells of
size N×N×N where N = 1, 2, 3, and 5; Figure S7: Gibbs free energies (G) calculated via the QHA for
γ-Y2Si2O7 using DFT (including the PBE and PBEsol exchange-correlation functionals) and classical
MD and the DNP as the respective force calculators. For the DNP simulations, we compared supercells
of size N×N×N where N = 1, 2, 3, and 5; Figure S8: Heat capacities (CP) calculated via the QHA for
δ-Y2Si2O7 using DFT (including the PBE and PBEsol exchange-correlation functionals) and classical MD
and the DNP as the respective force calculators. For the DNP simulations, we compared supercells of
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size N×N×N where N = 1, 2, 3, and 5; Figure S9: Gibbs free energies (G) calculated via the QHA for
δ-Y2Si2O7 using DFT (including the PBE and PBEsol exchange-correlation functionals) and classical MD
and the DNP as the respective force calculators. For the DNP simulations, we compared supercells of size
N×N×N where N = 1, 2, 3, and 5; Figure S10: Anisotropic coefficients of thermal expansion for the a (red),
b (black), and c (blue) directions of β-Y2Si2O7. Increasing N is represented by increasing dash opacity
and length. Ref. [73] indicates the empirical fit by Dolan, et al. [2]; Figure S11: Anisotropic coefficients
of thermal expansion for the a (red), b (black), and c (blue) directions of γ-Y2Si2O7. Increasing N is
represented by increasing dash opacity and length. Ref. [73] indicates the empirical fit by Dolan, et al. [2];
Figure S12: Anisotropic coefficients of thermal expansion for the a (red), b (black), and c (blue) directions
of δ-Y2Si2O7. Increasing N is represented by increasing dash opacity and length. Ref. [73] indicates the
empirical fit by Dolan, et al. [2].
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