Skip to main content
. 2024 Jan 8;10(1):19. doi: 10.3390/jimaging10010019
Algorithm 1 Train_test_evaluate
Input: X_train, X_test, y_train, y_test, models
Output: Score, Modelchoice
Begin
Writing a function to train, test, and evaluate models:
Creating the dataframe and initializing variables:
acc_M = 0
Modelchoice = ””
Score = DataFrame({“Classifier”: classifiers})
  j = 0
For each model in the models list
             model = i
             Training Phase:
             Train Model (X_train, y_train)
             Testing Phase:
             predictions = model.predict (X_test)
             Performance Evaluation:
             Metrics: Accuracy, Precision, Recall, F1-score, Matthews Correlation Coefficient,
             Mean Squared Error: Acc, Preci, Re_Sc, F1_S,Mcc,Mse =
             Classification_report(y_test, predictions).
             Saving model performance metrics:
             Score[j,”Accuracy”] = Acc; Score[j,”f1_score”] = F1_S; Score[j,”recall_score”] = re_sc
             Score[j,”matthews_corrcoef”] = Mcc; Score[j, “precision_score”] = Preci;
             Score[j, “Mse_score”] = Mse
             Identifying the best model
             if acc_M < acc then
                     acc_M = acc
                     Modelchoice = model
             End
           j = j + 1
      Endfor
      return Score, Modelchoice
End Function