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Abstract: This study investigated the antioxidant, antimicrobial, and anti-atopic dermatitis (AD)
effects of a novel peptide (CP) derived from a Chromis notata by-product hydrolysate. Alcalase,
Flavourzyme, Neutrase, and Protamex enzymes were used to hydrolyze the C. notata by-product
protein, and the 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical-scavenging
activity was measured. Alcalase hydrolysate exhibited the highest ABTS radical-scavenging activity,
leading to the selection of Alcalase for further purification. The CHAO-1-I fraction, with the high-
est ABTS activity, was isolated and further purified, resulting in the identification of the peptide
CP with the amino acid sequence Ala-Gln-Val-Met-Lys-Leu-Pro-His-Arg-Met-Gln-His-Ser-Gln-Ser.
CP demonstrated antimicrobial activity against Staphylococcus aureus, inhibiting its growth. In a
2,4-dinitrochlorobenzene (DNCB)-induced AD-like skin model in mice, CP significantly alleviated
skin lesions, reduced epidermal and dermal thickness, and inhibited mast cell infiltration. Moreover,
CP suppressed the elevated levels of interleukin-6 (IL-6) in the plasma of DNCB-induced mice. These
findings highlight the potential of CP as a therapeutic agent for AD and suggest a novel application
of this C. notata by-product in the fish processing industry.

Keywords: Chromis notata; by-product hydrolysate; antioxidant peptide; antimicrobial activity;
atopic dermatitis

1. Introduction

Atopic dermatitis (AD) is a common, chronic, and inflammatory skin disease character-
ized by itching and recurrent eczematous lesions [1]. The complex interplay of susceptibility
genes encoding skin barrier molecules, inflammatory response elements, environmental
factors, and infectious agents, particularly Staphylococcus aureus, leads to an imbalance in
the microbial community residing on AD skin [2,3]. This, along with the altered immune
state of the host, plays a crucial role in the pathophysiology of AD [4–6]. The majority of
patients with AD exhibit clusters of high-density S. aureus on both affected and unaffected
skin areas. The presence of S. aureus is known to be associated with the exacerbation of
AD, and concerns have arisen due to the prevalence of methicillin-resistant strains (MRSA),
indicating antibiotic resistance [7,8].

Although the etiology of AD is not fully understood, recent advancements have shed
light on oxidative stress as a contributing factor. Oxidative stress, defined by an imbalance
between the generation and removal of reactive oxygen species (ROS), is implicated in
various diseases, including psoriasis, asthma, cystic fibrosis, neurodegenerative disorders,
and cancer [9–13]. Evidence suggests that oxidative stress plays a role in AD, and it is
positively correlated with disease activity [14–17].
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With the development of the fishing and aquaculture industries, there has been a
substantial increase in the production of seafood, leading to the generation of large amounts
of by-products such as fish skin, bones, and scales [18,19]. Approximately 55% to 65% of
the total weight of fish catches is estimated to be discarded as by-products, posing serious
environmental issues when disposed of on land or in the oceans [20,21]. Recent research
has focused on exploring high-value-added materials through the discovery of functional
ingredients and bioactive compounds from fishery by-products [22–29].

Peptides generated by protein digestion exhibit biological activity, and their release
occurs during gastrointestinal digestion or food processing [30]. Once liberated, these
bioactive peptides can manifest various physiological activities based on their structure,
composition, and sequence [31]. Consequently, there is a growing interest in utilizing these
peptides as functional food and pharmaceutical ingredients for maintaining health [32].
The functional properties of proteins can be enhanced through controlled enzymatic hy-
drolysis under specific conditions [33]. Several studies have reported the potential use of
antioxidant peptides extracted from marine organisms and their application as alternative
antioxidants [23,34–36].

Chromis notata, a tropical fish species distributed along the coasts of South Korea,
Jeju Island, Japan, and the East China Sea, is known for its representation in tropical and
subtropical regions [37]. While foundational research on C. notata has primarily focused
on morphological characteristics [37], molecular phylogenetics [38], spawning times, and
reproductive seasons [39], functional studies using C. notata remain scarce.

The quantity of by-products from fishery processing varies depending on the species,
size, season, and fishing grounds [40–42]. Approximately 41.5% of fish constitute by-
products, including heads, frames, internal organs, opercula, trimmings, blood, and skin,
with only 15% of these by-products considered suitable for human consumption [43].
In the case of C. notata, parts such as the head, tail, bones, etc., excluding the trunk,
remain underutilized. Leveraging these by-products of C. notata can minimize waste and
pollution, thereby reducing environmental impacts and enhancing economic benefits in
the industry [44,45]. Notably, C. notata heads contain bioactive proteins and peptides [43].
Interestingly, many researchers emphasize the recovery of bioactive peptides from fish
excrement/by-products due to their high-quality proteins, proving the potential of these
by-products as a candidate source for harvesting bioactive peptides [29].

Therefore, this study aimed to isolate novel antioxidant peptides from the head portion
of C. notata and verify their antioxidant and anti-atopic efficacy in a 2,4-dinitrochlorobenzene
(DNCB)-induced AD animal model.

2. Results
2.1. Yield of Hydrolysates from Chromis notata By-Product Protein and Selection Based on ABTS
Radical Scavenging

The results of the yield of hydrolysates and 2,2′-azino-bis(3-ethylbenzothiazoline-6-
sulfonic acid) (ABTS) radical-scavenging activity from C. notata head protein are presented
in Table 1. Using Alcalase, Flavourzyme, Neutrase, and Protamex enzymes, the yield of
hydrolysates from C. notata head protein was 68.72%, 34.14%, 49.71%, and 61.31%, respec-
tively, with Alcalase showing the highest yield. The ABTS radical-scavenging activity was
measured to evaluate antioxidant activity. The RC50 values, representing a 50% reduction
in the concentration of radicals, were 102.62 ± 5.63, 260.48 ± 3.40, 605.61 ± 220.58, and
175.64 ± 6.98 µg/mL for Alcalase, Flavourzyme, Neutrase, and Protamex hydrolysates,
respectively. Among them, the Alcalase hydrolysate exhibited the most significant ABTS
radical-scavenging activity and was selected for further investigation.
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Table 1. Yields and RC50 values for ABTS radical-scavenging activities of four types of enzymatic
extracts from C. notata by-product.

Enzymes Alcalase Flavourzyme Neutrase Protamex Vit.C

Yield (%) 68.72 34.14 49.71 61.31 -

RC50 (µg/mL) 102.62 ± 5.63 d 260.48 ± 3.40 b 605.61 ± 220.58 a 175.64 ± 6.98 c 7.17 ± 2.02 e

Vit. C was used as positive control. All values are expressed as mean ± SD. Different letters are significantly
different at p < 0.05 according to Duncan’s multiple range test.

2.2. Purification of Antioxidant Peptides from C. notata By-Product Alcalase Hydrolysate

The peptide separation process was carried out using the Alcalase hydrolysate from
the head of C. notata, which exhibited the highest ABTS radical-scavenging activity. In
the first step, separation was performed using a 3500 Da dialysis membrane to divide the
sample into the inner (CHAI: C. notata Head Alcalase Inner membrane,≥3500 Da) and outer
(CHAO: C. notata Head Alcalase Outer membrane, <3500 Da) membranes. The ABTS radical
RC50 values were determined as 207.61 and 82.14 µg/mL for the CHAI and CHAO fractions,
respectively. CHAO, showing the highest ABTS radical-inhibition activity, was selected for
further investigation (Figure 1A). CHAO underwent a separation process using fast protein
liquid chromatography (FPLC) equipped with a GPC column. Three fractions, CHAO-1,
CHAO-2, and CHAO-3, were collected, and their ABTS radical-scavenging abilities were
measured. Among them, CHAO-1 demonstrated the highest activity with an RC50 value of
32.14 µg/mL, making it the chosen fraction for the next step (Figure 1B). Further separation
of CHAO-1 was performed using high-performance liquid chromatography (HPLC) with
a C18 column, resulting in two sub-fractions, CHAO-1-I and CHAO-1-II. Measurement
of the ABTS inhibition activity for these sub-fractions revealed that CHAO-1-I had the
highest antioxidant activity with an RC50 value of 5.12 µg/mL (Figure 1C). To obtain pure
peptides, CHAO-1-I underwent purification using HPLC equipped with a GPC column
(Figure 1D). The amino acid sequence of the purified peptide, as determined by the Milligen
6600 protein sequencer, was Ala-Gln-Val-Met-Lys-Leu-Pro-His-Arg-Met-Gln-His-Ser-Gln-
Ser. This peptide was named CP (C. notata By-Product Peptide). The confirmed peptide was
synthesized by A&Pep Co., Ltd. (Cheongju-si, Chungcheongbuk-do, Republic of Korea)
for antimicrobial and animal experiments.
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polarity and intramolecular bonding (Figure 2C). Net projections are used for the same 
structures as wheels but provide a different perspective to the visualization of the helixes 
(Figure 2C, left panel). At least two chains must be specified as a homodimer (Figure 2D). 
These results suggest that CP peptides are likely to adopt α-helix-dominated confor-
mations upon interactions with bacterial biomembranes, and the antimicrobial action of 
the peptides could be anticipated via their amphipathic helical properties. 

 

Figure 1. Purification of Alcalase hydrolysate. (A) FPLC pattern of hydrolysate by 3500 Da dialysis
membrane, and the ABTS radical-scavenging activities (lower panel) of the fractions. (B) FPLC
pattern on GPC column of the CHAO active fraction, and the ABTS radical-scavenging activities
(lower panel) of the fractions. (C) Reversed-phase HPLC pattern of the CHAO-1 active fraction, and
the ABTS radical-scavenging activities (lower panel) of the fractions. (D) HPLC pattern with a GPC
column of the CHAO-1-I active fraction. All values are expressed as mean ± SD. Different letters are
significantly different at p < 0.05 according to Duncan’s multiple range test.

2.3. Structural Characterization of C. notata By-Product-Derived CP Peptide

Figure 2A shows the 3D virtual structure of the CP peptide. Figure 2B shows the
synthesis results of the CP peptide, the purity of which was over 98%. The wheel and net
projections have been proposed to represent in two dimensions the tridimensional helical
structures and facilitate the observation of their properties, especially in terms of residue
polarity and intramolecular bonding (Figure 2C). Net projections are used for the same
structures as wheels but provide a different perspective to the visualization of the helixes
(Figure 2C, left panel). At least two chains must be specified as a homodimer (Figure 2D).
These results suggest that CP peptides are likely to adopt α-helix-dominated conformations
upon interactions with bacterial biomembranes, and the antimicrobial action of the peptides
could be anticipated via their amphipathic helical properties.
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Figure 2. Structural characterization of C. notata by-product derived from the CP peptide.
(A) Chemical structure of the CP peptide. (B) Synthesis results of C. notata by-product-derived
CP peptide. (C) An example of a helical wheel diagram illustrated for the CP peptide, showing the
net projection (left panel) and the wheel projection (right panel) for the CP peptide. (D) Antiparallel
alignment of two helical wheels of the CP peptide.

2.4. Antimicrobial Activity of CP

To assess the antimicrobial activity of CP, an agar disk diffusion assay was conducted
(Figure 3A). The diameter values of the inhibition zones indicated that CP could inhibit
the growth of S. aureus. The diameter of the inhibition zones at CP concentrations of 1,
2, and 4 mM was approximately 9, 11, and 16 mm, respectively. The broad-spectrum
antibiotic penicillin was used as a positive control. The growth of S. aureus at various CP
concentrations (1.25, 2.5, and 5 mM) was observed, and the bacterial density measured at
490 nm was found to correlate with the antimicrobial effect of CP (Figure 3B). As shown
in Figure 2B, in the absence of CP (Control), S. aureus exhibited a normal growth curve
representing lag, exponential, stationary, and decline growth phases within 24 h. With
the addition of CP at 1.25 and 2.5 mM, the late exponential growth phase of the S. aureus
growth curve was delayed. Upon treatment with 5 mM CP, a significant inhibition of
S. aureus growth was observed within 24 h.
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2.5. Body Weight and Histopathological Effects of CP in DNCB-Induced AD Mouse Model

A DNCB-induced AD mouse model was established through a two-step process.
In the first step, skin sensitization was induced by applying 1% DNCB to mouse skin.
Subsequently, in the second step, repeated applications of 0.5% DNCB were performed.
On the final day, which was the 29th day, there were no significant differences in body
weight among the groups, as illustrated in Figure 4A. To evaluate the effects of CP in
alleviating skin lesions observed in AD, a DNCB-induced AD mouse model was employed.
The reduction in erythema, inflammation, and hyperkeratosis by CP treatment for 21 days
was distinctly observed in the CP-treated group compared to the DNCB group (Figure 4B).
Mouse skin was stained with Masson’s Trichrome to assess the impact of CP on skin
and epidermal thickness (Figure 4C). The thickness of the epidermis and dermis was
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measured using ImageJ software (Version 1.54h). The thickness of the epidermis and dermis
significantly increased in the DNCB group compared to the normal group (## p < 0.01). In
contrast, the thickness of the epidermis and dermis significantly decreased in the CP group
compared to the DNCB group (** p < 0.01) (Figure 4E,F). To measure the extent of mast cell
infiltration, skin tissues were stained with toluidine blue (Figure 4D). Mast cell infiltration
significantly increased in the DNCB group compared to the normal group (## p < 0.01). The
number of mast cells significantly decreased in the CP group compared to the DNCB group
(** p < 0.01) (Figure 4G). Notably, mast cell infiltration showed a superior effect in the CP
group compared to the positive control Terfenadine group (* p < 0.05).
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severity of inflammatory skin lesions. Photographs were taken on day 28. (C,E,F) The thicknesses
of the epidermis and dermis were examined by Masson’s trichrome staining of the skin sections.
(D) The infiltration of mast cells in the dermis was examined by toluidine blue staining of the skin
section. (G) The mast cells were counted in 3 fields. All results are shown as the mean ± SD
(n = 5 per group). ## p < 0.01 compared to the control group. * p < 0.05 and ** p < 0.01, compared to
the DNCB group. Normal, untreated group; DNCB, DNCB-sensitized group; CP, 1 mg CP-treated
group; Terfenadine, 0.1 mg Terfenadine-treated group; E, epidermal thickness; D, dermal thickness.

2.6. Effects of CP on Serum IL-6 Levels in the DNCB-Induced AD Mouse Model

The impact of CP on interleukin-6 (IL-6) levels in mouse serum was assessed using
an enzyme-linked immunosorbent assay (ELISA). Results revealed that DNCB treatment
significantly increased (## p < 0.01) IL-6 levels compared to the normal group. How-
ever, CP exhibited a substantial inhibitory effect on the elevated IL-6 levels induced by
DNCB (Figure 5). These findings suggest that CP attenuated mast cell activation, reduced
skin thickness in AD-like mouse skin, and lowered cytokine levels in the blood induced
by DNCB.
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3. Discussion

The amount of seafood by-products discarded in the seafood processing industry
ranges from 50% to 75% of the total weight, varying with species, size, aquaculture con-
ditions, and seasons [39]. Utilizing fish by-products presents significant opportunities for
the seafood processing industry, providing a chance to develop substantial production
opportunities. This not only has the potential to generate additional income but also re-
duces disposal costs and prevents pollution [46]. Fish by-products contain proteins, fats,
and amino acids, which can be obtained through protease hydrolysis [47]. Hydrolysates
of fish proteins have proven to be a major source of bioactive peptides, showing promise
in nutritional and pharmaceutical applications. Importantly, this approach is not only
cost-effective but has also been demonstrated to minimize pollution resulting from fish
waste [29,48].

In this study, we investigated the antioxidative, antimicrobial, and anti-AD effects of a
novel peptide, CP, derived from C. notata by-product head hydrolysate. Initially, Alcalase
hydrolysate, which exhibited the highest antioxidant effect among the four hydrolysates
tested, was chosen for peptide isolation. Alcalase, used in the production of Alcalase
hydrolysate, primarily cleaves proteins in the middle of the amino acid chain [8,9]. Its
broad range of recognizable amino acids catalyzes protein hydrolysis reactions, producing
hydrolysates with many small peptides known for their higher antioxidative potential and
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other physiological activities across various tissues [49]. Consistent with previous reports,
our results demonstrated superior antioxidative activity in the CHAO < 3500 Da fraction
(Figure 1A).

Subsequently, through separation and purification processes, we selected the CHAO-
1-I fraction, exhibiting the highest antioxidative activity, and obtained the pure peptide
CP with the amino acid sequence Ala-Gln-Val-Met-Lys-Leu-Pro-His-Arg-Met-Gln-His-
Ser-Gln-Ser. Biologically active peptides are defined by specific protein fragments that
can positively impact bodily functions or conditions, ultimately influencing health [50].
Short peptides, often characterized by their multifunctional properties, are reported to
significantly affect absorption across the intestinal epithelium and utilization in targeted
tissues [51]. Our findings support previous reports, showing higher antioxidative activity
in the CHAO < 3500 Da fraction (Figure 1A). The size of the active sequence influences both
the antioxidative potential and other physiological properties of peptides. The size of active
sequences can vary from two to twenty amino acid residues, with many peptides exhibiting
multifunctional characteristics [52]. Antioxidative activity has been associated not only
with specific amino acid sequences but also with the presence of highly hydrophobic amino
acids such as Leu, Met, and Ile [53]. Particularly, Met has been recognized for its exceptional
antioxidative effects [54]. Therefore, we attribute the antioxidative activity of CP to the
inclusion of Met, which contributes to its high activity.

Helical wheels are a standard way to predict protein sequence segments with either
helical or non-helical potential. Helices are one of the most common secondary structures
found in peptides and proteins. The wheel projection is mostly useful for visualizing
the helix regions by peptide properties, namely acidity/basicity and the ability to form
hydrophilic (hydrogen) or hydrophobic bonds [55]. To graphically represent these in-
tramolecular interactions, different projections of the secondary structures of peptides have
been created, most notably the wheel (Schiffer–Edmundson) and net projections [56].

Antimicrobial peptides (AMPs) are emerging as promising novel antimicrobials due
to their mechanisms involving interactions with bacterial cell walls and membranes [57].
AMPs can be generated through various methods, including chemical modification [58],
microbial fermentation [59], and enzymatic protein hydrolysis [60]. Alcalase has been
utilized to produce biologically active peptides from diverse sources, such as bovine
skeletal muscle proteins [61], whey proteins [62], and canola proteins [63], known to release
smaller active subunits with enhanced antimicrobial activity by cutting high-molecular-
weight proteins [64,65]. This optimization generates effective antimicrobial peptides that
may be identified as potential antimicrobials [66–68]. We confirmed the inhibitory effect
of CP on S. aureus to validate its antimicrobial activity. CP demonstrated the ability to
inhibit the growth of S. aureus, indicating its property of delaying or impeding bacterial
growth. The antimicrobial effect is mainly attributed to positively charged amino acids
such as His, Lys, and Arg. Lys and Arg, in particular, can exhibit antimicrobial activity
against bacteria and other microorganisms [69]. The antimicrobial effect of CP is likely due
to these amino acids.

Inflammation leading to thickened skin is a characteristic lesion of AD, resulting from
pathological inflammatory stimuli and impaired epidermal barrier function. Therefore,
for the treatment of AD, we focused on restoring immune responses and preventing skin
lesions in an AD mouse model. Local administration of CP demonstrated anti-AD effects
in DNCB-induced mice. The in vivo efficacy of CP was tested using a DNCB-induced
AD mouse model. DNCB sensitizes the epidermis similar to AD skin lesions, causing
severe erythema, inflammation, scaling, and removal of the stratum corneum, allowing us
to model the pathological features of AD. After local administration of CP, the recovery
of skin lesions was consistently noticeable and significant compared to DNCB-induced
mice until the end of the experiment. AD is an inflammatory skin disorder characterized
by epidermal distribution and infiltration of immune cells. The inhibition of epidermal
acanthosis and infiltration of inflammatory cells are pathological characteristics of AD skin
lesions. Both features were visualized through histological analysis in the DNCB-induced
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model. CP suppressed epidermal acanthosis and infiltration of inflammatory cells (Figure 4).
Cytokines secreted by Th1 and Th2 cells promote the development of AD [70,71]. Th2
cells predominate in allergic inflammation in the acute phase of AD, leading to increased
expression of IL-6 [72]. In our study, IL-6 levels significantly increased in the serum of mice
with DNCB-induced AD, while CP significantly reduced IL-6 production (Figure 5).

These results indicate that CP, an antioxidative and antimicrobial peptide derived
from C. notata by-products, exhibits effective therapeutic effects in an AD mouse model.
The discovery of novel peptides from C. notata by-products suggests new possibilities for
utilizing by-products in the seafood processing industry. Moreover, the potential use of CP
as a treatment for dermatitis through its antioxidative and antimicrobial effects is implied.

4. Materials and Methods
4.1. Experimental Materials

The following reagents were purchased from Sigma-Aldrich Chemical Co. (St. Louis,
MO, USA) and used as received: ABTS, potassium persulfate, acetonitrile, dimethyl sul-
foxide (DMSO), penicillin G, acetone, DNCB, and Terfenadine. Phosphate-buffered saline
(PBS) was obtained from Biosesang Co. (Yongin-si, Gyeonggi-do, Republic of Korea) and
used in the experiments. The enzymes Alcalase, Flavourzyme, Neutrase, and Protamex
were purchased from Novozyme Co. (Bagsvaerd, Denmark). The 3500 Da dialysis mem-
brane was acquired from Spectrum Labs Co. (Gardena, CA, USA) and utilized in the
study. Acetonitrile was procured from J.T. Baker Co. (Phillipsburg, NJ, USA). Reagents for
microbial culture, including nutrient broth and nutrient agar media, were sourced from BD
DIFCO Co. (Franklin Lakes, NJ, USA). The IL-6 ELISA kit used was obtained from R&D
Systems Co. (Minneapolis, MN, USA).

4.2. Preparation of Enzymatic Hydrolysate from C. notata By-Products

In this study, waste heads of C. notata were collected from the Fish Market on Jeju
Island in Korea and utilized to prepare enzymatic hydrolysates for experimental samples.
The collected heads of C. notata were freeze-dried using a freeze dryer (Vision, Daejeon,
Republic of Korea) and subsequently ground into a powder using a grinder. The obtained
powder was then utilized as a substrate for enzymatic hydrolysis for further processing. A
mixture was prepared by adding 50 mL of distilled water at pH 7.0 to 1 g of the powdered
C. notata heads, along with 20 mg/mL of enzymatic solution and 40 mM sodium sulfite
(Na2SO3). The enzymatic hydrolysis process was carried out at 50 ◦C in a shaking incubator
for 8 h, followed by termination of the enzymatic reaction at 100 ◦C. The resulting enzymatic
hydrolysate was filtered using Whatman No. 41 filter paper (Whatman Ltd., Maidstone,
Kent, UK), and the filtrate was then freeze-dried using a freeze dryer (Vision, Daejeon,
Republic of Korea) to obtain a powdered form after grinding. The powder was stored in a
freezer until further use. The enzyme and conditions used in the experiment are shown in
Table 2.

Table 2. The optimum hydrolysis conditions of various enzymes.

Enzymes pH Temperature (◦C) Substrate:Enzyme

Alcalase 7.0 50.0 50:1

Flavourzyme 7.0 50.0 50:1

Neutrase 7.0 50.0 50:1

Protamex 7.0 50.0 50:1

4.3. Measurement of ABTS Radical-Scavenging Activity in Enzymatic Hydrolysates

The ABTS radical-scavenging activity of the enzymatic hydrolysate from C. notata
heads was measured using the method adapted from Re et al.’s ABTS+· cation decoloriza-
tion assay [73]. The ABTS radical solution used in the experiment was prepared by mixing
7 mM ABTS and 2.45 mM potassium persulfate in equal amounts and allowing the reaction
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to take place at room temperature (RT) in the dark for 24 h, resulting in the generation of
ABTS+·. The generated ABTS radical solution was diluted with PBS (pH 7.4) to achieve
an absorbance value of 0.70 (±0.02) at 732 nm. Enzymatic hydrolysates, diluted with PBS
at various concentrations, were mixed with 180 µL of the prepared ABTS radical solution,
and after a reaction time of 1 min, the absorbance was measured at 732 nm to assess the
radical-scavenging activity.

4.4. Peptide Isolation from Alcalase Hydrolysate of C. notata By-Product

To isolate peptides from the high-ABTS activity Alcalase enzymatic hydrolysate of C.
notata by-products, a 3500 Da dialysis membrane was initially employed to separate the
sample inside and outside the membrane for one day. After freeze-drying, the sample was
further fractionated at a flow rate of 0.5 mL/min using FPLC equipped with a desalting
column to examine the molecular weight distribution. The sample outside the 3500 Da
dialysis membrane, showing superior ABTS activity, was prepared at a concentration of
5 mg/mL. Using FPLC equipped with a GPC (SuperdexTM 30 Increase 10/300 GL) column
at a flow rate of 0.5 mL/min, three fractions were obtained. These fractions were freeze-
dried, and their ABTS radical-scavenging activity was measured. The most active CHAO-1
fraction was further separated into CHAO-1-I and CHAO-1-II fractions using HPLC with a
C18 column (ZORBAX SB-C18, 4.6250 mm, 5 µm). After freeze-drying, the ABTS radical-
scavenging activity was measured, revealing that CHAO-1-I exhibited superior activity.
The highly active CHAO-1-I fraction was confirmed to be a single peak using HPLC with a
GPC (YMC-Pack Diol-60, 4.6 × 250 mm, 5 µm) column.

4.5. Amino Acid Sequence Analysis and Synthesis

The amino acid sequence of the isolated peptide was determined using the automated
Edman degradation method with the Protein Sequencer (PPSQ-51A, Shimadzu, Kyoto,
Japan), which allowed for sequence analysis starting from the N-terminus.

4.6. S. aureus Cultivation

For this study, the bacterial strain used was S. aureus (ATCC 6538), obtained from the
Korean Collection for Type Cultures. The growth media for bacterial cultivation consisted
of nutrient broth and agar, which were sterilized at 121 ◦C for 15 min prior to use. The
nutrient broth was prepared by dissolving 10 g of peptone, 5 g of beef extract, and 5 g of
sodium chloride in 1000 mL of DW. The pH was adjusted to 7.2 ± 0.2. The agar medium
was prepared by adding 15 g of agar to the above nutrient broth composition per liter. The
entire mixture was then autoclaved for sterilization. Bacterial strains were cultured at 37 ◦C
in an incubator for experimental purposes.

4.7. Antimicrobial Activity Measurement of Peptides Using the Agar Paper Disc Method

S. aureus cultured in nutrient broth medium was diluted onto agar plates to achieve an
optical density at 600 nm (OD600) of 0.1 (corresponding to 1 × 108 CFU/mL). Petri dishes
(87 × 15 mm) were sterilized and filled with agar medium for the cultivation of S. aureus.
The agar medium composition was prepared according to the detailed composition and
concentrations referenced in Section 4.6. Subsequently, 100 µL of the diluted bacterial
culture was evenly spread onto each plate. Sterilized paper discs (8 mm, Advantec)
were then placed uniformly on the agar surface. Peptide solutions, prepared at different
concentrations, were applied onto the paper discs in 20 µL volumes. The plates were then
incubated at 37 ◦C for 24 h, and the antimicrobial activity was measured by assessing the
size of the inhibition zone (mm) around the paper disc.

4.8. Determination of Minimum Inhibitory Concentration (MIC) of Peptides

To determine the MIC of the peptides, an adapted method based on Soares et al. [74]
was employed. Solutions of the peptides at various concentrations were prepared in
nutrient broth medium, and 180 µL of each solution was dispensed into wells 2 to 11 of
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a 96-well plate. Liquid growth medium (200 µL) was added to well 1, and 180 µL was
added to well 12. Subsequently, S. aureus cultured in nutrient broth medium was diluted to
achieve an optical density at 600 nm (OD600) of 0.1. Prior to measurement, the 96-well plate
was shaken, and 20 µL of the diluted bacterial culture was added to wells 2 through 12 of
the plate. The plate was then incubated at 37 ◦C, and absorbance readings at 490 nm were
taken at 0, 2, 4, 6, 8, 12, and 24 h to monitor bacterial growth. The concentration at which
bacterial growth was no longer observed was determined as the MIC value.

4.9. DNCB-Induced Atopic Dermatitis (AD) Mouse Model

In vivo experiments were conducted with the approval of the Institutional Animal
Care and Use Committee (Approval: DKU-23-042) at Dankook University, following the
guidelines for the care and use of experimental animals. Six-week-old male BALB/c mice
were obtained from DBL (Eumseong, Republic of Korea) for the study. The mice were
housed in a controlled animal facility with a temperature of 23 ± 2 ◦C and humidity of
50 ± 10% during the experiment. They were provided with standard chow and water
for 10 days to stabilize before being divided into four groups. The groups included a
normal group, an atopic dermatitis-induced group (DNCB), and two treatment groups
post-atopic dermatitis induction, one treated with CP peptide (1 mg/200 µL) and the other
with Terfenadine (0.1 mg/200 µL). Each group consisted of five mice.

Atopic dermatitis induction was performed using methods adapted from Kim et al. [75],
Lee and Woo [76], and Jeon et al. [77]. A 3:1 mixture of acetone and olive oil containing
0.5% or 1% DNCB was prepared as the sensitizer solution. The samples were prepared
using a solvent mixture of olive oil and PBS in a 1:9 ratio. After shaving and a 24 h stabi-
lization period, the AD-induced group and the sample treatment groups were treated with
1% DNCB (200 µL) on the back once daily for three days. Subsequently, after a latent period
of three days, a secondary sensitization was performed by applying 0.5% DNCB (200 µL)
to the back three times a week for three weeks. The samples were applied concurrently
with the secondary sensitization, 2 h after the application of 0.5% DNCB. The non-induced
atopic dermatitis group was treated with a solvent mixture of olive oil and PBS (1:9). All
mice were sacrificed on the 29th day of the experiment (Figure 6).
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Figure 6. Experimental procedure of the model of DNCB-induced atopic dermatitis. The mice in
the Normal group were treated with 9:1 PBS/olive oil. AD was induced by DNCB in BALB/c
mice. Following initial sensitization with 1% DNCB, the BALB/c mice were dorsally treated with
0.5% DNCB 3 times a week for 3 weeks. CP and terfenadine preparations of 1 and 0.1 mg in 200 µL of
PBS/olive oil (9:1) were applied on the dorsal skin of the mice in the CP and terfenadine groups every
day for 21 days. Normal, untreated group; DNCB, DNCB-sensitized group; CP, CP 1 mg treated
group; Terfenadine, Terfenadine 0.1 mg treated group.

4.10. Histological Evaluation in the AD Animal Model

On the day of mouse sacrifice, skin tissue samples were collected from the four groups,
fixed in 10% formalin solution, embedded in paraffin, and sliced into 4 µm thick sections.
The sections were then subjected to Masson’s trichrome and toluidine blue staining to
observe changes in the thickness of the epidermis and dermis, as well as infiltration of
inflammatory cells [78].
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4.11. Changes in Serum IL-6 Levels in the Atopic Dermatitis Animal Model

Blood collected on the day of mouse sacrifice was centrifuged at 13,000× g, 4 ◦C, for
15 min to separate the serum. The concentration of IL-6 in the serum was measured using a
mouse ELISA kit. The experiment was conducted following the recommended procedures
provided by the kit.

4.12. Statistical Analysis

The data are presented as mean ± standard deviation (SD). Statistical significance
was analyzed using analysis of variance (ANOVA). p values < 0.05 were considered
statistically significant.

5. Conclusions

This study investigated the antioxidant, antimicrobial, and anti-AD effects of a novel
peptide, C. notata by-product peptide (CP), derived from the hydrolysate of C. notata by-
product protein. The Alcalase hydrolysate demonstrated the highest antioxidant activity,
and the subsequent purification process led to the isolation of CP, characterized by the
amino acid sequence Ala-Gln-Val-Met-Lys-Leu-Pro-His-Arg-Met-Gln-His-Ser-Gln-Ser. The
antimicrobial activity of CP against Staphylococcus aureus confirmed its potential as an
effective antimicrobial peptide. The study also explored the therapeutic effects of CP on a
mouse model of AD induced by DNCB. Local administration of CP significantly alleviated
inflammatory skin lesions, reduced epidermal and dermal thickness, and inhibited mast
cell infiltration in the dermis. Moreover, CP demonstrated an inhibitory effect on the
elevated levels of IL-6 in the serum of DNCB-induced mice. These findings suggest that
CP, derived from a C. notata by-product, possesses promising properties for potential
applications in skincare and dermatological treatments. The discovery of novel peptides
from by-products of seafood underscores potential for their eco-friendly utilization in
the seafood processing industry. Further research and development could explore the
utilization of CP as a therapeutic agent for skin conditions, leveraging its antioxidant,
antimicrobial, and anti-inflammatory properties.
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