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Abstract

Rosacea is a chronic inflammatory skin disorder that causes visible blood vessels and redness on 

the nose, chin, cheeks, and forehead. However, visual assessment, the current standard method 

used to identify rosacea, is often subjective among clinicians and results in high variation. 

Recent advances in artificial intelligence have allowed for the effective detection of various skin 

diseases with high accuracy and consistency. In this study, we develop a new methodology, coined 

“five accurate CNNs-based evaluation system (FACES)”, to identify and classify rosacea more 

efficiently. First, 19 CNN-based models that have been widely used for image classification were 

trained and tested via training and validation data sets. Next, the five best performing models were 

selected based on accuracy, which served as a weight value for FACES. At the same time, we 

also applied a majority rule to five selected models to detect rosacea. The results exhibited that 

the performance of FACES was superior to that of the five individual CNN-based models and the 

majority rule in terms of accuracy, sensitivity, specificity, and precision. In particular, the accuracy 

and sensitivity of FACES were the highest, and the specificity and precision were higher than most 

of the individual models. To improve the performance of our system, future studies must consider 

patient details, such as age, gender, and race, and perform comparison tests between our model 

system and clinicians.
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1. Introduction

Rosacea is a chronic inflammatory skin disorder that causes visible blood vessels and 

redness on the human face [1]—a condition that affects more than 16 million Americans 

[2]. Globally, the prevalence of this skin condition is thought to range from 0.2% to 22% of 

the population in North America and Europe [3,4]. Rosacea is categorized into four types: 

erythematotelangiectatic, papulopustular, phymatous, and ocular rosacea [5,6]. However, it 

is often difficult to distinguish one type from another [7]. In addition, visual assessment of 

rosacea, the standard clinical diagnostic method, is often subjective among clinicians and 

results in high variation [8–10]. As such, in many cases, rosacea is misdiagnosed as other 

skin disorders, such as acne, eczema, and lupus, or vice versa due to their similarities in 

appearance [11].

Over the past decade, advances in computer-aided diagnosis and treatment using artificial 

intelligence have allowed for the detection of various skin diseases with high accuracy and 

consistency [12]. Furthermore, due to the COVID-19 pandemic and self-isolation in patients, 

telemedicine, which doesn’t require direct contact between clinicians and patients, has 

gained popularity [13]. The skin diseases for deep-learning-based classification are diverse, 

ranging from cancer to acne, eczema, psoriasis, etc. However, the majority of the studies 

have been focused on skin cancer research [14–22]. Hosny et al. employed a pre-trained 

deep learning network such as AlexNet to classify three different lesions (melanoma, 

common nevus, and atypical nevus) [23]. El-Khatib et al. developed a new, effective 

decision system to distinguish melanoma from a nevus, which combines several deep 

learning and machine learning models [24]. They employed five well-known convolutional 

neural network (CNN) models to develop a global classifier, which is the methodology 

used in this study, but they did not investigate numerous CNN models to find the five best. 

Moreover, they only tested a linear function to calculate the global index of decision and 

only tested the evaluation factor value (i.e., α = 0.7). Thomas et al. developed a new deep 

learning method for the effective detection of non-melanoma skin cancers, which are the 

most common skin cancers: basal cell carcinoma (BCC), squamous cell carcinoma (SCC), 

and intraepidermal carcinoma (IEC). Codella et al. used both deep learning and machine 

learning models to detect diverse skin lesions, including melanoma [25]. This study utilized 

the International Skin Imaging Collaboration (ISIC) database to classify 2624 dermoscopic 

images based on a sparse coding, deep residual network, and support vector machine. The 

results display the high-performance values of classification, with 93.1% accuracy, 92.8% 

specificity, and 94.9% sensitivity.

In addition to cancer, some efforts have been made to classify non-cancerous skin 

diseases through artificial intelligence, including psoriasis, atopic dermatitis, eczema, 

acne, hemangioma, onychomycosis, and so on [8,26,27]. Ramli et al. employed k-means 
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clustering to classify acne lesions by collecting acne samples with different grades (mild, 

moderate, severe, and very severe) from 98 patients [28]. Aggarwal et al. trained TensorFlow 

Inception version 3 to recognize five dermatological diseases, including atopic dermatitis, 

acne, psoriasis, impetigo, and rosacea [29]. They measured six statistical parameters, 

such as sensitivity, specificity, PPV, NPN, MCC, and F1 score, with the application of 

data augmentation. Thomsen et al. adopted a pre-trained deep model, VGG-16, for the 

classification of multiple skin diseases (acne, rosacea, psoriasis, eczema, and cutaneous 

t-cell lymphoma) [15]. Goceri tested the performance of several deep learning models 

(U-Net, InceptionV3, ResNet, InceptionResNetV2, and VGGNet) to classify five common 

skin disorders: acne vulgaris, hemangioma, psoriasis, rosacea, and seborrheic dermatitis. 

The study showed that ResNet152 produces the highest accuracy [26].

Motivated by the recent success of artificial intelligence in detecting diverse skin disorders 

and diseases from clinical photos, we present a novel methodology integrating the existing 

CNN-based deep learning models to detect rosacea effectively. A total of 19 CNN-based 

models specialized in image classification were utilized and trained to recognize patterns 

from patients’ clinical images. The top five models were then selected in terms of accuracy, 

and subsequently, their accuracy values were used as weights for our generalized global 

model, coined “five accurate CNNs-based evaluation system (FACES)”. Using the five 

chosen models, we also applied a majority rule to classify rosacea, and its performance was 

compared with individual CNNs and FACES.

The Material and Methods section addresses the detailed methodology of FACES using 

different functions. Next, in the results section, we present the performance values for 

current and individual CNN models using four parameters. Finally, we discuss the potential 

limitations and future works in the discussion and conclusions sections.

2. Related Works

Currently, extremely few studies have been performed on automated identification only 

targeting rosacea using a deep learning or machine learning model, compared to other skin 

disorders. In addition, even though there are some studies, they usually include other skin 

lesions (Table 1), as mentioned above, rather than targeting rosacea alone, which can cause 

poor performance in terms of accuracy [26]. Recently, Binol et al. developed a new deep 

learning model, Ros-NET, to detect rosacea lesions by combining information from varying 

image scales and resolutions [14,30]. They estimated the Dice coefficient and false positive 

rate as a global measure using Ros-Net, whose results were compared with two well-known 

pre-trained deep learning models: Inception-ResNet-v2 and ResNet-101. However, most of 

these studies selected only a few models and compared their accuracy values to provide 

the best performing model. In this way, we could neglect the possibility that a better 

model might exist elsewhere. Hence, it is essential to develop a generalized global model 

encompassing numerous existing high-performance models.
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3. Materials and Methods

3.1. Methodology for Skin Rosacea Detection Combining the Five Best Classifiers

The clinical images were obtained from 40 patients with rosacea and 59 control groups 

from Johns Hopkins University Hospital (Figure 1a, b). In order to improve the rosacea 

classification performance, we used multi-view clinical photos, which are photos of the 

same patient from different views. The high performance of multi-view, multi-modal, and 

integration approaches in machine learning and deep learning for image classification have 

been reported previously [32,33]. The images in the region of interest were segmented 

with different shapes and sizes, and subsequently, the segmented images were augmented 

by rotating and scaling (Figure 1a). The augmentation options included random reflections 

based on the x-axis (i.e., horizontal flipping), random rotation within the rate [−90, 90], and 

random rescaling within the range [1, 2]. The resolution of the images was approximately 

15–20 pixels/mm. A total of 600 images (66% of the entire data set) for each group 

were used for training through the well-known 19 pre-trained CNNs (Figure 1c). A total 

of 200 images (22%) for each group were utilized for validation, and 110 images (12%) 

were utilized as test images. After training the CNN-based models, all models were tested 

to classify images using the validation data set. Consequently, the top 5 CNN-based 

models were selected based on accuracy to apply them to FACES (Figure 1c) as follows: 

ResNet-101 [34] (accuracy: 90.75%), DarkNet-19 [35] (90.25%), DarkNet-53 [36] (89.5%), 

ResNet-50 [37] (89.0%), and GoogleNet [38] (88.5%) (Table 2).

All of the selected 5 methods are CNN models that take a linear O(n) time, where 

n is the number of input pixels [39]. Floating point operations per second (FLOPS) 

reflects the computation complexity of CNN models. The FLOPSs for ResNet101, 

ResNet50, DarkNet53, DarkNet19, and GoogleNet are 7.6, 3.8, 53.6, 5.58, and 1.5 (billion), 

respectively. For our linear model, the total FLOPs are the summation of FLOPs of each 

selected method (i.e., 7.6 + 3.8 + 53.6 + 5.58 + 1.5 = 72.08 billion) because our methods are 

feedforward, traveling forward through the entire network.

Stochastic gradient descent with a momentum (SGDM) optimizer was used as a solver. 

Different values of initial learning rate (0.0001–0.01), validation frequency (1–10), max 

epochs (5–50), and mini-batch sizes (3–30) were tested to find optimum values for the 

highest accuracy because different CNN models exhibited different optimized values. In 

addition, L2 regularization was applied with a value of 0.0001 as another hyperparameter. 

The training time was highly dependent on the types and depths/layers of models ranging 

from 10 min to 7 h. All CNN models and FACES were run on a single CPU (Intel(R) 

Core(TM) i5–8265U CPU @ 1.80 GHz) and 8.00 GB RAM.

The accuracy values from the top 5 CNN-based models were used as weights in the FACES 

with the functions of 1st, 2nd, 3rd, and 4th degrees as follows:

W = ∑
i = 1

5
wi

ndi

1
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W ≥ αW maxandW max = ∑
i = 1

5
wi

n

2

where n is 1, 2, 3, or 4 for linear, quadratic, cubic, and biquadratic functions, respectively; W
is the FACES index of decision; wi is the weight (i.e., accuracy calculated in the validation 

phase for each classifier); di is the individual decision, where 1, if the classifier, indicates 

rosacea; otherwise, 0; and α is the evaluation factor whose optimized value is determined 

using a parametric study testing α ranging from 0.1 to 0.9 with an increase of 0.1. It should 

be noted that FACES detects rosacea if threshold condition (2) is satisfied.

3.2. Methodology for Skin Rosacea Detection Using the Majority Rule

In addition to FACES, using the top 5 CNN-based models, the majority rule was applied 

to classify rosacea. In brief, among 5 selected CNN-based models, if the number of models 

indicating rosacea is equal to or greater than 3, the decision by the majority rule denotes 

rosacea. Otherwise, it indicates normal skin. All deep learning models used in this study 

were implemented using MATLAB R2021b.

3.3. Analysis of Four Performance Parameters

The accuracy, sensitivity, specificity, and precision of each model were calculated based on 

the confusion matrix containing true negative (TN), false negative (FN), true positive (TP), 

and false positive (FP) (Figure 2 and Table 3) to evaluate performance.

4. Results

We tested the effects of α ranging from 0.1 to 0.9 on the rosacea classification in the 

linear, quadratic, cubic, and biquadratic functions. The confusion matrices with respect to 

α are shown in Figures 3–6. For the linear function, the confusion matrix showed that true 

negative (TN) and false negative (FN) tend to increase as the evaluation factor increases, 

while true positive (TP) and false positive (FP) decrease (Figure 3). At the confusion matrix 

of highest accuracy (92.27%, α = 0.4), 10% (11/110) of rosacea and 5.45% (6/110) of 

normal skin are misinterpreted as normal skin and rosacea, respectively.

For the quadratic function, there are two stagnant areas showing constant TN, FN, TP, and 

FP: 0.1–0.3 and 0.5–0.7 (Figure 4). The best accuracy (92.27%) value is found to be at 0.8 

of α, where 10% (11/110) of rosacea and 5.45% (6/110) of normal skin are misclassified as 

normal skin and rosacea, respectively. Overall, TN and FN tend to increase more gradually 

with the increasing evaluation factor compared to the linear function, while TP and FP tend 

to decrease.

For the cubic function, there are two large stagnant regions: the first region ranging from 

0.1 to 0.4 and the second region ranging from 0.5 to 0.9 (Figure 5). The confusion matrix 

showed constant accuracy for each of the first and second stagnant areas at 89.09% and 

92.27%, respectively. It should be noted that the TP of the first region is higher than that of 
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the second region, while TN is the opposite, showing a lower value in the first region. At the 

region of highest accuracy (91.82%), 10% (11/110) of rosacea and 6.36% (7/110) of normal 

skin are misinterpreted as normal skin and rosacea, respectively.

For the biquadratic function, a single α (0.5) shows the best accuracy (92.27%), while 

two stagnant regions (0.1–0.4 and 0.6–0.9) reveal accuracy values at 89.09% and 91.82%, 

respectively (Figure 6). At the confusion matrix of highest accuracy (92.27%, α = 0.5), 

9.09% (10/110) of rosacea and 5.45% (6/110) of normal skin are misinterpreted as normal 

skin and rosacea, respectively.

The confusion matrix created by the majority rule yields 90.45% accuracy as well as TN 

(106), which is the second largest, following ResNet-101 (91.36% for accuracy and 107 for 

TN) (Figure 7). In addition, in the majority rule, 15.45% (17/110) of rosacea and 3.64% 

(4/110) of normal skin are misinterpreted as normal skin and rosacea, respectively.

On the basis of the results from the confusion matrices, accuracy is shown as a function of α 
for each function. The results show that there is a significant impact of the evaluation factor 

on the accuracy, but their distribution depends highly on the degree of function (Figure 8a). 

To be more specific, for the linear function (n = 1), accuracy tends to increase up to 0.4 of α 
continually but decreases after that. For the quadratic, cubic, and biquadratic functions (n = 

2, 3, and 4), the accuracy drastically increases to 0.3 or 0.4 of α and remains almost constant 

after 0.5 of α. The average accuracy values are 0.853, 0.907, 0.906, and 0.906 for the linear, 

quadratic, cubic, and biquadratic functions, respectively. The highest accuracy is 92.27% (α 
= 0.4), 92.27% (α = 0.8), 91.82% (α ≥ 0.5), and 92.27% (α = 0.5) for the linear, quadratic, 

cubic, and biquadratic functions, respectively. When both the highest and average accuracy 

are considered, the quadratic function can be selected as the best performing function. 

Noticeably, all four performance parameters driven by FACES are at least greater than or 

equal to 0.9, while those by other models are not.

We compared the performance of the FACES with that of individual CNN-based models 

and the majority rule. The results show that FACES displays the best performance, revealing 

the highest accuracy (92.27%), followed by ResNet-101 (91.36%) and the majority rule 

(90.45%), as well as the highest sensitivity (0.90), followed by ResNet50 (0.873) and 

DarkNet53 (0.873) (Figure 9). However, FACES’s specificity (0.945) and precision (0.943) 

are the third highest, following ResNet101 (0.973 for specificity and 0.969 for precision) 

and the majority rule (0.964 and 0.959).

5. Discussion

Different individual CNN models have different performances for image classification and 

identification. In this study, by combining the results of these models, we developed a 

better system with higher accuracy to detect rosacea. A comparison between the results of 

our proposed system and the results produced by other studies is shown in Table 4. Our 

proposed system shows better performance (92.27%) than that of the study with the highest 

accuracy (90.2%, Ros-Net).
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For rosacea identification and classification, we utilized clinical photos taken by a digital 

camera covering the whole face. However, a single photo might not cover the proportion 

of the skin lesion, thereby hardly representing or even distorting the features of rosacea. 

To overcome such limitations, we took photos from at least three different angles (i.e., multi-

view learning), which contain the whole lesion of rosacea. Moreover, clinical photos were 

segmented and augmented to integrate different-scaled images to provide both microscopic 

and macroscopic characteristics of rosacea to improve the performance of FACES.

There are still limitations to be addressed and factors to be explored in the future to improve 

FACES’s ability to detect rosacea. First, we did not compare the performance between 

FACES and experienced dermatologists to validate our method. Hence, comparison tests 

are required to warrant using our detection tool in clinical settings. In addition, we did not 

consider several important parameters, such as race, age, or gender, which can be highly 

associated with the occurrence of rosacea, thus, affecting FACES’s classification abilities. 

Early studies demonstrated that rosacea is an age-related disease that occurs more frequently 

at an older age, particularly above the age of 65 years [40,41]. Moreover, women under the 

age of 49 were found to be more affected by rosacea, while rosacea was more prevalent 

in men over 50 [40]. Rosacea’s prevalence is also highly dependent on race. Prior research 

illustrated that Hispanics and Latinos are more susceptible to rosacea compared to African 

Americans or Asians [42]. Taken together, these limitations, as well as factors such as 

age, gender, or race, should be considered in future studies to enhance the performance 

of artificial intelligence. Such an approach will shed light on new effective diagnoses and 

rosacea treatment in clinical practice.

6. Conclusions

In this study, we developed a new decision system based on high-performance CNN-based 

pre-trained models for the detection of rosacea—FACES. FACES outperformed other 

individual models, showing greater accuracy and sensitivity than each individual classifier. 

In addition, FACES performed well in terms of specificity and precision. It is expected that 

the current workflow can be extended and applied to other types of skin diseases in future 

studies. However, diverse rosacea-related factors need to be systematically considered as a 

deep learning parameter in future studies to improve rosacea identification.
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Abbreviation

FACES five accurate CNNs-based evaluation system

BCC basal cell carcinoma

SCC squamous cell carcinoma

IEC intraepidermal carcinoma

TN true negative

FN false negative

TP true positive

FP false positive

Data Availability Statement:

The datasets presented in this article are not readily available because the datasets consist 

of clinical images of patients with rosacea. The source code for the FACES classification 

algorithm is available in the Supplementary Data.
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Figure 1. 
A five accurate CNNs-based evaluation system (FACES). (a) The workflow of FACES for 

identifying rosacea lesions. (b) Example images of normal and rosacea skin. (c) Accuracy 

values from 19 pre-trained CNNs.
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Figure 2. 
Schematic representation of the confusion matrix.
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Figure 3. 
Confusion matrix and accuracy with respect to α for the linear function. In particular, the 

orange and blue colors denote true negative (TN) and true positive (TP), respectively.
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Figure 4. 
Confusion matrix and accuracy with respect to α for the quadratic function.
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Figure 5. 
Confusion matrix and accuracy with respect to α for the cubic function.
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Figure 6. 
Confusion matrix and accuracy with respect to α for the biquadratic function.
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Figure 7. 
Confusion matrix and accuracy by the majority rule and other individual CNN models.
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Figure 8. 
Parametric analysis in different functions with respect to the evaluation factor (α) of the 

FACES. (a) Effects of α on accuracy values with different degrees of polynomial order (n). 

(b) Average accuracy values of each function: linear (n = 1), quadratic (n = 2), cubic (n = 3), 

and biquadratic (n = 4) functions.
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Figure 9. 
Comparison of performance of FACES with that of individual CNNs and the majority rule in 

the testing phase.
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Table 1.

Previous related studies for the identification of rosacea.

Method Skin Lesions References

U-Net, VGGNet, Inception-v3, 
InceptionResNet-v2, and ResNet

Rosacea, acne vulgaris, hemangioma, psoriasis, and seborrheic 
dermatitis Goceri [26]

Inception-v3 Rosacea, acne, atopic dermatitis, psoriasis, and impetigo Aggarwal [29]

DenseNet201 Rosacea, acne vulgaris, hemangioma, psoriasis, and seborrheic 
dermatitis Goceri [31]

VGG-16 Rosacea, acne, psoriasis, eczema, and cutaneous t-cell lymphoma Thomsen et al. [15]

Ros-Net Rosacea Binol et al. [14]

Inception-ResNet-v2 Rosacea Binol et al. [30]
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Table 2.

Properties of the 5 used models for FACES.

Network Depth Size Parameters (Millions) Image Input Size

ResNet-101 101 167 MB 44.6 224 by 224

DarkNet-19 19 78 MB 20.8 256 by 256

DarkNet-53 53 155 MB 41.6 256 by 256

ResNet-50 50 96 MB 25.6 224 by 224

GoogleNet 22 27 MB 7.0 224 by 224
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Table 3.

Parameters of performance used in this study.

Performance Parameter Formula

Accuracy (TN + TP)/(TN + FP + FN + TP)

Sensitivity TP/(TP + FN)

Specificity TN/(TN + FP)

Precision TP/(FP + TP)
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Table 4.

Comparison of accuracy values for the rosacea detection.

Method Accuracy References

FACES 92.27% Current study

ResNet-50 79% [26]

Ros-Net

• Overlapping image patches 90.2% [14,30]

• Non-overlapping image patches 88%

DenseNet201 87.81% [31]

VGG-16 88.64% [15]
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